
A Viterbi decoder and its hardware Trojan
models: an FPGA-based implementation
study

Varsha Kakkara1,*, Karthi Balasubramanian1, B. Yamuna1,
Deepak Mishra2, Karthikeyan Lingasubramanian3 and
Senthil Murugan4,*

1 Department of Electronics and Communication Engineering, Amrita School of Engineering,

Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, India
2Digital Communication Division (DCD), Optical and Digital Communication Group (ODCG),

Satcom Navigation Payload Area (SNPA), Space Application Center (SAC), ISRO, Ahmedabad,

Gujarat, India
3 Electrical and Computer Engineering, University of Alabama, Birmingham, AL, USA
4 Department of Electronics and Communication Engineering, Amrita School of Engineering,

Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India

* These authors contributed equally to this work.

ABSTRACT

Integrated circuits may be vulnerable to hardware Trojan attacks during its design or

fabrication phases. This article is a case study of the design of a Viterbi decoder and

the effect of hardware Trojans on a coded communication system employing the

Viterbi decoder. Design of a Viterbi decoder and possible hardware Trojan models

for the same are proposed. An FPGA-based implementation of the decoder and

the associated Trojan circuits have been discussed. The noise-added encoded input

data stream is stored in the block RAM of the FPGA and the decoded data stream is

monitored on the PC through an universal asynchronous receiver transmitter

interface. The implementation results show that there is barely any change in the

LUTs used (0.5%) and power dissipation (3%) due to the insertion of the proposed

Trojan circuits, thus establishing the surreptitious nature of the Trojan. In spite of the

fact that the Trojans cause negligible changes in the circuit parameters, there are

significant changes in the bit error rate (BER) due to the presence of Trojans. In the

absence of Trojans, BER drops down to zero for signal to noise rations (SNRs) higher

than 6 dB, but with the presence of Trojans, BER doesn’t reduce to zero even at a

very high SNRs. This is true even with the Trojan being activated only once during

the entire duration of the transmission.

Subjects Computer Architecture, Mobile and Ubiquitous Computing, Security and Privacy

Keywords Coded communication system, Hardware Trojan, Viterbi decoder, Bit error rate

INTRODUCTION
The entry of connected technologies into the realms of Internet of Things (IoT) and cyber

physical systems (CPS) has made it imperative for communications systems to be

protected from possible threats. These threats can arise from both software externals and

hardware internals. While considerable emphasis is being given to software level threats,

in this work we focus on the hardware level threats. The hardware of a communication

system can be compromised if its design is exposed so that it can be modified or duplicated.

How to cite this article Kakkara V, Balasubramanian K, Yamuna B, Mishra D, Lingasubramanian K, Murugan S. 2020. A Viterbi decoder

and its hardware Trojan models: an FPGA-based implementation study. PeerJ Comput. Sci. 6:e250 DOI 10.7717/peerj-cs.250

Submitted 2 May 2019

Accepted 17 December 2019

Published 2 March 2020

Corresponding author

Karthi Balasubramanian,

b_karthi@cb.amrita.edu

Academic editor

Miriam Leeser

Additional Information and

Declarations can be found on

page 19

DOI 10.7717/peerj-cs.250

Copyright

2020 Kakkara et al.

Distributed under

Creative Commons CC-BY 4.0



This allows an adversary to deteriorate the performance of a communication system and

expose the system to attacks. This makes understanding of the hardware level threats

significant. In this work, we focus on the effect of one such threat called hardware Trojans,

on coded communication systems that use a Viterbi decoder as the error correcting unit.

Overview of coded communication system

Design of efficient coder–decoder for error control has received increased interest in recent

years. This is due to the fact that all digital transmission and storage requires error control

strategy to ensure reliability. Information symbols from a source are encoded by the

addition of controlled redundancy. Convolutional codes and block codes are the broad

classification of error control codes. An error control decoder makes the best estimate

of the transmitted codeword by making use of the redundancy added at the encoder.

The transmitted codewords are encoded information symbols that are subject to errors,

in the process of transmission through noisy communication channels. These transmitted

codewords can be decoded with as low bit error rate (BER) as possible for transmission

rates upto the channel capacity (Sweeney, 2002). The block level representation of a coded

communication system is shown in Fig. 1.

Hardware Trojans

In the current scenario of integrated circuits (ICs) manufacturing, a globalized business

model has emerged where ICs are manufactured in foundries that are distributed in

various parts of the world. A hardware Trojan is a malicious stealthy modification that

leads to malfunctioning of the system (Colins, 2007). Such modifications in the system

provides a back door entry for the Trojans. The three main categories of hardware

Trojans are based on their action, physical and activation characteristics (Chakraborty,

Narasimhan & Bhunia, 2009; Tehranipoor & Koushanfar, 2010; Karri et al., 2010,

Banga et al., 2008; Ranjani & Devi, 2017). The physical characteristics category

describes the various hardware manifestations of Trojans according to their shape and

Figure 1 Coded communication system. Full-size DOI: 10.7717/peerj-cs.250/fig-1

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 2/21



size; the activation characteristics describe the conditions that activate the Trojans

and action characteristics refer to the behavior of the Trojans. Figure 2 gives the

classification of Trojans based on insertion phase, abstraction level, activation mechanism

and effects.

Hardware Trojans can be inserted at different stages of IC design cycle, while the

most prevalent phases are design and fabrication. Likewise, Trojans can be realized at

different levels of IC design abstraction and can be designed to get triggered internally by

specific states of the system, or externally through any communication medium. The

former can be stealthy based on the occurrence of the problem states, while the latter will

be untraceable in test phase because it is not triggered internally. Regarding the effect of

Trojans on the affected system, they are generally designed by the adversary to change

functionality or leak sensitive information or deny service during critical instances

or compromise the communication system and reduce the reliability of the design

(Karri et al., 2010).

There are numerous post manufacturing techniques for detecting Trojans but a single

technique is difficult to be devised for detecting Trojans universally. Side channel and logic

testing form the two classical Trojan detection techniques (Narasimhan et al., 2013).

In these two methods, a golden circuit is used to compare with outputs of the circuit under

test. Typically, Trojans are devised to activate rarely to escape logic testing and evade

detection. They also possess small physical characteristics to evade side channel based

testing.

Trojan modeling

Trojans are generally modeled for the specific design of interest that they intended to

disrupt. Examples of Trojan benchmark circuits aimed at infecting systems like advanced

encryption system, serial interface RS232, Ethernet MAC, 8051 and PIC microcontrollers

can be found at (TrustHUB, 2019). These circuit models have been widely used to

study the effectiveness of Trojan infection and to design measures to thwart them.

To study the Trojan effect on other systems, custom Trojan models are designed. A few

Figure 2 Hardware Trojan taxonomy. Full-size DOI: 10.7717/peerj-cs.250/fig-2

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 3/21



studies that have been done in recent years on a system level using custom Trojan models

are listed below:

1. Saeidi & Garakani (2016): Multiple hardware Trojans have been designed for a 256 ×

128 array of six transistor SRAM block, that either corrupt the output or modify the

delay and duty cycle of the enable signals. The Trojans are trigged by an address

sequence that is not generally produced in conventional testing methodology, thereby

helping them to evade detection by conventional SRAM testing.

2. Tiwari et al. (2019): A hardware Trojan model has been proposed for launching denial of

service attack to on-chip multicast routing algorithms. The Trojan is modeled to use

the on-chip temperature sensor information to identify suitable nodes and launch attack

on multicast data packets.

3. Liu et al. (2016): The design and custom silicon implementation of secret key leaking

Trojans present in the ultrawide band transmitter of a wireless cryptographic IC has

been presented. The Trojan circuit leaks the encryption key without disrupting the

normal operation. This is achieved by hiding the key in the power amplitude and

frequency margins that are acceptable due to process variations.

4. Kumar et al. (2018): Novel hardware Trojans are proposed that induces denial of service

and performance degradation in a Network on Chip. The Trojan is triggered by a

complex bit pattern generated from input messages, intended toward misleading the

packets away from the destination address.

5. Subramani et al. (2019): Hardware Trojan attack is modeled by modifying the encoder

block of a 802.11 a/g transmitter. This is accomplished by hijacking some of the

legitimately encoded bits and substituting with rogue bits.

Trojan modeling of channel decoders

Channel decoders are a quintessential part of any coded communication system. They are

soft targets for Trojan attacks and can be embedded with malicious blocks for the following

reasons: (Hemati, 2016).

1. They have a direct interface with the outside world that make them susceptible to being

hijacked.

2. They process noisy information that makes it impossible for a even a perfectly

functional decoder to be successful all the time. Hence a Trojan affected system may

easily claim false failures and masquerade its real purpose.

3. Brute force approach of running all test cases to identify malicious activity is not

practical with even a medium size block length since the number of input and output

combinations will be huge.

In spite of the fact that channel decoders are highly susceptible to Trojan attacks,

the effects of Trojans on them hasn’t been explored in literature. Hemati (2016) have

proposed the use of stochastic techniques at a system level for mitigating Trojan effects in a

channel decoder but an RTL level analysis is missing. Our work involves the proposal and

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 4/21



analysis of possible Trojans on a specific channel decoder namely, the Viterbi decoder.

The work is concentrated toward RTL design of a Viterbi decoder and possible Trojans

that may potentially compromise the communication system and reduce the reliability of

the decoder.

Viterbi algorithm is widely used for decoding convolutional codes since it achieves

maximum likelihood estimate of the convolutionally coded transmitted sequence (Forney,

1973). A low BER can be achieved by a Viterbi decoder (Viterbi, 1967). However the

presence of Trojans can affect the performance of the decoder significantly. This has been

demonstrated with a proof of concept in our earlier work (Aravind et al., 2018). Trojan

models were proposed and behavioral modeling studies at the algorithmic level showed

that the BER performance of convolution decoder using the Viterbi algorithm is degraded

due to the presence of the hardware Trojans. The current work extends this proof of

concept to a RTL level circuit design of the decoder and the Trojan activities. A practical

implementation of the Viterbi decoder is achieved and the Trojan effects on the system

is analyzed.

The article is organized as follows. The Viterbi decoder section details the reader about

the Viterbi algorithm with a suitable example. This is followed by the section on the

hardware design of the decoder for FPGA implementation. Results from simulation and

FPGA implementation of the decoder are discussed after that, followed by the section

on the design of the Trojans. Results and discussions on the Trojan based design are

presented and the article then concludes with references to possible future work.

VITERBI DECODER
The n encoded output in a (n, k, m) convolutional code depends on the k present input

blocks as well the m past input blocks. A memory m sequential circuit is used for realizing

the convolutional encoder. The trellis diagram of the rate half, m = 2, convolutional

encoder is shown in Fig. 3. The corresponding state diagram of the trellis is shown in Fig. 4.

Figure 3 Trellis structure of the convolutional encoder. Full-size DOI: 10.7717/peerj-cs.250/fig-3

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 5/21



The state transitions and the outputs reached in response to changes in input are

represented in the state diagram. In the trellis diagram the same information is

described in stages which represent the different time instants. With states representing

the past memory contents of the encoder and branches representing the state transitions,

the trellis path traced by the Viterbi decoder is a sequence of branches. The input

message bit corresponding to each branch in the sequence of branches represent the

decoded message sequence. By adding terminating zeros to the message sequence it is

ensured that the decoder always starts in an all-zero initial state for decoding a message

sequence. A detailed example showing the decoding procedure may be found in the

Supplemental Document.

FPGA BASED VITERBI DECODER DESIGN
The Viterbi decoder was designed in Verilog and implemented on a Xilinx Zybo-Z7010

board. Figure 5 shows the top level implementation structure that includes the core

decoder block, a single port block RAM (BRAM) of size 8 × 1,024 to store the input data

Figure 4 State transitions of the encoder. Full-size DOI: 10.7717/peerj-cs.250/fig-4

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 6/21



and a single port block RAM of size 8 × 512 to store the decoded data. Along with these,

an universal asynchronous receiver transmitter (UART) transmitter module is also

integrated to monitor the decoded data on a PC.

Input interface

The noise added encoded message is stored in the input BRAM and data is transferred to

the decoder block through the input interface. The interface logic unit consists of a counter

and an eight bit shit register as shown in Fig. 6.

It reads the data byte-wise from the BRAM and transmits two bits per clock cycle to the

decoder block for further processing. At every clock cycle two LSB bits are shifted out

to the branch metric unit (BMU) block. After every four clock cycles, the subsequent

BRAM location is read and processed similarly.

Figure 5 Block level diagram for FPGA implementation of Viterbi decoder.

Full-size DOI: 10.7717/peerj-cs.250/fig-5

Figure 6 Input interface. Full-size DOI: 10.7717/peerj-cs.250/fig-6

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 7/21



Decoder design

Figure 7 shows the top level block diagram of the decoder consisting of the BMU, path

metric unit (PMU), survivor path memory unit (SPMU), spmu_controller and the trace

back unit (TBU).

Branch metric and path metric units

The BMU calculates the Hamming distance between the received frame and the branch

word while the PMU performs add-compare-select (ACS) calculations as described in

Middya & Dhar (2016). Figures 8 and 9 show the blocks used for the Hamming distance

calculation and the ACS units.

During every clock cycle, BMU calculates the eight branch metrics corresponding to the

two transitions of each of the four states. The branch metrics are then passed on to the

PMU that updates each state with the least path metric corresponding to each of the states

and also stores the corresponding path leading to it in the form of a “decision bit,” one

for each of the four states at every time instant. It can be seen from the trellis diagram in

Figure 7 Decoder block diagram. Full-size DOI: 10.7717/peerj-cs.250/fig-7

Figure 8 Hamming distance unit. Full-size DOI: 10.7717/peerj-cs.250/fig-8

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 8/21



Fig. 3 that each state has two incoming paths. The decision bit is set to “0” if the state

is reached from the top branch while it is set to “1” if it is reached from the bottom branch.

Figure 10 shows the block diagram of the PMU block to update the path metrics and for

decision bit calculations for the four states.

Survivor path memory unit and trace back unit

Survivor path memory is designed as a single port BRAM that stores the decision bit values

of all states at each of the time instants. The structure of the SPMU is the same as the

trellis structure shown in Fig. 3. For the input data size of 1,024 bytes, the number of

decision bits generated would be 4,096 for every state. Thus a 4 × 4,096 BRAM is used as the

SPMU. The SPMU_update module reads the decision bits from the PMU block and updates

the SPMU every clock cycle. This continues till the SPMU is populated with all the 4 × 4,096

Figure 10 PMU blocks for all the four states. Full-size DOI: 10.7717/peerj-cs.250/fig-10

Figure 9 Add carry select block. Full-size DOI: 10.7717/peerj-cs.250/fig-9

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 9/21



decision bit values. Once the SPMU is populated with the decision bits, the decode_en bit is

triggered high and the trace back unit kicks in to start the reverse process to decode the

original input bits. Figure 11 shows the state machine used for the trace back operation.

Since the encoded message is terminated with zeros, the final state of the system would

be the zero state and hence TBU can be safely initialized to start the decoding from the

zero state. After decoding all the 4,096 bits, decode_done signal is activated to trigger

the output interface. It is to be noted that it takes around 4,096 clock cycles for the forward

tracing, 4,096 clock cycles for traceback and few cycles are required for synchronization.

Output interface

The output interface consists of a first-in-first-out (FIFO) buffer of size 8 × 512 (4,096 bits)

to store the decoded data and the baud generator and transmitter modules of UART to

transmit the data serially on to a PC. The UART is designed with a frame length of 10

(one start bit, eight data bits and one stop bit) and works at a baud-rate of 9,600 bps.

Figure 12 shows the UART frame used in the design.

The data from the decoder is first stored in the FIFO and is transmitted when an

external request for data transfer is enabled. The FIFO is designed using a BRAM of size

8 × 512. FIFO is chosen to be one byte wide to enable byte wise data transfer to the UART

Figure 12 10 bit UART frame. Full-size DOI: 10.7717/peerj-cs.250/fig-12

Figure 11 State transition diagram of the trace back unit (TBU).

Full-size DOI: 10.7717/peerj-cs.250/fig-11

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 10/21



transmitter easily. Figure 13 shows the transmitter block designed to operate at a baud rate

of 9,600 bps.

The UART transmitter contains the baud generator that generates the UART clock

corresponding to a baud rate of 9,600 bps. To generate this clock from the master clock, we

use a clock divider whose value can be obtained by using Eq. (1)

Baudrate ¼
master clk

ð16� divisorÞ
(1)

Since the master clock of the FPGA board (Zybo-Z7010 ) is 125 MHz, we need to design

a clock divider of value given by Eq. (2)

divisor ¼
master clk

ð16� BaudrateÞ
¼ 813:4 (2)

Rounding off to the nearest highest integer, we use a clock divider of value 814 to generate

the UART clock and data is transmitted out serially to the PC through a RS232 interface.

SIMULATION AND IMPLEMENTATION OF VITERBI
DECODER

Input data generation

A coded communication system is set up as detailed in the introduction section, using

MATLAB. 4 K message bits are generated randomly and encoded using a convolutional

encoder of rate 1/2 to generate 8 K encoded bits. Binary phase shift keying modulation

is used to modulate the encoded message stream and the resulting data sequence is

transmitted through an additive white gaussian noise channel of varying signal to noise

rations (SNRs). The received sequences are demodulated and stored as inputs for the

Viterbi decoder.

Design and functional verification

The Viterbi decoder was first designed using a behavioral model in MATLAB and then a

synthesizable RTL design was done in Verilog. The original encoded message sequence

(without noise addition) is given as input to the decoders and the output was verified to be

the original message sequence. This establishes that the decoders are functionally correct.

Figure 13 UART transmitter. Full-size DOI: 10.7717/peerj-cs.250/fig-13

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 11/21



Having verified the functionality of the designs using the encoded message as the

inputs, the noise-added sequences are given as inputs and the BERs are computed.

FPGA implementation

The RTL design of the decoder was synthesized on to a Zybo board that is built using

Z-7010, a member of Xilinx Zynq-7000 family. Z-7010 is designed using Xilinx all

programable system-on-chip architecture, that integrates a Xilinx 7-series FPGA along

with an ARM based Cortex-A9 processor. In our work, we have not used the ARM

processor for generating test inputs but instead, the test vectors are generated from

MATLAB as briefed above and a single port BRAM is initialized with these input test

vectors. The decoded output bits are first stored in another BRAM and then sent by the

UART transmitter to the PMOD pins of the Zybo board. This transmitted data is

driven through a UART-to-USB translator (PL2303) and the serial bits are captured on the

PC using Real Term serial terminal (RealTerm, 2019).

Functional verification of the implemented design was done in the same manner as the

simulated design. The encoded message bits without noise addition were given as the

input and the decoded bits were compared with the original message sequence. It was

Figure 14 Comparative BER plots for MATLAB behavioral design, RTL design and the FPGA

implementation (beyond 6 dB, the BER is zero). All three plots overlap perfectly, thus establishing

the correctness of the implementation. Full-size DOI: 10.7717/peerj-cs.250/fig-14

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 12/21



verified that the decoded and input message bits matched successfully. For calculating the

decoder performance, the decoder was fed with noisy data of different SNRs.

Figure 14 shows the BERs obtained for the MATLAB behavioral model, the RTL design

and the FPGA implementation where it can be seen that the BER drops down to zero

for SNRs greater than 6 dB1. Also, there is a perfect overlap of all the plots, thus

demonstrating the equivalence of the behavioral, RTL and the implemented models.

TROJAN DESIGN AND IMPLEMENTATION
In this work, we propose the design of three possible Trojans and study how their stealthy

presence may affect the system performance.

Trojan design 1: decision-bit flipping Trojan (PMU Trojan)

In the PMU, it is expected that the comparator identifies the least path metric path and

correspondingly store a “1” or “0” to indicate either of the paths to be traversed during

trace back. The proposed Trojan Decision-bit flipping, when enabled, flips the decision bits

thus causing the trace back unit to proceed in an incorrect decoding path. The hardware

model of the Trojan circuit is shown in Fig. 15.

The decision bit is inverted when Trojan is enabled and the SPMU gets populated with

an incorrect value. This causes the lower metric path to be discarded instead of the higher

path metric, thus resulting in possible erroneous decoding.

Trojan design 2: traceback path modification Trojan

During trace back, the decision bits from the SPMU is read and a path is chosen based on

whether the stored value is a “0” or a “1”. The traceback path modification Trojan inverts

this logic and changes the state transitions, thus making it proceed in the wrong path.

Figure 16 shows the modified state machine due to the Trojan being effective.

When the Trojan is enabled, the transitions are made to differ from the original state

transitions resulting in erroneous decoding.

Trojan design 3: shift-direction-modifying Trojan

In the output interface, when the decoded data is being written into the shift register,

normally it will be right shift operation. But when the Trojan is enabled this operation will

be reversed and performs left_shift thus sending erroneous data to the transmitter.

This can be achieved by the use of multiplexers that can alter the shift direction based on

Figure 15 PMU Trojan. Full-size DOI: 10.7717/peerj-cs.250/fig-15

1 Since the BER is plotted on a log scale, it

is not possible to indicate the zero values

on the plot

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 13/21



the Trojan enable signal. Figure 17 shows the Trojan circuitry that is created due to this

Trojan.

RESULTS AND DISCUSSIONS
The effectiveness of the designed Trojans can be gauged by their stealthy nature and by

their propensity to degrade the performance of the infected system.

Figure 17 Shift direction modifying Trojan. Full-size DOI: 10.7717/peerj-cs.250/fig-17

Figure 16 Trojan effect modifying the trace back path in the TBU.

Full-size DOI: 10.7717/peerj-cs.250/fig-16

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 14/21



Stealthy Trojans

Trojans by nature are stealthy in nature and are difficult to detect. To verify if the proposed

Trojan models are stealthy enough to evade detection, the difference in the area and power

dissipated due to the Trojan insertion are calculated. Tables 1 and 2 show the power

and utilization summary of the Trojan free circuits and the Trojan affected circuits. It is to

be noted that the parameters obtained is only for the decoder logic without including the

input BRAM and the output UART.

It can be seen from the power and area utilization results that in the worst case, there is a

difference of only 4 mw of on-chip power (difference of 3.1%), and only four extra LUTs

(change of 0.5%) due to the Trojan insertions. This establishes its stealthy nature, thus

qualifying them as effective Trojans.

Performance degradation

To analyze how effectively the Trojans disrupt the natural decoding process, the Trojans

are triggered at random time instants and the decoded bits are analyzed. Generally,

Trojans are designed to activate surreptitiously in order to go unnoticed. Hence the

triggering was done only once during the entire decoding process and the effect of this

triggering is observed and the resultant BER is calculated.

Trojan triggering logic

Figure 18 shows the circuit for generating Trojan enable signal. It consists of a BRAM,

a 14 bit counter to count up to the maximum possible number of clock cycles required

for decoding and a comparator. The Trojan can be triggered any time during the entire

duration of decoding. To identify these triggering instances, 50 random numbers are

generated and stored in a block RAM. During each triggering one location is read from the

BRAM as the triggering instance. The Trojan enable signal is generated when the

counter value matches with the random number being read from the BRAM. The BER is

calculated to be the average of the BERs obtained from all the triggering instances.

Table 1 Power summary table.

Power summary (W) Without trojan PMU trojan TBU trojan Shift modification

trojan

Total on-chip power 0.129 0.129 0.133 0.13

Dynamic 0.025 0.025 0.03 0.026

Device static 0.104 0.104 0.104 0.104

Table 2 Utilization summary table.

Utilization Without trojan PMU trojan TBU trojan Shift modification trojan

Site type Available Used Util% Used Util% Used Util% Used Util%

Slice LUTs 17,600 453 2.57 451 2.56 457 2.59 455 2.58

LUT as logic 17,600 197 1.11 195 1.1 201 1.14 199 1.13

LUT as memory 6,000 256 4.26 256 4.26 256 4.26 256 4.26

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 15/21



Figure 18 Trojan triggering logic. Full-size DOI: 10.7717/peerj-cs.250/fig-18

Figure 19 BER plot for PMU Trojan. Full-size DOI: 10.7717/peerj-cs.250/fig-19

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 16/21



Effect of the triggered Trojans

The effect of the Trojans may be quantified by the increase in the BERs of the infected

decoder. Figures 19–21 show the comparative BER graphs of the decoder without Trojan

and with Trojan being activated only once.

It can be seen that in the absence of Trojans, the BER drops down to zero for SNRs

greater than 6 dB, but with the Trojans being active, the BER doesn’t reduce to zero

even for high SNRs. Thus the Trojans leave a distinctive BER signature (high BER).

Among the three Trojans, the BER signature is highest for TBU Trojan and lowest for

PMU Trojan, with the shift modification Trojan producing a BER signature in between

the other two.

It is also interesting to note that the difference in the performances between the Trojan

free design and the design with Trojans is negligible in the low SNR regions but the

difference is prominent in the high SNR regions. Also at some low SNR conditions, the

performance of the Trojan affected system is slightly better than the unaffected system.

This scenario is possible since, in the low SNR regions, the data itself is noisy and

erroneous. During the bit flipping or the state transition or the shift direction modifying

actions of the Trojans there exists a possibility that few erroneous bits are converted to

correct bits, thus providing a reverse effect on the system. The possibility of this kind

of behavior, along with the fact that Trojans are stealthy make it difficult to conjure

Figure 20 BER plot for TBU Trojan. Full-size DOI: 10.7717/peerj-cs.250/fig-20

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 17/21



effective Trojan detection schemes. To counter such situations, the current focus of

researchers is to neutralize them apart from detecting the Trojans (Gunti &

Lingasubramanian, 2017).

Study limitations

The study proposes stealthy Trojans—decision bit flipping, traceback path modification

and shift direction changing Trojans—and their effect on the decoding efficiency of a

Viterbi decoder. The Trojans degrade the performance of the decoder, causing it to have

a high BER. But, it is to be noted that high BER can also arise in a system due to high

noise in the channel. Hence in situations where the channel’s noise characteristics are

unknown, the presence of these Trojan can’t be inferred purely from the BER signature.

It needs to be augmented with other Trojan detection schemes to correctly infer the

presence of Trojans.

CONCLUSIONS
In this work, we have designed a FPGA based implementation of a Viterbi decoder and

presented possible effects of hardware Trojans on coded communication systems. Three

unique threat models are developed and tested on the Viterbi decoder which is popular

Figure 21 BER plot for shift direction modifying Trojan.

Full-size DOI: 10.7717/peerj-cs.250/fig-21

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 18/21



for its low BER performance. However, we show that the presence of the proposed Trojans

affect the efficiency of the Viterbi decoder by increasing the BER. The stealthiness of

the proposed Trojans is also established. Using the proposed threat models, we envision

to test their effects on complex systems like CPS and IoT which rely on efficient

communication channels.

With the wide application of convolution codes in various SNR scenarios, the

results of the implemented system play a significant role in emphasizing the need for

efficient Trojan detection schemes. It is envisaged that apart from BER signature

analysis, other Trojan detection and neutralizing schemes will be explored for the

proposed Trojans.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by Space Application Center, ISRO through RESPOND project

/ISRO/RES/3/732/16-17. Deepak Mishra from ISRO is a coauthor and was involved in the

study design, analysis and preparation of the article.

Grant Disclosures

The following grant information was disclosed by the authors:

Space Application Center, ISRO through RESPOND Project: /ISRO/RES/3/732/16-17.

Competing Interests

Deepak Mishra is a scientist at the Indian Space Research Organization (ISRO),

Ahmedabad, India.

Author Contributions

� Varsha Kakkara conceived and designed the experiments, performed the experiments,

analyzed the data, performed the computation work, prepared figures and/or tables,

authored or reviewed drafts of the paper, and approved the final draft.

� Karthi Balasubramanian conceived and designed the experiments, performed the

experiments, analyzed the data, prepared figures and/or tables, authored or reviewed

drafts of the paper, and approved the final draft.

� B. Yamuna conceived and designed the experiments, analyzed the data, prepared

figures and/or tables, authored or reviewed drafts of the paper, and approved the

final draft.

� Deepak Mishra conceived and designed the experiments, authored or reviewed drafts of

the paper, and approved the final draft.

� Karthikeyan Lingasubramanian conceived and designed the experiments, analyzed the

data, authored or reviewed drafts of the paper, and approved the final draft.

� Senthil Murugan conceived and designed the experiments, performed the experiments,

analyzed the data, performed the computation work, authored or reviewed drafts of the

paper, and approved the final draft.

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 19/21



Data Availability

The following information was supplied regarding data availability:

The raw data generated from MATLAB are available in the Supplemental Files.

Supplemental Information

Supplemental information for this article can be found online at http://dx.doi.org/10.7717/

peerj-cs.250#supplemental-information.

REFERENCES
Aravind AR, Kesavaraman SR, Balasubramanian K, Yamuna B, Lingasubramaniam K. 2018.

Effect of hardware trojans on the performance of a coded communication system. In: 2018 IEEE

International Conference on Consumer Electronics (ICCE). Las Vegas: IEEE, 1–6.

Banga M, Chandrasekar M, Fang L, Hsiao MS. 2008. Guided test generation for isolation and

detection of embedded trojans in ICs. In: Proceedings of the 18th ACM Great Lakes symposium

on VLSI. New York: ACM, 363–366.

Chakraborty RS, Narasimhan S, Bhunia S. 2009. Hardware trojan: threats and emerging

solutions. In: 2009 IEEE International High Level Design Validation and Test Workshop.

San Francisco: IEEE, 166–171.

Colins D. 2007. Trust in Integrated Circuits (TIC): DARPA Solicitation BAA07-24. Arlington

County: DARPA.

Forney GD. 1973. Convolutional codes 11. maximum-likelihood decoding. Information and

Control 25(3):222–266 DOI 10.1016/S0019-9958(74)90870-5.

Gunti NB, Lingasubramanian K. 2017. Effective usage of redundancy to aid neutralization of

hardware Trojans in integrated circuits. Integration 59:233–242 DOI 10.1016/j.vlsi.2017.06.002.

Hemati S. 2016. Mitigating hardware cyber-security risks in error correcting decoders. In: 2016

9th International Symposium on Turbo Codes and Iterative Information Processing (ISTC).

Brest: IEEE, 181–185.

Karri R, Rajendran J, Rosenfeld K, Tehranipoor M. 2010. Trustworthy hardware: identifying and

classifying hardware Trojans. Computer 43(10):39–46 DOI 10.1109/MC.2010.299.

Kumar M, Swain AK, Kumar S, Sahoo SR, Mahapatra K. 2018. Run time mitigation of

performance degradation hardware trojan attacks in network on chip. In: 2018 IEEE Computer

Society Annual Symposium on VLSI (ISVLSI). Hong Kong: IEEE, 738–743.

Liu Y, Jin Y, Nosratinia A, Makris Y. 2016. Silicon demonstration of hardware trojan design and

detection in wireless cryptographic ICs. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems 25(4):1506–1519 DOI 10.1109/TVLSI.2016.2633348.

Middya A, Dhar AS. 2016. Real-time area efficient and high speed architecture design of

viterbi decoder. In: 2016 2nd International Conference on Advances in Electrical, Electronics,

Information, Communication and Bio-Informatics (AEEICB). Chennai: IEEE, 246–250.

Narasimhan S, Du D, Chakraborty RS, Paul S, Wolff FG, Papachristou CA, Roy K, Bhunia S.

2013. Hardware trojan detection by multiple-parameter side-channel analysis.

IEEE Transactions on Computers 62(11):2183–2195 DOI 10.1109/TC.2012.200.

Ranjani RS, Devi MN. 2017. Malicious hardware detection and design for trust: an analysis.

Elektrotehniski Vestnik 84(1/2):7–16.

RealTerm. 2019. Serial/TCP terminal. Available at https://sourceforge.net/projects/realterm/

(accessed 23 April 2019).

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 20/21



Saeidi R, Garakani HG. 2016. Sram hardware trojan. In: 2016 8th International Symposium on

Telecommunications (IST). Tehran: IEEE, 719–722.

Subramani KS, Antonopoulos A, Abotabl AA, Nosratinia A, Makris Y. 2019. Demonstrating

and mitigating the risk of a FEC-based hardware trojan in wireless networks. IEEE Transactions

on Information Forensics and Security 14(10):2720–2734.

Sweeney P. 2002. Error control coding: from theory to practice. New York: John Wiley & Sons.

Tehranipoor M, Koushanfar F. 2010. A survey of hardware trojan taxonomy and detection.

IEEE Design & Test of Computers 27(1):10–25.

Tiwari B, Yang M, Jiang Y, Wang X. 2019. Effect of hardware trojan attacks on the performance

of on-chip multicast routing algorithms. In: 2019 IEEE 9th Annual Computing and

Communication Workshop and Conference (CCWC). Las Vegas: IEEE, 623–629.

TrustHUB. 2019. Trojan benchmarks. Available at https://trust-hub.org/benchmarks/trojan

(accessed 15 August 2019).

Viterbi A. 1967. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Transactions on Information Theory 13(2):260–269.

Kakkara et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.250 21/21


	A Viterbi decoder and its hardware Trojan models: an FPGA-based implementation study
	Introduction
	Viterbi decoder
	Fpga based viterbi decoder design
	Simulation and implementation of viterbi decoder
	Trojan design and implementation
	Results and discussions
	Conclusions
	References


