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Abstract
A general three-dimensional continuum model of phonons in two-dimensional materials is developed. Our first-principles deriva-

tion includes full consideration of the lattice anisotropy and flexural modes perpendicular to the layers and can thus be applied to

any two-dimensional material. In this paper, we use the model to not only compare the phonon spectra among the group-IV materi-

als but also to study whether these phonons differ from those of a compound material such as molybdenum disulfide. The origin of

quadratic modes is clarified. Mode coupling for both graphene and silicene is obtained, contrary to previous works. Our model

allows us to predict the existence of confined optical phonon modes for the group-IV materials but not for molybdenum disulfide. A

comparison of the long-wavelength modes to density-functional results is included.
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Introduction
Phonon spectra in two-dimensional (2D) nanomaterials have

almost exclusively been computed using density-functional

theory (DFT) based codes. One of the earliest applications to

group-IV elemental 2D materials was for the important predic-

tion of the stability of silicene and germanene [1]. These are

complex calculations and prone to qualitative errors due to the

various approximations such as convergence criteria and use of

approximate functionals [2]. Even the stability or not of a given

structure could be incorrectly inferred. For example, borophene

and indiene have been predicted to be unstable in one paper [3],

though other calculations (and in the case of borophene, even

experiments [4]) have obtained opposite results [5,6]. In addi-

tion to obtaining a spectrum, it is often also useful to be able to

predict and/or interpret properties of the spectrum based upon

either microscopic or symmetric arguments. An excellent exam-

ple is the prediction of a Dirac cone for silicene on the basis of

symmetry [7] when DFT calculations either failed to recognize

it [8] or were unable to explain it [1].
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An alternative model of lattice vibrations is a classical continu-

um model, which is expected to reproduce most accurately

phonons with wavelengths longer than lattice separations, i.e.,

near k = 0. One of the earliest such models applied to an ionic

crystal slab is that of Fuchs and Kliewer [9], from which they

deduced that transverse optical (TO) and longitudinal optical

(LO) modes have different frequencies at k ≈ 0 as well as the

existence of surface optical (SO) modes with an exponential de-

pendence away from the slab. Slightly different models have

been introduced by a number of authors for graphene [10-13].

One commonality is to treat the sheet as strictly two-dimen-

sional. Additionally, instead of deriving the phonon dispersion

relations from first principles, they all assumed the known

results that there are in-plane acoustic modes with linear

dispersions and out-of-plane transverse acoustic modes with

quadratic dispersions (the latter being consistent with the elastic

theory of thin plates) to construct either a Lagrangian [10] or

equations of motion [11]. Goupalov also considered optical

phonons but simply parameterized the dispersion relations to

match the experimental data. In all of the above, the out-of-

plane vibrations were assumed decoupled from the in-plane

ones.

In this paper, a continuum theory of acoustic and optical

phonons in 2D nanomaterials is derived from first principles,

contrary to earlier approaches, by starting with the elastic and

electric equations, and taking into account the full crystalline

symmetry and piezoelectric couplings when allowed by symme-

try. We apply the theory to obtain the phonons in group-IV

elemental 2D materials. Given that there are two fundamental

structures for the free-standing sheets (the flat hexagonal struc-

ture of graphene and the buckled hexagonal structure of the

other elements – we will refer to silicene as the prototypical ex-

ample of the latter), we will consider both of them. It should be

recognized that, to date, silicene has been grown on substrates

in different reconstruction state. The reconstruction is an

atomic-scale distinction that is not describable by the current

continuum model. Substrate effects on the phonons can be

considered in an extended model that would need to be solved

numerically. This can be studied in a future publication as it is

beyond the analytical solutions sought for in the current manu-

script. Furthermore, we have included a study of a well-known

compound 2D material (molybdenum disulfide MoS2) in order

to further understand the properties derived for the elemental

materials.

Results and Discussion
Continuum model
The 2D materials will be treated as 3D thin-plate materials in

the following, well aware that the out-of-plane dimension

contains one or a few atomic layers. In general, this would

allow one to study multilayers though we will only focus on

monolayers in this paper. Nonetheless, it is important to keep

the third coordinate in the analysis to reveal the true phonon

dispersions as observed experimentally and in DFT calcula-

tions.

The general 3D elastic equations are given by the equation of

motion [14]

(1)

where Tik is the stress tensor, ρ is the mass density, and ui is the

displacement. Equation 1 contains all the physics of the prob-

lem. In order to simplify and then solve it, it is necessary to

specify the crystal symmetry of the vibrating system.

The three problems considered in this article are graphene,

silicene and MoS2. The Bravais lattice symmetries of the single-

layer graphene (D6h ≡ 6/mmm) and MoS2 ( ) struc-

tures belong to the hexagonal system, while silicene belongs to

the trigonal system (point group D3d). Graphene and silicene

are non-piezoelectric materials because of the inversion symme-

try of the unit cell, while MoS2 is piezoelectric because its unit

cell exhibits inversion asymmetry.

Application: graphene
For both graphene and MoS2, the general form of the stiffness

tensor for hexagonal structures is

(2)

and the stress–strain relations TI = cIJSJ for graphene become

(3)



Beilstein J. Nanotechnol. 2017, 8, 1345–1356.

1347

where TI and SJ denote stress and strain, respectively. Here we

have used Voigt notation for tensors. The latter equations are

different for MoS2 due to the presence of piezoelecticity.

Elastic equations

Combining Equation 1 and Equation 3, we obtain for graphene

(4)

(5)

(6)

where ω is the vibrational (angular) frequency. The displace-

ments ux and uy are in-plane displacements, and uz is the out-of-

plane displacement.

Expressing the latter set of equations in the displacements, we

get

(7)

(8)

(9)

A solution of the combined system (Equation 7–Equation 9)

with appropriate boundary conditions allows for the determina-

tion of the displacements ux, uy, uz. Note that the displacements

in the three directions are coupled. This is different from the 2D

model assumed before, which led to a decoupling of the out-of-

plane vibrations. The coupling is a consequence of the finite

thickness of the sheet with no mirror symmetry imposed. Thus,

our model is sufficiently general to apply to multilayers. Earlier

DFT calculations [15] had argued that there is no coupling be-

tween the in-plane and out-of-plane modes due to the mirror

symmetry of graphene, leading to fewer scattering channels

and, therefore, a higher thermal conductivity compared to, e.g.,

silicene. Our model reveals that such mode coupling, even

when present, would occur for large kz values (due to the small

thicknesses) and, hence, would be unlikely to have a significant

impact.

Acoustic phonons

The phonons are normal mode solutions to the equations of

motion. To proceed from the graphene elastic equations, we

make the following plane wave ansatz

(10)

(11)

(12)

where kx  and ky  are wave numbers. Inserting Equa-

tion 10–Equation 12 into Equation 7–Equation 9 yields the

following matrix expression in the unknown functions fx, fy, and

fz:

(13)

where , and
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(14)

A semi-analytic solution can be easily obtained for the case

when ky = 0. In this case, C = D2 = 0 and the uy displacement

decouples from the displacements ux and uz. It follows that fy
obeys the wave equation

(15)

The solution to this differential equation can be found immedi-

ately by imposing the vacuum boundary condition

(16)

i.e.,

(17)

where 2h is the graphene layer thickness and −h,h define the

graphene layer boundaries.

We obtain

(18)

where n = 0,1,2,3,…

For the coupled system fx–fz, the determinantal system obtained

from Equation 13 leads to the solutions

(19)

where

(20)

and

(21)

Let us introduce the notation {α1,α2,α3,α4} ≡ {α1,−α1,α2,−α2}

and

(22)

Then we have

(23)

where βi are unknown coefficients.

A 4 × 4 matrix equation in βi is finally obtained by invoking the

mechanical boundary conditions (graphene in vacuum)

(24)

(25)

Observe that

(26)
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Solving the determinantal equation for the latter 4 × 4 matrix

equation as a function of kx specifies a discrete set of (band)

eigenfrequencies ωi(kx) and the corresponding eigenmodes fx, fz
where i denotes the band index. A numerical solution reveals

the out-of-plane mode to be quadratic in nature.

Surface optical phonons

Surface optical phonons can be derived by solving for the elec-

trostatic potential via the Maxwell–Poisson equation for the dis-

placement field Di.

For graphene,

(27)

Using the fact that the dielectric function is given by

(28)

we find

(29)

The Maxwell–Poisson equation in the absence of free charges

reads

(30)

and finally becomes

(31)

The solution in the graphene slab becomes

(32)

where

(33)

This gives for the electric field components

(34)

Continuity in Ex at the slab interfaces with vacuum at z = ±h

requires

(35)

and, similarly, continuity in the normal electric displacement

requires

(36)

Solving the secular equation in  leads to

which is equivalent to

(37)

We note in passing that the latter equation agrees with the result

of Licari and Evrard [16] for interface optical phonon modes in

cubic crystals where symmetry forces εxx = εzz ≡ ε. In the cubic

case, however, confined optical phonon modes also exist at the

LO phonon frequency since ε(ωLO) = 0.

Confined optical phonons

Confined optical phonons are also obtained by starting with the

Maxwell–Poisson equation (Equation 31). The transverse elec-

tric field and normal electric displacement are
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(38)

neglecting the DC component (static polarization) to the elec-

tric displacement. Confinement of the optical phonon modes

implies . Assuming [type I]

(39)

where  are constants, the Maxwell–Poisson equation

and the boundary conditions are fulfilled if εzz(ω) = 0. Hence

confined optical phonons exist in graphene.

Application: silicene
We refer to silicene as the canonical example of the other

group-IV materials even though the following derivation and

qualitative properties apply to all of them since they all have the

same symmetry of the buckled hexagonal structure, leading to

the trigonal D3d point group.

The general form of the stiffness tensor for D3d trigonal struc-

tures is

(40)

and the stress–strain relations become

(41)

The only difference compared to the corresponding equations

for graphene are the terms containing c14.

Elastic equations

The elastic equations for silicene then read

(42)

(43)

(44)

or, in terms of the displacements,

(45)

(46)

(47)
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Again, the differences compared to graphene are the c14 terms.

The electric equation for trigonal structures is exactly the same

as for hexagonal structures since the permittivity matrix is the

same. Hence, the general method for finding surface optical

phonon modes repeats the description of graphene. Qualitative-

ly, there is therefore no difference among the phonons for all

the group-IV elemental 2D materials.

Application: MoS2
While the primary focus of this paper is on the properties of

phonons of the group-IV elemental materials, it is important to

know if there are properties of the phonons that are due to these

being elemental. Hence, we will now consider the phonons for

MoS2 as a prototypical compound 2D material because of its

extensively studied properties. As already mentioned, the lack

of inversion symmetry leads to the new phenomenon of piezo-

electricity.

Elastic and electric equations for MoS2

The stiffness tensor for MoS2 is the same as for graphene,

Equation 2, because of the same hexagonal symmetry. Howev-

er, the stress–strain relations are different because of the pres-

ence of piezoelectricity. Specifically, there are additional contri-

butions to the stress–strain constitutive relations:

(48)

by use of the piezoelectric e-tensor:

(49)

and the equation

(50)

In the above, Ej is the internal electric field.

With the above result for the stress tensor including piezoelec-

tric contributions, we find the elastic equations for MoS2

(51)

(52)

(53)

This system of equations is only complete if we also solve for

the Maxwell–Poisson equation. For MoS2, the displacement

field Di is

(54)

with Psp being the spontaneous polarization contribution. The

dielectric function is the same as for graphene (Equation 28)

and we find

(55)

where Psp,x, Psp,y and Psp,z denote the spontaneous polarization

components along the x-, x- and z-direction, respectively. The

Maxwell–Poisson equation (Equation 30) becomes

(56)
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because the spontaneous polarization Psp is constant in space. A

solution of the combined system Equation 51–Equation 53 and

Equation 56 with appropriate boundary conditions allows for

the determination of the electric field (or electric potential

) and the displacements ux, uy and uz.

Phonon modes

In the case of MoS2, the general solutions are more compli-

cated. One can still make the plane wave ansatz,

(57)

(58)

(59)

(60)

Now, inserting Equation 57–Equation 60 in Equation 51–Equa-

tion 53 and Equation 56 yields the 4 × 4 matrix expression in

the unknown functions fx, fy, fz and 

(61)

where

(62)

For the case, ky = 0, we have C = D2 = E2 = 0 and uy decouples

from ux, uz and . The wave equation for the uy mode is the

same as for graphene. To determine the general solution for the

other displacement components, we once again solve the deter-

minantal equation for the 3 × 3 sub-matrix in the components fx,

fz and  . The result is

(63)

where

(64)

and six roots (three pairs of opposite signs) exist. It also follows

that

(65)

Hence the general solution is, using a notation similar to the

case of graphene,

(66)

(67)

(68)

where βi are unknown coefficients.

The Maxwell–Poisson equation in vacuum ( ) has the

general solution

(69)
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where  are unknown constants. An 8 × 8 matrix equation

in βi,  is finally obtained by invoking the four mechani-

cal boundary conditions at z = h,−h

(70)

(71)

and the four electric boundary conditions at z = h,−h,

(72)

The mechanical boundary conditions are the same as for

graphene,

(73)

but the electric boundary conditions are (written out)

(74)

where ε0 is the vacuum permittivity. Solving the determinantal

equation for the 8 × 8 matrix equation as a function of kx speci-

fies a discrete set of (band) eigenfrequencies ωi(kx) and the cor-

responding eigenmodes fx, fz and , where i denotes the band

index.

Confined phonon modes

An important result concerning confined optical phonons can be

obtained without solving the determinantal equations. From the

elastic equations (Equation 51 and Equation 53) and the elec-

tric equation (Equation 56) we have, assuming ky = 0,

(75)

(76)

(77)

Inspection of the above set of equations reveals that confined

phonon solutions can be sought in the form [type I]

(78)

or in the form [type II]

(79)

apart from a multiplying factor exp(ikxx − iωt). The above

choice reflects an expectation that four roots are real (two pairs

of opposite-signed roots) and two imaginary (one pair of oppo-

site-signed roots).

From Equation 75–Equation 77 follows

(80)

(81)

(82)

where i = 1,2,3. Note that a maximum of two of the latter rela-

tions can be independent since the values of δi are found by

setting the system determinant to zero.

A general confined optical phonon mode can now be written as

a Fourier series expansion [type I]
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(83)

(84)

(85)

since this construction implies Ex(z = ±h) = 0 and 

using continuity in the transverse electric field at the interfaces.

Equation 75–Equation 77 must still apply, however, in particu-

lar combining Equation 81–Equation 82 demands

(86)

For each term m, this latter condition, in general, would lead to

a different ωm. However, a normal mode is characterized by a

unique frequency ω. Hence, for confined optical phonon modes,

only one term in m is allowed in the general Fourier series

expansions above. Further, imposing continuity in the normal

electric displacement component at z = ±h by use of the third

equation in Equation 55 gives

(87)

and  unless accidentally εzz(ωm) = 0 (treated separately

in the next paragraph). For εzz(ωm) ≠ 0, it follows from Equa-

tion 80 that Ax,m = 0 and Equation 81 yields Az,m = 0. The

conclusion is that confined optical phonons in the general case

cannot exist in MoS2! Note that for graphene, since it is a non-

piezoelectric material, confined optical phonon modes do exist.

The difference between the two materials lies in Equation 77,

specifically in the term containing the piezoelectric coefficient.

If εzz = 0, continuity of the normal electric displacement compo-

nent requires, as before,  and we return to the situa-

tion treated in the previous subsection about confined optical

phonons. We need to consider two possible cases: (a) εxx(ω) = 0

when εzz(ω) = 0 and (b) εxx(ω) ≠ 0 when εzz(ω) = 0. In case (a),

we immediately obtain  from continuity in the

normal electric displacement. Further, Equation 77 yields ux = 0

everywhere as a function of z. Equation 83–Equation 85 must

hold from continuity in the transverse electric field. Finally,

Equation 75 gives

(88)

and Equation 76 requires [type I]

(89)

and the condition

(90)

which is not fulfilled, unless accidental degeneracy applies, si-

multaneous with εxx(ω) = εzz(ω) = 0. In case (b), Equation 86

can be used and, unless accidental degeneracy applies, the ob-

tained ωm values do not fulfill εzz(ω) = 0. In conclusion,

confined optical phonon modes do not exist in the case εzz = 0.

Computed dispersion relations
In order to illustrate the validity of the phonon dispersion rela-

tions obtained from our model, we compare them to DFT calcu-

lations. The continuum theory will require as input elasticity

constants, piezoelectric coefficients, and dielectric functions.

DFT

We first give the standard phonon dispersion relation as ob-

tained from DFT calculations (Figure 1). They are obtained

from first principles calculations using the Vienna ab initio

simulation package (VASP) [17] with a kinetic energy cut-off

of 500 eV in the expansion of the electronic wave functions.

Four C and six Mo and S valence electrons are considered. The

generalized gradient approximation of the exchange–correla-

tion potential in the Perdew–Burke–Ernzerhof flavor is em-

ployed [18]. Brillouin-zone integrations are performed using the

tetrahedron method with Blöchl corrections [19]. We construct

cells consisting of the monolayer and an approximately 15 Å

thick vacuum region along the c direction. Structure optimiza-

tions are performed on Γ-centered 24 × 24 × 1 k-meshes. A

direct method based on 4 × 4 × 1 supercells is used for obtain-
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Figure 2: Dispersion relations for the coupled ux–uz acoustic phonon

modes of single-layer graphene. The right plot is a zoomed version of

the left plot. Note the nonlinear dispersion of one acoustic mode away

from the Γ point. There is also one acoustic mode showing linear

dispersion.

ing the phonon dispersions within the harmonic approximation

[20]. Forces are evaluated on 3 × 3 × 1 k-meshes, including

long-range dipole contributions to the dynamical matrix

following the method of [21]. Born effective charges and

dielectric tensors are obtained within perturbation theory [22]

and elastic constants by the homogeneous deformation method

[23]. The elastic stiffness tensor and frequency-dependent

dielectric tensor (independent particle approximation [24]) are

calculated on Γ-centered 36 × 36 × 1 k-meshes.

Figure 1: Dispersion relations for the phonon modes of single-layer

graphene (left) and MoS2 (right), from DFT calculations.

Continuum model: graphene

The following parameters are found using DFT calculations

as explained above: c11d = 345 Pa·m, c12d = 73 Pa·m,

c13d = 0.00387 Pa·m, c33d = 0.531 Pa·m, c44d = 0.0535 Pa·m,

c66d = 136 Pa·m, d = 3.4·10−8 m, and ρ2D = 7.61·10−7 kg/m2.

For the permittivity data we used the DC values εxx = 4.4ε0 and

εzz = 1.3ε0.

In Figure 2, we show the frequency vs wavenumber (ω–kx)

dispersion in the vicinity of the Γ point (ky = 0). Evidently, one

mode shows a parabolic dispersion and one mode is linear.

There are two higher-order modes originating from the bound-

ary conditions along the z coordinate. The dispersion curves as-

sociated with the uy vibrations decoupled from the ux − uz vibra-

tions are not shown in the plots. We emphasize that for

graphene optical and acoustic phonon modes decouple and are

computed separately as described above. In Figure 3, the disper-

sion curves for optical phonon modes near the Γ point are

shown.

Figure 3: Dispersion relation for the optical phonon modes of single-

layer graphene.

Continuum model: MoS2

For single-layer MoS2, we use the following parameters:

c11d = 140 Pa·m, c12d = 33 Pa·m, c13d=-0.013 Pa·m,

c33d = 0.078 Pa·m, c44d = −1.07 Pa·m, c66d = 53.7 Pa·m,

d = 6.2·10−10 m, ρ2D = 3.1 ·10−6 kg/m2, ex1 = 0.5 C/m2. These

elasticity parameters were again computed using VASP. The

frequency-dependent permittivity values are taken from [25]

and the piezoelectric constant ex1 is from Ref. [26]. In the case

of MoS2, all optical and acoustic phonon modes are computed

by solving the combined set of elastic and electric equations and

associated slab boundary conditions as described above. We

note in passing that both confined and surface acousto-optical

phonon modes are found using the present formalism. In

Figure 4, we show the frequency vs wavenumber (ω–kx) disper-

sion in the vicinity of the Γ point (ky = 0).

Conclusion
A three-dimensional, first-principles, continuum elasticity

theory was developed for two-dimensional materials. Piezoelec-

tric materials required the simultaneous consideration of the

electrostatics equations. Application to graphene, silicene and

MoS2 revealed a number of interesting results. The out-of-plane

vibrations were coupled to the in-plane motion for graphene

(and for silicene as well), contrary to previous results using infi-

nitely thin sheets. Acoustic modes with linear and quadratic

dispersions were obtained, in agreement with experimental

results and other models. We predict the existence of confined

optical modes in all of the elemental group-IV materials and the

nonexistence of confined optical modes in MoS2. Our model
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Figure 4: Dispersion relations for the coupled ux–uz–  phonon modes

of single-layer MoS2. The right plot is a zoomed version of the left plot.

Note again the parabolic dispersion of one predominantly acoustic

mode away from the Γ point besides a linear dispersion predominant

acoustic mode. We also obtain a second nonlinear mode starting at

(k,ω) = (0,0), which stems from the rather complicated frequency-de-

pendent permittivity of MoS2.

will be applied to other 2D materials as well as to multilayers in

future work. Additionally, the results of this model can be

combined with the solution to the electron problem to compute

electron–phonon scattering rates. The latter would be useful for

understanding a number of physical properties as well as for ap-

plications.
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