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A Cortico- Basal Ganglia Model for 
choosing an optimal rehabilitation 
strategy in Hemiparetic Stroke
Rukhmani Narayanamurthy1, Samyukta Jayakumar1, Sundari Elango1, 

Vignesh Muralidharan2 & V. Srinivasa Chakravarthy1

To facilitate the selection of an optimal therapy for a stroke patient with upper extremity hemiparesis, 

we propose a cortico-basal ganglia model capable of performing reaching tasks under normal and stroke 

conditions. The model contains two hemispherical systems, each organized into an outer sensory-

motor cortical loop and an inner basal ganglia (BG) loop, controlling their respective hands. The model 

is trained to simulate two therapeutic approaches: the constraint induced movement therapy (CIMT) 

in which the intact is arrested, and Bimanual Reaching in which the movements of the intact arm are 

found to aid the affected arm. Which of these apparently mutually conflicting approaches is right for 
a given patient? Based on our study on the effect of lesion size on arm performance, we hypothesize 
that the choice of the therapy depends on the lesion size. Whereas bimanual reaching is more suitable 
for smaller lesion size, CIMT is preferred in case of larger lesion sizes. By virtue of the model’s ability 

to capture the experimental results effectively, we believe that it can serve as a benchmark for the 
development and testing of various rehabilitation strategies for stroke.

Stroke is considered to be one of the leading causes of disability and mortality worldwide. It generally manifests 
itself as an upper extremity dysfunction with 80% patients suffering from it acutely and 40% chronically1. Sensory 
and motor deficits resulting from unilateral stroke include difficulty in performing common activities like reach-
ing, grasping and picking up objects. Functionally, hemiparesis is one of the common motor impairments asso-
ciated with unilateral stroke, after which a more obvious deterioration in the performance of the contralateral 
arm is observed2. Recovery following motor rehabilitation post-stroke primarily depends on the initial severity 
of paresis3 and degree of loss in functionality. It has been reported that the prognosis is good when patients are 
treated within the first three months following stroke4. Nevertheless, reports show upper extremity recovery 
ensuing several years after stroke5,6. Hence it has been suggested that progress in functional outcome may be due 
to neurological repair through cortical reorganization or compensatory mechanisms7.

The ultimate objective of a wide variety of existing rehabilitation protocols like virtual reality based reha-
bilitation8,9, music therapy10, mirror therapy11, motor imagery12,13, motor imitation14, movement observation15, 
transcranial magnetic stimulation (rTMS)16, unilateral muscle strengthening exercises17,18, motor skill learning19, 
bimanual and unimanual training20 (e.g., Constraint Induced Movement Therapy (CIMT)), is to enable patients 
recover from weakness and improve functionality of the arm. However, the problem of determining the best 
approach for a given stroke patient is inconclusive due to inherent contradictions in some of the existing rehabili-
tation approaches21. For instance, CIMT is primarily based on the repetitive use of the affected arm by restraining 
the healthy arm19 while bimanual training pairs the healthy arm with the paretic arm to increase the chances of 
recovery22.

A wide variety of computational models/frameworks have been proposed for motor control by the human 
motor system. The model of Chen et al.23 consists of a motor cortex (MC) that controls a 2-link arm through 
motor neurons and a proprioceptive cortex that provides feedback to the MC. The movement of the arm is con-
trolled by stimulating different nodes of the MC and maps are formed with the help of unsupervised learning. 
However due to the absence of basal ganglia (BG), the arm is unable to make reaching movements to a specific 
target. The model proposed by Han et al.24 is bimanual and the choice between using either of the two hands is 
made with the help of an Action Choice Module. This module compares the value of making the movement with 

1Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology 
Madras, Chennai, India. 2Department of Psychology, University of California, San Diego, USA. Correspondence and 
requests for materials should be addressed to V.S.C. (email: schakra@iitm.ac.in)

Received: 1 March 2019

Accepted: 12 August 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-49670-4
mailto:schakra@iitm.ac.in


2SCIENTIFIC REPORTS |         (2019) 9:13472  | https://doi.org/10.1038/s41598-019-49670-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

either hand and chooses the hand with the highest value. Reinforcement learning is used by the model to achieve 
this. In the model proposed here, comparison is made between making and not making a movement similar to 
that performed by direct vs indirect pathway of the BG. On similar lines, Takiyama et al.25 investigated the poten-
tial mechanisms that contribute towards the efficacy of bimanual movements in stroke recovery from a compu-
tational perspective. Although it gives an insight into the neural mechanism that drives cortical reorganization 
following bimanual rehabilitation, it does not account for the various cortical and subcortical structures involved 
in motor control. Other models like the ones proposed by Hidaka et al.26 and Casadio et al.27 were specifically 
developed for stroke and are based on real patient data. However, these models were developed for specific treat-
ment regimes (robot-assistance therapy and CIMT respectively) thereby restricting the scope of incorporating 
other therapies into their models. A more thorough review of the various computational models of stroke and 
rehabilitation can be found in Reinkensmeyer et al.28.

In this paper we use computational modelling to study two common rehabilitation strategies – bimanual 
training and CIMT. While bimanual training recommends use of both hands since the normal hand aids in the 
rehabilitation of the paretic hand, CIMT posits that the normal hand must be arrested to permit optimal rehabil-
itation of the paretic hand. The two strategies are obviously mutually contradictory. Which strategy is more suit-
able in a given situation? We address this question using an elaborate computational model of the cortico-basal 
ganglia network.

Our model is designed to perform both unimanual and bimanual reaching under different task conditions. 
The model consists of an outer cortical loop and an inner basal ganglia loop. Performance is evaluated in terms 
of peak resultant velocity (PRV) and reaching error. The entire system drives a two-link arm model engaged in 
targeted reaching movements. The basal ganglia loop primarily drives motor learning with the control gradually 
passed on from the basal ganglia (BG) to the motor cortex (MC) as learning progresses. Two copies of the entire 
system, appropriately coupled, is used to simulate bimanual reaching. The model is able to explain reaching 
behaviour under normal and hemiparetic stroke conditions and is also able to capture key results from the biman-
ual reaching experiments of Rose and Winstein29 where it is shown that bimanual reaching tasks are beneficial 
in reviving the activity of the affected limb post stroke. The model is also operated under CIMT conditions. A 
comparison of the effect of the two apparently contradictory strategies on model performance pointed to an 
interesting resolution: bimanual reaching is found to be more beneficial for smaller lesion sizes whereas CIMT is 
more effective for bigger lesion sizes.

The outline of the paper is as follows. Section 4 describes the model equations and task setup. Section 2 
describes the model results related to unimanual and bimanual reaching. A comparison of recovery from stroke 
following CIMT and bimanual reaching is also presented. Section 3 presents a discussion of the results and scope 
for future work.

Results
Simulating intra-cortical connectivity. The bimanual aspect of the model has its seed at the level of the 
respective motor cortices of the two arms. The MCs communicate by means of a “coupling factor (ε)” where, the 
product of ε and MC activity (ε × G t( )

RIGHT LEFT MC

RIGHT LEFT

/
/ ) of the ipsilateral hemisphere is added with the input 

current to the MC CANN (I t( )
MC

RIGHT LEFT/ ) of the contralateral hemisphere. Based on Eq. (17) (under Methods), 
this coupling is mathematically represented by,

ε= + + +I t A G t A G t A G t G t( ) ( ) ( ) ( ) ( ) (1)MC
RIGHT

PC PC
RIGHT

BG BG
RIGHT

PFC PFC
RIGHT

RIGHT MC
LEFT

ε= + + +I t A G t A G t A G t G t( ) ( ) ( ) ( ) ( ) (2)MC
LEFT

PC PC
LEFT

BG BG
LEFT

PFC PFC
LEFT

LEFT MC
RIGHT

Based on the coupling strengths, the reaching task conditions could be categorized into:

 a. Unimanual condition: Unimanual movement is implemented in the model under the assumption that the 
resting arm has limited influence over the moving arm. For instance, when the right arm moves, the value 
of εRIGHT in Eq. (1) will be low, signifying the minimal effect of the G t( )MC

LEFT  on the right arm and vice 
versa.

 b. Bimanual condition: Here the coupling values of εRIGHT and εLEFT are non-zero and are optimized to fit the 
data.

 c. Constraint induced movement: Here the coupling values have the same range as in bimanual condition. 
However in this case, unlike bimanual, G t( )MC

LEFT  remains constant denoting the dormant nature of the 
constrained, unaffected (left) arm.

The velocity profiles (refer Supplementary Material) of the aforementioned task conditions when performed 
in the absence of lesion, serve as control data for comparison with performance of the model post-stroke.

Simulating Hemiparetic Stroke in the model. To simulate and study hemiparetic stroke, we incorpo-
rated “lesion” of size n × n in the right MC of our model by suppressing the activity of a fixed number of nodes in 
gMC of the CANN as follows:

= .g t g t( ) 0 01 ( ) (3)MC i j MC i j, , , ,

where,
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gMC is the state of neurons in MC CANN at time ‘t’.
(i, j) corresponds to a 2D array in gMC that is used to define the lesion in MC.
a and b define the location of the lesion in the MC.

Performance of the arm post-stroke simulation. To test changes in the kinematics of the arm after 
introducing lesion, we estimated the velocity profile of the affected arm while it was performing a reaching task. 
The network was trained to reach a single target followed by introduction of lesion in the corresponding MC. It 
can be noticed from Fig. 1c that there is a significant decrease in the velocity of the affected arm when compared 
to its normal counterpart.

Training the outer motor cortical loop under lesion conditions. Retraining PC to MC connection.  
Once a lesion is introduced, PC to MC connection is retrained such that the winner node corresponding to the end 
effector position of the arm is picked from the neighbouring nodes that lie outside the lesion area. The winner node 
is the one whose weight is the least distant from the given input vector. Also, instead of random initialization of SOM 
weights, weights trained under normal conditions are used to retrain the connections between PC and MC.

Retraining MC to MN Weights. MC to MN weights are retrained in order to maintain consistency with respect 
to retraining the cortical loop once a lesion is introduced. Therefore, the weight update is given as,

Figure 1. Reaching behaviour in stroke. (a,b) The network output of the left and right arm while performing 
the reaching task independently and the activities of multiples areas in the model. (c) The velocity profile of the 
right arm (now paretic) during a reach. The yellow square in MC right denotes the presence of lesion. (d) The 
end effector trajectories of the paretic arm obtained for reaching a single target across trials as the learning of 
the PFC to MC connections (WPFC→MC) takes place.
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φ t( )
MN  and φ +t( 1)MN  are MN outputs computed from motor cortical activities collected at tth and t + 1th 

time steps when the arm is closest to its goal. The recovery of the lost end effector positions in the workspace after 
retraining the cortical loop is as shown in Fig. 2c.

Experimental study – Rose and Winstein (2004). Rose and Winstein29 (2004) investigated the fea-
sibility of bimanual training protocol for post-stroke rehabilitation. They tested the performance of the upper 
extremities under unimanual and bimanual conditions in three different reaching paradigms. A total of 30 stroke 
patients, alongside 30 healthy people (controls), were involved in the study. The participants were asked to reach 
forward rapidly and aim with one hand (unimanual) or both hands (bimanual) and hit switches mounted on LED 
targets in response to an LED signal.

Their initial study examined a spatially symmetric forward aiming movement of the arms. They found that, in 
unimanual condition, the non-paretic arm exhibited a higher Peak Resultant Velocity (PRV), than in bimanual 
condition, where it was paired with the paretic arm. On the contrary, the paretic arm exhibited a higher PRV 
when it functioned bimanually as opposed to unimanual condition. Interestingly, this discrepancy was observed 
only in stroke patients and not in controls.

Rose and Winstein extended their study by inducing spatial disparity in reaching distances which would 
require co-ordination among both arms. Similar to their previous case, the participants had to aim and hit 

Figure 2. Mapping of the end effector positions approximated by the network. All possible end effector 
positions of the arm in the given workspace are mapped under three different conditions (a) normal(control) 
condition (b) stroke condition and (c) retraining the cortical loop post stroke.

Figure 3. Asymmetric target aiming. (a,b) Congruent and Incongruent aiming setups in Rose and Winstein’s 
experiment. ‘D’ refers to the aiming distance. In congruent condition, target for the paretic arm was located at 
half the distance of target location of the normal arm. In incongruent aiming, the paretic arm had the farther 
target to reach.
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switches in response to an LED signal, only now the arms moved to separate targets. This experiment was clas-
sified into two based on the level of difficulty of the task assigned to paretic arm. The first type was called “con-
gruent aiming”, where the paretic arm moved to a “near” target and the non-paretic arm moved to a “far” target 
while the second type known as “incongruent aiming” followed the converse of the congruent task setup (Fig. 3).

The “near” target is placed at 50% of the distance of the “far” target as shown in Fig. 3. It was observed that 
the non-paretic limb exhibited a prolonged movement execution time accompanied by a decrease in its PRV in 
bimanual condition, than that in unimanual condition. Also, there was an increase in the paretic limb PRV in 
bimanual condition when compared to unimanual condition. However, the enhanced paretic limb PRV was seen 
only with respect to incongruent aiming which further led them to compare paretic limb PRV in unimanual con-
ditions for the near and far aiming tasks to verify if aiming distance alone facilitated such an increasefacilitated 
such an increase29.

The paretic limb PRV was similar in both unimanual aiming conditions thereby suggesting that both paretic 
aiming distance and constraints of bimanual coordination are prerequisites to improve performance of the paretic 
arm.

Model performance on the reaching tasks. Symmetric Aiming. We simulated the symmetric aiming 
task in the model by providing each arm with its respective target, at spatially symmetric locations as shown 
in Fig. 4d. In the first case, the arms are allowed to perform the reaching under unimanual aiming conditions 
where ε = 0. This is followed by testing the arm under bimanual conditions using both inhibitory and excitatory 
coupling (ε < 0 and ε > 0). For each arm, its velocity at every instant in time is recorded and averaged to find the 
maxima of the velocity profile which is referred to as the PRV.

It is observed that under unimanual conditions, the non-paretic arm (left arm in the model) shows a greater 
PRV than the paretic arm (right arm in the model). Similarly, it is found that during bimanual training of the arms 
to accomplish the target, the paretic arm showed a significant increase in its PRV whereas the non-paretic arm 
showed a decrease in its PRV when compared to unimanual training as shown in Fig. 4a,b. This was achieved by 
using the coupling factor where there is excitatory influence from the paretic to the non-paretic arm and inhibi-
tory influence from non-paretic to the paretic arm.

Congruent and Incongruent Aiming. The second experiment conducted by Rose and Winstein required move-
ment of the upper extremities to “near” and “far” targets. Based on this spatial disparity, the tasks were divided 
into congruent and incongruent aiming tasks. In congruent aiming, the paretic arm had a near target and hence 
an easy task to accomplish, whereas the non-paretic arm had a far target to reach. The near target is placed at 50% 
of the distance of the far target as shown in Fig. 5b. We simulated this task setup in the exact same manner and 

Figure 4. Model performance in symmetric aiming. (a,b) Velocity profiles of the paretic and the non-paretic 
arm under unimanual and bimanual conditions obtained from the Model. (c) The bar graph of the Peak 
resultant velocities (from model). (d) Snapshot of the simulation of the arms reaching the targets in symmetric 
aiming task.
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allowed the model to perform the task. The PRVs of both the arms are recorded under unimanual and bimanual 
conditions. It is found that under unimanual conditions, the non-paretic arm had a higher PRV than the paretic 
arm with, no significant change in the PRV of the paretic arm in the bimanual case. However a decrease in the 
velocity of the non-paretic arm is observed when it is paired with the paretic arm (i.e. bimanual) (Fig. 5a).

The incongruent aiming task observes the converse experimental setup as that of the congruent aiming task. 
Here, the paretic arm (right) has a far target (difficult task) to accomplish whereas the non-paretic arm (left) has 
a near target to accomplish as shown in Fig. 6b. A similar recording of the PRV is performed as mentioned in the 
earlier studies. It is found that the PRV of the non-paretic arm is higher than the paretic arm under unimanual 
conditions. But in the bimanual conditions, the paretic arm shows a significant increase in its velocity whereas the 
velocity of the non-paretic arm decreased greatly as shown in the graph (Fig. 6a). The results obtained in all the 
three aforementioned task setups follow the same trend as those obtained by Rose and Winstein29.

Aiming conditions Vs lesion size. In this part, we study the effects of different lesion sizes of the MC on 
reaching behaviour. One of the several factors inducing a change in reaching performance could be the extent of 
damage in the corresponding hemisphere after stroke. The model provides a framework to test this effect and also 
serves as a tool to compare different interventions currently available to find the best possible one for patients in 
order to help them regain control. It becomes important to provide a forum that can reconcile different strategies 
since most of them are inconsistent with each other in relation to their techniques.

Here, we record the reaching error of the arm i.e. the minimum distance of the arm from its target over lesion 
sizes starting from 1 × 1 to 7 × 7 for CIMT, unimanual and bimanual reaching tasks. The eye of the lesion is 
exactly on the neuron that gets activated whenever the arm reached its target.

Figure 5. Model performance in congruent aiming. (a) Peak resultant velocities of the paretic and the non-
paretic arm under unimanual and bimanual conditions obtained from model (b) Snapshot of the simulation of 
the arms reaching the targets in congruent aiming task.

Figure 6. Model performance in incongruent aiming. (a) Peak resultant velocities of the paretic and the non-
paretic arm under unimanual and bimanual conditions obtained from model (b) Snapshot of the simulation of 
the arms reaching the targets in incongruent aiming task.
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In addition, we tested the model performance in chronic and acute stroke cases. In chronic stroke, the MC 
was trained with lesion and then tested. This could be equated to a condition where therapy was provided a few 
months after the incidence of stroke. While in acute stroke condition, the MC was trained normally and tested 
right after introducing the lesion without any further retraining. This could be analogous to a condition where 
therapy was provided soon after the incidence of stroke.

Upon analysis, for chronic stroke, both unimanual and bimanual conditions of the task completion is 
observed. It is found that for lesion sizes ranging between 1 × 1 and 5 × 5, bimanual training proved to be more 
beneficial in terms of reduced reaching errors of the paretic arm, whereas lesion studies beyond 5 × 5 size (6 × 6 
and 7 × 7), unimanual training proved to be beneficial.

For CIMT, it is observed that the reaching error decreases as the lesion size increases when compared with 
bimanual condition. The value of the reaching error obtained for lesion sizes above 5 × 5, i.e. 6 × 6 and 7 × 7 is 
comparable to that obtained in unimanual condition. Thus, for higher lesion sizes, CIMT also proves to be bene-
ficial when compared with bimanual condition.

For acute stroke, the value of reaching error is very low in bimanual condition up to a lesion size of 6 × 6. 
However, for 7 × 7 the error rises to a significant level (Fig. 7). The opposite pattern is observed for unimanual 
condition and CIMT- the value of reaching error reduces with increasing lesion size. This is similar to the trend 
observed in chronic stroke.

Discussion
We propose a biologically plausible model that can perform simple bimanual reaching tasks. We consider only 
motor stroke affecting the upper extremities and stroke is modeled by deactivating a part of the motor cortex in 
the model. Since stroke is introduced at the level of motor cortex which is the hub of integration of inputs from 
all the other components (observed in Eq. 17), presence of stroke at this level has a direct influence on the per-
formance of the corresponding arm, and to some extent the other arm due to coupling between the two motor 
cortices in the model.

Several control and stroke studies are performed using the model to compare and quantify the effects of 
stroke. The effect of stroke in the model on reaching behaviour of the arms is evaluated in terms of PRV and 
reaching error. The workspace of the arm that comprises of all reachable target locations is mapped under both 
stroke and post intervention paradigms. Under stroke conditions, there is an evident decrease in the number of 
targets the arm can reach in its workspace because of deactivation of certain neurons in the MC due to which it 
fails to form representations for those goal positions (Fig. 2b). Post intervention, on retraining the connections 
between both PC and MC that correspond to the representations lost due to lesion and MC and MN that account 
for specific arm configurations that were absent under stroke conditions, the ability of the arm to reach the previ-
ously unreachable targets in its workspace improved. Thus the current model accounts for the recovery of the arm 
after intervention and also demonstrates the potential to explain functional plasticity in the brain30.

Figure 7. Model performance in varying lesion sizes. (a,b) The average reaching error obtained from the model 
under unimanual, bimanual and constraint induced training conditions plotted with respect to lesion size in 
acute and chronic stroke respectively.
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The arm’s movement when it reaches the target is analyzed and the trajectories are recorded. During the initial 
stages of reaching the target, (between trials 1 and 20) the trajectory shows high path variability31. Early stage of 
training in the model is characterized by a low contribution from PFC and high BG contribution. The exploratory 
drive originating from the complex and chaotic dynamics of the STN-GPe system of the BG seems to account for 
high path variability in this stage. The trajectories in the later stages of training (between trials 41 and 50), become 
smoother with reduced path variability (refer Supplementary Material). In late stage training, the contribution 
from the BG is reduced, with lesser influence from the STN-GPe system, and thereby lesser exploration perhaps 
explaining the reduced path variability in this stage.

The velocity of the arm as it reaches the target shows the characteristic bell-shaped profile, with reduction 
in PRV of the arm under stroke conditions (Fig. 1c). Thus, the introduction of stroke in the model introduces a 
temporal delay and reduces the performance of the arm in reaching tasks as observed in classic cases of upper 
extremity hemiparesis32. These studies effectively indicate the model’s potency to simulate reaching behaviours 
under normal and stroke conditions.

The paper focuses on modelling and simulating the task setup of Rose et al. (2004) for bimanual training as 
a prospective rehabilitation strategy for stroke. The primary performance index analyzed in this study was the 
velocity profile of both the arms during reaching tasks. It was found that during the symmetric aiming task under 
unimanual conditions, the PRV of the non-paretic arm (left arm) was higher than that of the paretic arm (right 
arm). Conversely, when the arms performed the same task under bimanual conditions, the paretic arm showed 
an increase in its PRV and the non-paretic arm showed a significant decrease (Fig. 4). This result suggests that 
the non-paretic arm aids the paretic arm in moving towards its target, when the arms perform the task under 
bimanual conditions.

A second experiment comprising of two tasks was performed by introducing an asymmetry in the target 
locations. In the congruent aiming task, it was observed that although the PRV of the non-paretic arm was higher 
than the paretic arm in both unimanual and bimanual conditions, the PRVs of both the arms showed no sig-
nificant change (Fig. 5). It may be inferred that a relatively easier performance target for the paretic arm has an 
insignificant influence on its PRV and hence does not contribute to any effective improvement of the arm.

In incongruent aiming, it was observed that under unimanual conditions, the non-paretic arm had a higher 
PRV than the paretic limb as expected. However, a surprising change was observed under bimanual conditions, 
where there was a significant increase in the PRV of the paretic arm accompanied by a significant decrease in 
the PRV of the non-paretic arm (Fig. 6). It can be deduced from these changes in the PRV, that using a more 
challenging task for the paretic arm would help its functional recovery (under bimanual conditions) more than 
using an easy one. The model is able to capture all of the abovementioned performance variations mentioned in 
the empirical study29.

Stroke rehabilitation requires a well-rounded understanding of the post-stroke effects or loss of function-
ality that patients suffer. Although interventions begin within the first 48 hours of stroke manifestation, only 
60% of people with hemiparesis have received functional independence in activities of daily living (ADL)33,34. 
Hence, a comprehensive and customized treatment strategy that would vary from patient to patient is required 
for effective treatment. Progressively training components of goal-oriented tasks by reinforcing behaviour using 
specified learning networks or in other words, physical training has proved to be a go-to and an effective strategy 
implemented in stroke rehabilitation35 followed by other techniques that have emerged such as robotic arm train-
ing36, virtual reality approaches8,37,38 etc. The motivation behind our paper is to study these conventional training 
therapies using a computational model and allow the model to assess the relative merits of different therapies. To 
begin with, we have focused on three different rehabilitation strategies that fall under physical training therapies: 
Unimanual reaching tasks (URT), bimanual reaching tasks (BRT) and Constraint Induced Movement Therapy 
(CIMT).

CIMT is modelled by arresting the non-paretic arm (left arm in this case) in a specific configuration (this is 
similar to constraining the arm using a sling as observed in the experiments). The right arm (paretic arm) thus 
receives a constant motor cortex activity from the constrained arm modulated by the coupling strength (εR or εL). 
Different comparison studies are performed between these rehabilitation strategies. The first study was performed 
by introducing acute stroke in the model and measuring the reaching error of the arm. Reaching error is defined 
as the closest distance to which the arm gets to the target location when it performs the task. This analysis is car-
ried over different lesion sizes to assess the efficacy of the chosen rehabilitation strategy as a function of the size 
of lesion in the motor cortex. It is found (Fig. 7a) that until lesion size of 3 × 3 (which denotes small lesion sizes) 
all three rehabilitation strategies (unimanual, bimanual and CIMT) prove to be effective, and their corresponding 
reaching errors are zero or approximately zero. Beginning from a lesion size of 4 × 4 until 6 × 6, it can be seen 
that the value of reaching error is zero for bimanual but has a significant value under unimanual and CIMT con-
ditions, thus making bimanual the most sought after strategy in this lesion bracket. Interestingly, the opposite 
is observed for a lesion size of 7 × 7 with bimanual reaching error being higher than the unimanual and CIMT 
value. However the difference in the value is not that significant.

The second study is carried out under chronic stroke conditions. For 1 × 1 lesion, both CIMT and bimanual 
training prove to be effective strategies. But from lesions of size 2 × 2 to 5 × 5, higher reaching errors in both 
unimanual and CIMT trainings make it a non-preferred strategy for relatively smaller lesion sizes. On the other 
hand, bimanual training shows a reaching error of zero or approximately zero, until a 5 × 5 lesion size but spikes 
suddenly at 6 × 6 thereby making it an unreliable intervention strategy at greater lesion sizes (Fig. 7b). Thus we 
conclude that unimanual reaching and/or CIMT are more preferred rehabilitation strategies for greater lesion 
sizes in the motor cortex.

Although the model gives rise to some useful predictions with respect to developing customized therapies for 
stroke, insufficient data on the cortical and sub-cortical connectivities still pose a challenge to simulate biologi-
cally plausible coupling within different regions of the motor network. However, the model intelligibly accounts 
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for the inter-hemispherical connections by incorporating the coupling factor (ε) at the level of motor cortices. 
This is justified because the motor cortex component receives input from all the other components in the model 
and integrates it, dynamically influencing the performance of the system. Future work includes appending the 
existing model with a cerebellum component, a unified reward and value function. Since the cerebellum is 
involved in prediction and facilitation of fast and complicated movements39,40, incorporation of such a system 
in the model would allow these movements to be implemented in the model. Upon incorporation, the dynamics 
of the network needs to be modified to include the cerebellum module. Other future works include converting 
the PFC module into a Reinforcement Learning (RL) engine. The model would then have a hierarchical RL41,42 
(HRL) structure with value function computation occurring at two levels – BG and PFC. The model will then be 
driven by the interaction between these two RL components. We also aim to bridge the gap between clinical data 
and modelling studies by incorporating 3D reaching tasks to facilitate the development of more realistic motor 
and somatosensory maps using LISSOM (Laterally Interconnected Synergistically Self Organising Maps). Thus 
the current model holds immense potential to be developed and used as one of the key clinical tools employed 
for stroke rehabilitation.

Methods
To examine the after effect of stroke on upper extremity function, we use a cortico- basal ganglia model31 capable 
of performing simple bimanual reaching movements. In essence, the model has two semi–independent systems, 
each capable of driving reaching movements in a single hand. Each system has an outer loop corresponding to the 
cortical loop and an inner loop corresponding to the basal ganglia loop. The outer loop consists representations 
of two cortical modules – the proprioceptive cortex and the motor cortex, - and another module representing the 
spinal cord. The combined cortico-basal-ganglia system controls a simple two-link arm model. A pair of systems, 
corresponding to the left and right hemispherical systems, is coupled at the level of the respective motor cortices, 
controlling their respective arms. There exists a communication between the two motor cortices by means of a 
coupling factor (ϵ), reflecting inter-hemispherical connectivity. The proposed architecture is described in greater 
detail as follows:

Model architecture. The model architecture comprises of an outer sensory motor-cortical loop and an inner 
cortico-basal ganglia loop. The outer loop consists of the two-link kinematic arm, proprioceptive cortex (PC), 
motor cortex (MC) and motor neurons (MN) that innervate the two muscle pairs of the two link arm. The inner 
loop comprises of the basal ganglia (BG) and its components such as the striatum, globus pallidus external and 
internal segments (GPe and GPi), the subthalamic nucleus (STN) and the thalamus (Fig. 8).

A detailed description about every component with respect to single arm module is as follows:

The Sensory motor cortical loop. Arm model: The two link kinematic arm is composed of two joints where each 
joint is controlled by an agonist (Ag) and an antagonist (An) muscle pair. Each pair is in turn innervated by a pair 
of motor neurons represented in the form a four dimensional vector φMN(t). The activations of the innervated 
muscle pairs are then used to obtain the shoulder and the elbow joint angles (θS/E

JA(t)) given by the equations:

θ φ φ
π π

= − +t t t( ) ( ( ) ( ))
2 2 (6)S

JA
Ag
MN

An
MN

Figure 8. The cortico-basal ganglia model for bimanual reaching. The architecture is designed to have two 
loops, a sensory-motor “outer” loop and the cortico-basal ganglia “inner” loop. The motor cortex receives 
projections from higher frontal areas which in the model is the Prefrontal cortex. The size of the neuronal sheet 
used for each module in the model is 15 × 15.
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θ φ φ
π π

= − +t t t( ) ( ( ) ( ))
2 2 (7)E

JA
Ag
MN

An
MN

The measures of the joint angles define the range of movements of the arm over the 2D workspace which 
contains a given set of targets. Following this, the lengths (µE and µS) of each muscle is calculated from the joint 
angles by using the following equations:

µ θ= + +t a b a b( ) 2 cos( ) (8)Ag
S

S S S S S
JA2 2

µ θ= + −t a b a b( ) 2 cos( ) (9)An
S

S S S S S
JA2 2

µ θ= + +t a b a b( ) 2 cos( ) (10)Ag
E

E E E E E
JA2 2

µ θ= + −t a b a b( ) 2 cos( ) (11)An
E

E E E E E
JA2 2

A sensory (proprioceptive) map of the arm is subsequently generated from the four dimensional muscle 
length vector (ML = [µAg

SµAn
SµAg

EµAn
E]). The end effector location of the arm (Xarm = [x1

armx2
arm]) is computed 

from:

θ θ θ= − + +x l a l( )cos( ) cos( ) (12)
arm

S S S
JA

E S
JA

E
JA

1

θ θ θ= − + +x l a l( )sin( ) sin( ) (13)
arm

S S S
JA

E S
JA

E
JA

2

Formation of the sensory map: The sensory map of the arm is generated by the PC, which is modeled as a Self- 
Organizing Map (SOM)39 of size NPC × NPC. The muscle length vector (ML(t)) is used as the feature vector to train 
the PC SOM. The activation of a single node iin the PC is given by:

σ
=







− − 




P t

M t W
( ) exp

( )

(14)
i

L PC i

PC

,
2

2

Formation of the motor map: The motor cortex comprises of a 2D sheet of neurons of size NMC × NMC and is 
modeled as an amalgamation of SOM and Continuous Attractor Neural Network (CANN)43 to account for the 
characteristic of low dimensional input data representation and dynamics exhibited in such cortical areas. A 
dynamic model like CANN is employed to facilitate the integration of multiple afferent inputs received from the 
PC, the BG and the Pre-Frontal Cortex (PFC).

The lateral connectivity in the CANN model is characterized by short range excitation and long range inhibi-
tion whose dynamics are defined by the weight kernel (WMC

C) given by,

σ
=







− − + − 




−W A

i i j j
Kexp

( ) ( )

2( ) (15)
MC i j
C

lat
C MC h MC h

lat
C

C
, ,

2

2

where,
Alat

C is the strength of the excitatory connections
σlat

C is the radius of the excitatory connections and
KC is the global inhibition constant
[iMC, jMC] are the locations of the nodes in MC, [ih, jh] corresponds to the central node.
The output from PC, a matrix of size NPC × NPC, is converted into a vector of size NPC

2 × 1 and given as input 
to the SOM part of MC for the development of motor map of the arm. There exists all-to-all connections from 
the muscles of the arm to PC and PC to MC. The MC SOM is trained using the standard SOM algorithm44. The 
activation of a node i in the SOM part of the MC is given by:

σ
=







− − 




G t

P t W
( ) exp

( )

(16)
PC i

MC i

MC
,

,
2

2

where,
WMC,i is the weight connection between the PC and the ith node of the SOM part of MC σMC is the width of the 

Gaussian response. The outputs from PC (GPC), BG (GPC) and PFC (GPFC) are then presented as input to the MC 
CANN. The input equation is given by:

= + +I t A G t A G t A G t( ) ( ) ( ) ( ) (17)MC PC PC BG BG PFC PFC

where, APC, ABG, APFC are the respective gains of the PC, BG and PFC networks.
With these inputs, the activation dynamics of the MC is given by:
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τ = − + ⊗ +
dg

dt
g W G I

(18)MC
MC

MC MC
C

MC

where gMC is the internal state of the MC neurons.
The output MC activity (G(t)) is given by,

=

+ ∑
π( )

G t
g

b g

( )

1
(19)

MC

N MC MC

2

2 2

MC
2

The MC neurons project into the four motor neurons whose activation is then given by,

φ = →t A W G t( ) ( ) (20)
MN

MN MC MN

To close the sensory motor loop, the MC to MN connections are trained in a supervised manner. To begin 
with, we give direct external input to MN, which may be considered as the desired MN activation (ϕD

MN(t)). 
This input will in turn produce a movement in the arm which in turn produces responses in the PC and MC in 
that sequence. The new MC activation presents a new input to the MN module. Now the desired MN activation 
(ϕD

MN(t)) and the actual MN activation (ϕMN(t))) obtained after traversing over the cortical loop must be ideally 
the same. But in an untrained cortical loop there will be a difference. The difference between the desired and 
actual MN activations is used to train the connections between the MC and the MN (WMC→MN) layer:

η φ φ∆ = −→ →
W t t G t( ( ) ( )) ( ) (21)MC MN MC MN D

MN MN

where, ∆ →WMC MN  corresponds to weight updation and η
→MC MN

 is the learning rate.
Since the model is bimanual, the motor cortex of one arm is connected to the motor cortex of the other by 

means of a coupling factor (ϵ). Thus, a connection is established between the two hemispheres at the motor cor-
tical level. To study upper limb hemi paretic stroke paradigms, we introduced a “lesion” in the right motor cortex 
by nullifying the activity of a part of the MC.

The Basal Ganglia. The fundamental principle of BG operation is reinforcement learning where the BG learns 
to choose optimal actions based on a reward feedback mechanism45. Hence the BG drives the arm via the motor 
cortex and enables the arm to reach the target. The process of action selection is guided by the presence of a value 
function calculated within the striatal module of the BG. Thus, the arm will learn to choose the action which 
brings the greatest increase in value. In the model, the value function codes for the error between the desired goal 
position (Xtarg) – provided by input from PFC – and actual end effector position (Xarm) – provided by input from 
PC – in terms of distance. Thus the PC and PFC input are used by the striatum (value function module) to calcu-
late the value function. The BG output then performs a stochastic hill climbing over the value function to search 
for the maximal value. The value is calculated by,

σ
=







− − 




V t

X X
( ) exp

(22)

arm
t arm

V

arg 2

2

where, σV defines the spatial range over which the value function is sensitive for that particular target.
We then determine the value difference signal (δv) which regulates the switching between direct and indirect 

pathways.

δ = − −V t V t( ) ( 1) (23)V
arm arm

The switching happens due to the modulation of the responses from the striatal Medium Spiny Neurons 
(MSN). This is represented as:

λ δ
=
+ − −

∆y
t

G t
1

1 exp( ( ))
( )

(24)
D

D V D
1

1 1

λ δ
=

+ − −
∆y

t
G t

1

1 exp( ( ))
( )

(25)
D

D V D
2

2 2

where, ∆G(t) refers to the difference vector represented as difference in motor cortical activity; yD1 and yD2 rep-
resent the outputs of D1R- and D2R-expressing Medium Spiny Neurons (MSNs) respectively and λD1 and tD1, 
λD2 and tD2 are the gains and the thresholds of the direct and indirect pathway respectively. Since λD1 = −λD2 the 
dynamics of the system becomes such that when δv is positive, the direct pathway is chosen and when δv is nega-
tive, the indirect pathway is chosen.

The dynamics of the STN- GPe system influenced by yD2 is given by,

τ ε= − + ΣΣ + +
dx

dt
x W x w y y

(26)GPe
GPe

GPe g
glat

GPe sg STN D2
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τ ε= − + ΣΣ −
dx

dt
x W y w x

(27)STN
STN

STN s
slat

STN gs GPe

λ=y xtanh( ) (28)STN STN STN

where,
Wslat and Wglat are lateral weight connections with connection strengths ϵs and ϵg within STN and GPe 

respectively
wsg and wgs are the weight parameters that control the connection strengths.
τSTN and τGPe are the respective time scales of STN and GPe.
λSTN controls the STN output by controlling the slope of the sigmoid.
τSTN and τGPe are the time scales of STN and GPe respectively.
The Gaussian neighbourhood of the lateral weight connections is given as

σ
=






−

− + − 




W

i k j l
exp

( ) ( )

( ) (29)
i j k l
glat slat g s g s g s g s

lat
g s, , ,

/ / /
2

/ /
2

/ 2

where, σlat
g/s is the spread of the lateral connections respectively for the STN-GPe network.

The exploratory behaviour of the arm is attributed to the uncorrelated oscillations of the STN layer which are 
produced as a consequence of low striatal inputs. This is due to the formation of excitatory-inhibitory neuron 
pools by the STN-GPe system constituting the indirect pathway. Such excitatory-inhibitory pairs of neuronal 
pools are known to exhibit complex oscillations45.

The output signal of the direct pathway from the D1R-expressing MSNs in the striatum is integrated with the 
STN output in the GPi as follows:

= −y A y A y (30)GPi D D D STN1 1 2

This output from the GPi is then presented to the thalamus, also modeled as a continuous attractor neural 
network (CANN).

Representation of goal location. Goal of a movement is considered to be represented in the PFC, thereby making 
it the source of a motor command46–48. Hence, in our model the PFC is used to convey information regarding the 
goal position to the motor cortex. The PFC is modeled and trained as a SOM, with weights WPFC. The locations 
accessible by the arm in its 2D workspace are given as input feature vectors to train the SOM. The activation in the 
PFC corresponding to a particular target location is given by:

σ
=







− − 




U t

X t W
( ) exp

( )

(31)
i

t
PFC i

PFC

arg
,

2

2

The PFC to MC weight connections (WPFC→MC) are trained whenever the arm reaches the target. If GPFC is 
the activity that is induced in the MC due to PFC activation and Gtarg is the MC activity that facilitates the arm to 
reach its target, then the training of weights between PFC and MC is given as:

η∆ = −→ →
W G t G t U t( ( ) ( )) ( ) (32)PFC MC PFC MC

t PFCarg

At the outset, learning occurs as the result of slow movements of the arm governed by the BG. However, in 
later stages, learning occurs due to fast movements dominated by the cortical loop. Hence PFC contribution 
increases as a function of number of trials.

Simulation of aiming conditions. In the model, each arm had its respective target placed at locations in 
a manner identical to that of the experiment conducted by Rose and Winstein29. In the experiment, the subjects 
were asked to aim and hit the switches (targets) using either one arm or both arms in response to an LED signal. 
Based on target locations, the tasks given to the subject/model to perform were classified into:

 I. Symmetric/Equidistant aiming
 II. Congruent aiming
 III. Incongruent aiming

All three tasks are implemented in the model, in both unimanual and bimanual conditions. In unimanual 
condition, the arms act independently (ϵ = 0) and in the bimanual reaching condition, they reach their respec-
tive targets simultaneously (ϵ < 0 and ϵ > 0) (Table 1). Congruent aiming task involves movement of the paretic 
arm to a nearby target (“near” target) with the normal arm aiming at a far off target (“far” target). The distance 
between the near target and the subject was half the distance between the far target and the subject. Similarly in 
incongruent aiming, the paretic arm had to reach the far target while the non-paretic arm moves toward a near 
target. These tasks are used to study the effect of reaching distance and aiming condition on the performance of 
the paretic arm.
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Besides the implementation of unimanual and bimanual conditions, we have also implemented in the model, 
Constraint induced movement therapy (CIMT), an intervention that has shown to be effective in restoring func-
tionality of the stroke affected limb19,49. The objective of this part of the modelling study is to investigate the effect 
of CIMT on stroke rehabilitation and understand its limitations. CIMT involves forced usage of the affected arm 
to perform tasks while actively restraining the unaffected arm by means of a sling or a splint. In the model, this 
is achieved by maintaining the unaffected arm (left) in a fixed initial configuration and allowing the paretic arm 
(right) to perform the task. Fixing the arm in a particular configuration ensures the imposition of a “constraint- 
induced” framework.

Lesion study. To analyse the impact of the size of lesion in the MC on the performance of the paretic arm 
under different aiming conditions, lesions of varying size ranging from 1 × 1 to 7 × 7 are introduced in the MC. 
The coordinates of the center of the lesion (iles, jles) is selected such that activation of the MC near (iles, jles) places 
the arm at the goal location. The center of the lesion is fixed while the size is varied. This study is conducted for 
three aiming conditions namely unimanual, bimanual and CIMT. The arm is trained under all three conditions 
and is tested using symmetric targets. The lesion is centred on the (i, j)th node and is expanded from a size of 1 × 1 
to 7 × 7. The reaching error of the arm is computed for every lesion size as function of the distance between the 
actual target and end effector positions at the end of every trial.

Data Availability
The code for the proposed Cortico-Basal ganglia model is available on ModelDB server (http://senselab.med.yale.
edu/ModelDB/showModel.cshtml?model=245199) Access code: Stroke_code.
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