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Abstract

We present the first report in which the thermoelectric properties of two-dimensional

MXenes are calculated by considering both the electron and phonon transport. Specif-

ically, we solve the transport equations of the electrons and phonons for three MXenes,

M2CO2, where M = Ti, Zr, or Hf, in order to evaluate the effect of the metal M on

the thermoelectric performance. The lattice contribution to the thermal conductivity,

obtained from the phonon life times, is found to be lowest in Ti2CO2 and highest in

Hf2CO2 in the temperature range from 300 K to 700 K. The highest figure of merit is

predicted for Ti2CO2. The heavy mass of the electrons due to flat conduction bands

results in a larger thermopower in the case of n-doping in these compounds.
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Introduction

MXenes are two-dimensional crystalline materials obtained from the MAX phases M
n+1AXn

.

Since there is a multitude of MAX phases and due to the possibility to saturate the tran-

sition metal (M) with functional groups, many MXenes can be fabricated, encompassing a

broad range of compositions and hence a broad range of properties and potential applica-

tions.1,2 The functional groups O, F, and OH result from the etching of the MAX phases.

Experiments have addressed applications of MXenes in Li-ion batteries,3 catalysis,4 electro-

chemical capacitors,5 and fuel cells.6 Whether an MXene is a semiconductor (as required

for thermoelectric usage) or not depends on the functional group and its orientation.7 Ac-

cording to first principles calculations, Ti2CO2, Zr2CO2, Hf2CO2, Sc2CF2, Sc2C(OH)2, and

Sc2CO2 are semiconductors.8 Ti2CO2 has a narrow band gap of 0.17-0.44 eV,9–11 thus being

interesting for thermoelectric applications, and shows a high carrier mobility.12 Zr2CO2 and

Hf2CO2 share many properties with Ti2CO2 because of their structural and compositional

similarity.10

First principles calculations predict high Seebeck coefficients (1100 µV/K and 2000 µV/K,

respectively)8 and power factors10 for Ti2CO2 and Sc2C(OH)2 at 100 K. However, these

electronic quantities are not sufficient to determine the thermoelectric efficiency, since the

lattice contribution to the thermal conductivity also influences the figure of merit. Indeed,

most of the heat conduction happens through phonons in semiconductors. To calculate

the lattice contribution, we therefore solve the Boltzmann transport equation for phonons

self-consistently and evaluate the phonon lifetimes. This allows us to provide a first compre-

hensive account of the thermoelectric performance of MXenes. In particular, we will study

the role of the transition metal for the material properties.
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Methodology

First principles calculations are performed using the Vienna Ab-initio Simulation Package.13

Plane waves with energies up to 500 eV are employed in the expansion of the electronic

wave functions, considering the C 2s2, 2p2 and O 2s2, 2p4 electrons as valence states. For

Ti, Zr, and Hf twelve electrons are considered as valence states. We employ the gener-

alised gradient approximation of the exchange-correlation potential in the Perdew-Burke-

Ernzerhof flavour.14 Brillouin zone integrations are performed using the tetrahedron method

with Blöchl corrections.15 The MXenes are constructed by connecting a 15 Å vacuum slab

to an O-M-C-M-O slab along the c-direction. Increasing the thickness of the vacuum slab to

20 Å modifies the total energy by less than 1 meV. Γ-centered 24×24×1 k -meshes are used

for optimising the structures (hexagonal symmetry, P3̄m1). Since spin-polarised calculations

find vanishing magnetic moments, we present in the following the results of spin-degenerate

calculations. We consider different locations of the ligands and confirm the lowest energy

configuration reported in the literature,9 for which we evaluate the thermoelectric properties.

We solve the semi-classical Boltzmann transport equation within the constant relaxation

time approximation (τ = 10−14 s) for calculating the Seebeck coefficient, electrical conduc-

tivity, and electronic contribution to the thermal conductivity. While the relaxation time τ

in general depends on the electronic wave vector, energy, and scattering mechanism, reliable

results for the transport properties have been obtained within the constant relaxation time

approximation for a variety of materials.16–18 A rigid band approximation is used to sim-

ulate doping by shifting the chemical potential (BoltzTraP code19). For this purpose, the

electronic band structure is calculated on a very fine 42× 42× 1 k -mesh.

We follow the supercell based direct method to calculate the normal mode polarisation

vectors and phonon frequencies within the harmonic approximation.20 A 4× 4× 1 supercell

is chosen with a 3× 3× 1 k -mesh for evaluating the forces and the method of Cochran and

coworkers21 is used for including long range dipole interactions to the dynamical matrix.

The dielectric tensor and Born effective charges are evaluated using perturbation theory.22 In
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Table 1: Lattice constants and bond lengths obtained by structure relaxation.

Ti2CO2 Zr2CO2 Hf2CO2

a (Å) 3.031 3.309 3.268
M–O (Å) 1.972 2.120 2.104
M–C (Å) 2.184 2.368 2.336
C–O (Å) 2.823 3.003 2.980

addition, we employ a finite difference scheme for evaluating the third order force constants,23

where each atom up to fifth nearest neighbours is simultaneously displaced with a given atom

(interaction distance up to 4.87 Å). Translational invariance conditions are imposed on the

force constants.24 The second and third order force constants are used for solving a linearised

version of the Boltzmann transport equation for the phonons numerically by the ShengBTE

code.25,26 For this purpose, Brillouin zone integrations are carried out on a 36 × 36 × 1

k -mesh, for which our convergence tests find a difference of less than 0.1% in the lattice

thermal conductivity as compared to a 33 × 33 × 1 k -mesh. The results for 3 × 3 × 1 and

4×4×1 supercells deviate by less than 1%. The volume dependent output of the ShengBTE

code is scaled by assuming that the thickness equals the vertical distance between the top

and bottom O planes.

At room temperature the thermal resistivity is dominated by three phonon Umklapp

scattering events, whereas scattering events involving four or more phonons become relevant

when the temperature exceeds half of the melting temperature.27 Since molecular dynamics

simulations predict that Ti2CO2 remains solid up to 823 K,28 we limit our analysis to 700 K

and consider three phonon scattering events. Hence, for higher temperatures the conductivity

values obtained from our procedure constitute upper limits.
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Figure 1: Side and top views of the crystal structure of the MXenes M2CO2 (M = Ti, Zr,
or Hf). Blue, brown, and red spheres represent M, C, and O atoms.

Results and discussion

The lowest total energy is achieved when the O atoms in the top atomic layer of the MXene

sandwich structure are located directly above the M atoms and the O atoms in the bottom

atomic layer directly below them, see Figure 1. The corresponding equilibrium structure

parameters are presented in Table 1. Because of their structural similarity, the three com-

pounds under investigation have similar band structures, see Figure 2. The C 2p, O 2p, and

M d states form the valence band edge, whereas the O 2p and M d states form the conduction

band edge. We find in each case an indirect band gap with the valence band maximum at

the Γ point and the conduction band minimum at the M point. Moreover, each compound

shows a considerable asymmetry between the valence and conduction bands, thus between

hole and electron doping. The band forming the conduction band edge is very flat, whereas

that forming the valence band edge is dispersive (spreading over 3 eV). Thus, the effective

mass of the electrons is much larger than that of the holes and consequently n-doping leads

to a higher Seebeck coefficient than p-doping, as seen in Figures 3 and 4. While the main

features of the band structures are similar, the three compounds are distinguished by their
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Figure 2: Electronic band structures and densities of states.

band gaps, which agree in size with previous results obtained by similar methodologies but

are lower than those found by Heyd-Scuseria-Ernzerhof calculations.8–11 Having the largest

band gap, Hf2CO2 shows the highest Seebeck coefficient at a given temperature and car-

rier concentration. The electrical conductivity and electronic contribution to the thermal

conductivity are also shown in Figures 3 and 4 as functions of the carrier concentration.

In narrow band gap semiconductors at high temperatures and low carrier concentrations

the minority carriers reduce the Seebeck coefficient and increase the electrical conductivity.29

As both holes and electrons carry heat, the overall thermal conductivity increases.30 These

effects can be seen prominently in Figures 3 and 4 in the case of Ti2CO2 because of its

narrow band gap, whereas they are small for Zr2CO2 and Hf2CO2.

The high frequency dielectric tensors and Born effective charges reported in Table 2

are used along with the second order force constants to determine the harmonic phonon

dispersion relations shown in Figure 5. For Ti2CO2 we obtain excellent agreement with Ref.

8. In each case, there are three low frequency optical branches in close proximity to the

acoustic branches with significant group velocities, which can increase the scattering cross-

section of the acoustic phonons.31 Thus, the first six branches are significant for the heat

conduction.

The calculated lattice contributions to the thermal conductivity are plotted in Figure 6,

where the fitting curve uses the fact that the thermal conductivity is inversely proportional
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Figure 3: Transport coefficients as functions of the electron concentration.

to the temperature when limited by anharmonic scattering.32 At room temperature more

than 72% of the heat conduction happens through the first three phonon branches (acoustic

branches), whereas the three low frequency optical branches account for 20%. We obtain

excellent agreement with recently published room temperature values of 21.9 W/mK for

Ti2CO2, 61.9 W/mK for Zr2CO2, and 86.3 W/mK for Hf2CO2.
33 Analysis of the phonon life

times suggests that the phonon-phonon interaction is stronger in Ti2CO2 than in Zr2CO2

and Hf2CO2. While the group velocities are similar in the three compounds, the dispersion

of the first six phonon branches is largest in Ti2CO2 and smallest in Hf2CO2 (see Figure 5).

Presence of low frequency optical branches near the acoustic branches increases the likelihood

of Umklapp scattering involving an acoustic mode and an optical mode.32,34 Proximity of

the fist six branches to each other and other optical branches is the reason for the increased

scattering cross-section and lowest phonon life times in Ti2CO2.
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Figure 4: Transport coefficients as functions of the hole concentration.

According to Figures 3 and 4, the figure of merit is higher for n-doping than for p-doping,

which is mainly due to the larger Seebeck coefficient. Ti2CO2 shows the best thermoelectric

performance because of its lower lattice thermal conductivity as compared to Zr2CO2 and

Hf2CO2. The peak values of the figure of merit and corresponding carrier concentrations are

noted in Table 3. They correspond to a large area sample in which the heat conduction is

diffusive. The mean free path of the phonons responsible for heat conduction is typically

longer than that of the electrons in thermoelectric materials.35 An improved thermoelectric

performance thus is expected when the sample size is reduced below the maximal phonon

mean free path, given in the rightmost column of Table 3, as the lattice contribution to the

thermal conductivity is lowered (ballistic heat conduction) without adversely affecting the

electrical conductivity.
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Table 2: High frequency dielectric tensors and Born effective charges.

Ti2CO2 Zr2CO2 Hf2CO2

ε∞
xx

32.04 17.46 15.37
Z∗

xx
(M) 7.06 6.30 6.05

Z∗

xx
(C) −5.80 −5.24 −5.08

Z∗

xx
(O) −4.16 −3.68 −3.51
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Figure 5: Harmonic phonon dispersion relations.

Conclusions

For the first time we have studied the thermoelectric properties of two-dimensional MXenes

by considering both the electron and phonon transport. We have solved the Boltzmann

transport equations for the electrons and phonons to quantify the electronic and lattice

contributions to the figure of merit of the MXenes M2CO2 (M = Ti, Zr, or Hf). It turns out

that the band gap grows with the mass of the M atom. Differences in the effective masses of

the charge carriers explain why n-doping leads to larger Seebeck coefficients than p-doping.

The lattice contribution to the thermal conductivity is smallest in Ti2CO2 as the acoustic

phonon branches show the strongest dispersions. Below a carrier concentration of 1.4 ×1021

cm−3 electrons the figure of merit decreases drastically due to effects of the minority carriers.

We have also determined the sample dimensions below which the heat transport becomes

ballistic and the thermoelectric performance thus is enhanced.
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Figure 6: Lattice contributions to the thermal conductivity as functions of the temperature.

Table 3: Peak thermoelectric performances, corresponding carrier concentrations, and max-
imal phonon mean free paths (Λ

max
) at 700 K.

n-doping p-doping Λ
max

(×1020cm−3) zT (×1020cm−3) zT (nm)
Ti2CO2 14.0 0.45 1.7 0.27 132
Zr2CO2 4.4 0.35 3.0 0.22 486
Hf2CO2 5.0 0.29 2.9 0.17 850
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