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ABSTRACT: 

Emerging autonomous electronic devices require increasingly compact energy 

generation and storage solutions. Merging these two functionalities in a single device would 

significantly increase their volumetric performance, however this is challenging due to 

material and manufacturing incompatibilities between solar energy harvesting and storage 

materials. Here we demonstrate that organic-inorganic hybrid perovskites can both generate 

and store energy in a rechargeable device termed a photo-battery. This photo-battery relies 

on highly photoactive two-dimensional lead halide perovskites to simultaneously achieve 

photo-charging and Li-ion storage. Integrating these functionalities provides simple 

autonomous power solutions while retaining capacities of up to 100 mAh/g and efficiencies 

similar to those of electrodes using a mixture of batteries and solar materials.  

KEYWORDS: metal halide perovskite, layered-materials, Li-ion battery, photo-battery, self-

rechargeable.     
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The internet of things (IoT), smart cities, and other autonomous connected devices require 

continuous remote power sources for sensing, data processing, and communication1,2. To date, 

these power requirements are typically met by combining solar cells with rechargeable batteries. 

However, the use of two separate devices results in duplicated components and increased 

packaging requirements which adds to the device complexity, weight and cost3. More 

fundamentally, this leads to ohmic transport losses, and is sub-optimal because most solar cells 

have an open circuit voltage of 0.6 to 1.0 V which is insufficient to charge commercial Li-ion 

batteries, thus requiring additional DC-to-DC convertors or stacked cells4. Ongoing research 

efforts have improved the packaging efficiency by integrating batteries and solar cells in the same 

housing, as well as by developing designs where electrodes are shared between the battery and the 

solar cell5–8. These advances in device integration reduce the ohmic transport losses and increase 

the gravimetric energy density. However, co-assembling devices remains an imperfect 

manufacturing and scientific solution. Going some way to address these issues, photo-electrodes 

that consist of a physical mixture of solar energy harvesting and Li-ion storage materials have 

recently been reported9,10. Physically mixing photovoltaic and storage materials allows for 

compact device implementation, but suffers from other fundamental limitations: these include the 

mismatch of energy levels between the light-absorbing and storage materials resulting in 

inefficient charge transfer, the blocking of light by the storage medium so that less light reaches 

the light-absorbing material, reduced charge transport due to poor interfaces between the two 

materials, and manufacturing challenges such as the phase segregation of the two materials. It is 

therefore clear that a new material system is needed to address the above issues.  

Paolella et al. have recently demonstrated light-assisted delithiation of lithium iron 

phosphate (LiFePO4) nanocrystals in a two-electrode system where Li-metal is used as anode and 

a mixture of LiFePO4 and Ru dye (N719) as cathode9. In this work, the solar energy harvesting is 

performed by the dye, and energy storage by LiFePO4, resulting in photo-conversion and storage 

efficiencies of 0.06%. In 2016, Sato et al. demonstrated a single anode material (TiO2) integrated 

into a semi-transparent battery electrode33,34. While this is an elegant solution, TiO2 only absorbs 

light in the UV spectrum, and the cyclability, voltage window, and charge retention of these 

materials is rather limited. Miyasaka et al. reported a combined light conversion and energy storage 

device using soft carbonaceous materials where the photoactive layer is a thin LiI film is deposited 

on a mesoporous dye-filled TiO2 film7, but the output power of these three-electrode devices in 
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sunlight is only 0.5mW with an open circuit voltage (OCV) of 0.45V. To the best of our 

knowledge, despite the above examples of photo-battery effects, the use of a single active material 

which can perform both photo-charging and energy storage processes efficiently has not been 

reported. 

In recent years, 3D metal halide based perovskites have been studied intensively for use in 

solar cells because of their high conversion efficiencies of up to 22% 11–13. More recently, reports 

have suggested perovskites might also be used as anode materials in Li-ion batteries21. However, 

these functionalities have never been combined in a single solar-battery device. Here we present 

the first report that polycrystalline metal-halide-based 2D perovskite materials, namely 

(RNH3)2MX4 [R-organic, M-metal, X-halide], can combine both energy storage (battery 

functionality) and photo-charging (photovoltaic functionality) simultaneously (Figure 1a). This 

integration alleviates the above issues with composite devices and has the potential to open up an 

entirely new application domain for perovskites. 2D perovskites are used in this work because they 

self-assemble into very stable layered structures where inorganic monolayers of corner-sharing 

[MX6]4-octahedra are confined between interdigitating bilayers of organic cations (Figure 1b)20. 

Their enhanced stability compared to 3D systems is important for battery applications, but comes 

at the cost of a  lower solar cell efficiency due to the inhibition of out-of-plane charge transport by 

the organic cations17–19. The optical absorption of the (C6H9C2H4NH3)2PbI4 (hereafter CHPI) thin 

films show a characteristic strong exciton absorption peak at 508 nm with a broad band-to-band 

absorption around 380 nm (Figure 1c). Photoluminescence (PL) imaging of the perovskite films 

shows strong green emission, from the characteristic room temperature excitonic emission of CHPI 

(Figure 1d inset, excited with a 300 nm LED source, λPL~518 nm)20 
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Figure 1. 2D Perovskite and fabrication of photo-battery. a, Schematic representation of the 

photo-battery concept. b, Crystal structure of 2D layered perovskites (CHPI). c, Optical 

absorption spectra of CHPI thin films and transmission of FTO glass and graphene substrates. d, 

SEM image of drop-cast 2D perovskite electrodes taken at 45° tilt. The inset shows a PL image of 

the corresponding perovskite film (λex ~ 300 nm LED source). e, Schematic and f, energy level 

diagram of perovskite photo-batteries.  

 

The application of 2D perovskites for energy storage applications has not been reported previously. 

Therefore, we start by analyzing the performance of 2D perovskites as a battery material in 

standard coin cell configurations (see Methods). The morphology of CHPI at the microscale is key 

for both the battery and solar performance, therefore, instead of using standard spin coating, which 

results in horizontal stacking of the 2D perovskite platelets (see Supporting Information, Figure 

S1a,b)20, we drop-cast the perovskite solution blended with conductive additives (reduced 

graphene oxide, rGO) and a binder (PVDF) which results in vertically-aligned nanoplatelets 

(~320 nm thick and ~8-10 µm high, Figure 1d and Supporting Information, Figure S1c). Since 

these vertically aligned perovskite nanoplatelets are grown directly on the surface of the FTO 
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substrate, there is a good interface and charge transfer from the perovskite film to the FTO. Thick 

films with vertically-aligned crystals introduce porosity, and improve light interaction when 

compared to pristine CHPI thin films (transmittance 50 % versus 14%, see Supporting Information, 

Figure S1d). At the same time, rGO improves the electrical transport within the film and PVDF 

enhances the mechanical stability of the cell. Other carbon-based conductive additives such as 

carbon nanotubes (CNTs) also produce functioning cells but of poorer cyclability and lower 

efficiency. A likely reason for the better performance of rGO is the lower work function of rGO (-

4.4 eV) compared to CNTs (-4.8 eV) which reduces the energy barrier for photo-electron transport 

from perovskite to rGO (Figure 1f). XRD measurements (see Supporting Information, Figure 

S1e,f) show that the presence of rGO in the perovskite film does not affect the intralayer d-spacing, 

which suggests the rGO is located in-between the perovskite crystals. Charge-discharge potential 

curves of coin cell (non-photo-chargeable) batteries (see Supporting Information, Figure S2a,b) 

show that lead-iodide perovskites offer capacities of ~90-100 mAh/g in the first cycle and 2D lead 

bromide ((C6H9C2H4NH3)2PbBr4, hereafter CHPB) perovskite cells achieve up to ~410 mAh/g, 

which is higher than the graphite anodes (370 mAh/g) used in commercial Li-ion batteries. In 

spite of exhibiting useful capacity these perovskite materials presently suffer from stability issues 

such that their capacity drops to a fifth of its initial value within a few galvanostatic charge-

discharge cycles (see Supporting Information, Figure S2b). This accords with recent reports on 

non-photo-rechargeable 3D perovskites batteries21. Indeed these stability issues are being 

addressed intensely by the perovskite community for various other applications22.  

A hybrid device architecture is designed to achieve the above-mentioned simultaneous 

solar-battery functionality (Figure 1e). Briefly, a 2D perovskite-rGO-PVDF film is sandwiched 

between a separator (frit) and a transparent collector electrode (here fluorine-doped tin oxide, FTO, 

see Methods). For energetically favorable transport of electrons from the perovskite to the 

electron-selective electrode (Cu-foil), either rGO or PCBM are used as electron transport materials 

(see Methods and Figure 1f). A mesh-like Cu electrode could be used as an alternative for FTO, 

but this would block part of light and reduce the overall performance of the device therefore in our 

photo-battery devices we have used FTO connected with Cu-metal foil, as shown in Figure 1e. 

Supporting Information, Figure S4). Photo-batteries are first charged to saturation by a broadband 

light source (λ~420-650 nm, intensity~100mW/cm2, see Supporting Information, Figure S3) and 

then discharged through an electrical resistor of 21.5 kΩ (or an LED if mentioned). Initially, the 
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photo-battery with PCBM as conducting additive (structure B1, see Methods), is photocharged up 

to 3.05 V and then discharged to 0.4 V. However, we found that below 1.4 V, the typical dark 

yellow color of the CHPI electrodes turns black (see Supporting Information, Figure S4a,b). To 

confirm that the change in colour is not due to lithiation of the FTO, it is replaced by graphene, 

but the colour change persists (see Supporting Information, Figure S5). Further, at low discharge 

voltages, post-mortem Fourier transform infrared spectroscopy (FTIR) suggests excessive 

electrolyte decomposition or solid electrolyte interphase (SEI) formation (see Supporting 

Information, Figure S6)24,23,31. Therefore, we limit the discharge voltage to 1.4V in what follows.  

 

Figure 2. Perovskite photo-battery performance and mechanism. a, Photograph of a 3V LED 

powered by a CHPI photo-battery after the 1st cycle of photo-charging. b, First photo-charge 

(broadband light 100 mW/cm2) and discharge (dark, 21.5 kΩ load) voltage profile of a CHPI-

based photo-battery. The inset shows further cycling of the photo-battery under similar conditions. 
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c, Photo-battery cycling over a limited potential range. d, Potential discharge curve for photo-

batteries in dark (black) and illuminated (green) conditions. e, Schematics of the photo-charge 

generation, transfer, and storage mechanisms in perovskite photo-batteries. 

 

Figure 2 shows the photo-battery performance in more detail. First, we find that our fully light-

charged devices can power a commercial 3V white light LED (operating at electrical power of 

~0.6 mW) for more than an hour (photograph Figure 2a and Supporting Information, Figure S7a). 

More energy can be stored by simply using larger area electrodes since the photo-battery 

perovskite electrode is insensitive to defects from scaling. Further, these photo-batteries can run 

over the span of a full week, which is encouraging in comparison to the lifetime of other perovskite 

systems25. Since the photo-batteries are charged with light and discharged over a resistor, the 

charge and discharge cycles are very different, and we estimate the Coulombic efficiency (CE) to 

be 17 % in the first galvanostatic charge-discharge tests in the full potential window. Further, we 

find a drop in voltage of less than 10% over a span of 13 hours for photo-charged batteries left in 

dark conditions (see Supporting Information, Figure S7b). When testing the devices between 3.0 

and 1.4 V, good cyclability is achieved, with only a slight decay in the photo-charging potential 

(Figure 2b, with rGO conducting additive, see B2 in Methods). When cycled between 2.95 and 2.0 

V, no decay in the photo-charging potential is observed after more than 10 cycles. However, the 

capacity of the electrode shows some fading (Figure 2c), as expected based on the initial coin-cell 

results (see Supporting Information, Figure S2c). In what follows, we will investigate the storage 

and capacity fading mechanism in more detail. Next, two batteries (structure B2) are discharged 

through identical loads (21.5 kΩ) with the first battery in dark conditions and the second one 

illuminated (100 mW/cm2). As shown in Figure 2d, the latter maintains an overall higher output 

potential along with an almost two times longer discharge time from ~ 3.0 to 1.4 V. Further, a 

plateau at ~ 1.1 V is observed before stabilizing at 0.8 V. At this stage, the battery functionality is 

depleted, and the device relies only on photo-generated charge carriers (conversion efficiency, 

ƞ ~ 0.034 %). This is confirmed by the sudden drop to 0.2 V when the light is turned off after 19 

hours (decay time ~14 mins, grey region in Figure 2d). This data further confirms the ability of 

CHPI to simultaneously operate as a battery and a photo harvesting material. Alternative photo-

charge/discharge curves in light and dark conditions are reported in Supporting Information, 

Figure S8.  
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Figure 3. In-situ measurements. a, In-situ confocal PL versus measured open circuit voltage 

while discharging through a resistive load (dashed arrows added to guide the eye). Insets show 
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the PL response (λex~365nm LED source) of the photo-battery when photo-charged to 2.90 V (left) 

and after discharge to 2.26 V (right). b, XRD patterns of photo-battery electrodes (B2) discharged 

at different potential levels, with XRD of pristine CHPI thin film also added for comparison 

(shifted along y-axis for clarity). c, Close-up view of characteristic peak (002) of CHPI, showing 

a shift towards lower diffraction angle upon lithiation. d, Schematic representation of Pb-metal 

cluster formation in case of perovskite photo-battery electrode discharged to deep potential levels. 

Inset XRD spectra of electrode discharged to 0.3 V matches well with lead metal XRD peaks (space 

group: Fm-3m shown in orange). e, Layered crystal structure of CHPI illustrating increase in d-

spacing upon Li -ion intercalation between PbI6 octahedra. f, Micro-Raman spectra of CHPI 

electrodes at different discharge levels.   

 

In what follows, we elucidate both the energy storage and the photo-charging mechanisms of these 

devices. As suggested in a recent report of DFT simulations of 3D organic-inorganic hybrid 

perovskite batteries, we believe that energy is stored in our 2D perovskites by a combination of an 

intercalation and conversion mechanism32. We first study the storage mechanism at low discharge 

levels using in-situ confocal PL measurements (λPL~ 518 nm, diode laser excitation source, 

λex ~ 447 nm, see Supporting Information, Figure S9). Figure 3a shows that the bright green PL of 

the photo-charged devices is quenched when discharging to 2.26 V, and the exciton PL intensity 

decreases non-linearly similar to the potential discharge curve (Figure 2d). These in-situ 

measurements suggest that the discharge process modifies the perovskite structure, which we 

investigate further by post-mortem X-ray diffraction (XRD) (Figure 3b). These measurements 

show a shift in the CHPI characteristic (002) plane peak (2𝜽~5.2º) towards lower diffraction angles 

for electrodes discharged to 1.85 V or less (2𝜽~4.9º). This implies that the d-spacing between the 

metal halide atomic interlayers increases from 17 Å, for pristine electrodes, to 18 Å when 

discharged to 1.85 V or lower. This expansion in the d-spacing suggests that Li-ions are inserted 

between the metal halide atomic interlayers32. The change in d-spacing during lithiation also 

suggest that photo-charging is not  due to surface reactions but it is a bulk process taking place in 

the bulk of the perovskite. This Li-ion migration in CHPI can follow different paths (ionic radius 

~0.76 Å), for instance through the spaces between lead halide octahedrons (>37 Å2) along the c-

axis of the triclinic unit cell of 2D-perovskite crystal28 (see Figure 3c). This is similar to organic 
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moieties which travel between adjacent PbI6 octahedrons to form the 2D perovskites crystals29 

during initial intercalation of the organics into PbI2. 

At voltages below 1.4 V, both the perovskite peaks disappeared both in the XRD patterns 

(Figure 3b) and Raman spectra (Figure 3f), indicating a more substantial change in the material 

structure. Further, at 0.3V new XRD peaks appear, which match well with Pb (space group Fm-

3m, Figure 3d) and is likely the result of a conversion reaction similar to one suggested recently 

for 3D perovskites (Eqn 1)32:  

2Li + (C6H9C2H4NH3)2PbI4 → 2(C6H9C2H4NH3I) + 2LiI + Pb (m)   (1) 

During the photo charging process, the alternating 2D semiconducting inorganic and 

insulating organic monolayers act as potential wells and barriers respectively, resulting in 

electronic and dielectric confinement effects14–16, and generation of excitons upon illumination 

with photons exceeding the exciton energy (λx~508nm). The photo-generated electrons are readily 

collected by the FTO electrode due to the energetically favorable landscape depicted in Figure 1f 

(perovskite/rGO (or PCBM)/FTO/Cu)15,26. These photo-electrons accumulate on the counter-

electrode through the external circuit (Figure 2e, photo-charging), and we hypothesize that in the 

intercalation regime (low discharge), the photo-generated holes provide sufficient repulsion to 

drive Li-ions out of the perovskite matrix. This could then induce the photo-charging of the battery 

as sketched in Figure 2e. The blend of perovskite with rGO/PCBM provides extensive conducting 

pathways through grain boundaries and interfaces, however short carrier lifetimes (~200 ps) and 

short diffusion lengths (<100 nm) of electrons and holes in 2D perovskites mean most either 

recombine or are trapped27. At lower discharges in the conversion region, we also observe some 

recharging (see Supporting Information, Figure S4), which may be due some remaining 

intercalation effects, or due to the photo-generated holes reacting with the lithium iodide (LiI) to 

form Li+: 

2LiI + 2h+→ 2Li+ + I2      (2) 

The Li+ is further reduced at the counter electrode by the accumulated photo-electrons (Li+ + e- → 

Li), thus balancing the total generated photo-charge carriers and inducing photo-charging of the 

battery as sketched in Figure 2e. The capacity fading observed in the charge-discharge curves of 

the photo-batteries (see Figure 2b and c), is probably due to a number of different factors including 

possibly deterioration of the material morphology during charging and discharging, the formation 

of insulating solid-electrolyte-interfaces (SEI) and the formation of poorly-reversible lead metal 
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Pb(m) (see chemical reaction 1). The photo-inactive Pb(m) can alloy with Li to form LixPb 

(0<x<4.4) resulting in large volume increase, and likely cracking and crumbling of the material35. 

This results in the loss of electrical contacts and hinders the reversibility of the reaction with Li, 

hence causes further capacity fading. Nevertheless, our system is relatively stable compared to 

other solar-chargeable energy storage devices7,9,33,34, and further improvements are possible by 

replacing Pb in the perovskite structure with other metals, such as Sn, Bi to provide better battery 

cycling. We note changes in elemental composition of the perovskite (in both 2D and 3D 

perovskites) cause changes in the optical band gap, which will change the performance of the 

photo-battery. Perovskite photo-batteries with alternative compositions should follow similar 

energy storage mechanisms this may enable further device optimization. Overall, the above 

analysis underpins the unique capability of CHPI to combine both energy storage and photo-

charging mechanisms in the same material. This may lead to entirely new application domains for 

perovskites.   

 

To date, batteries rely on external power sources to charge them. Our work demonstrates 

that highly photoactive 2D lead halide perovskites can simultaneously store energy and recharge 

by light. This paves the way for more compact integrated off-grid energy sources, which could 

profit in the longer term from fewer internal losses and lower weight than present separate solar 

cell/battery solutions. Our photo-battery devices already show efficiencies comparable to those of 

electrodes using mixtures of solar cells and batteries and storage capacities of 100 mAh/g. Further, 

these materials can be solution processed which leads to straight-forward scale-up strategies once 

more research is conducted to enhance their efficiency and stability.  

 

EXPERIMENTAL SECTION 

Methods 

Materials. The following chemicals were purchased from Sigma-Aldrich: Lead iodide (PbI2), lead 

bromide (PbBr2), hydroiodic acid (HI), hydrobromic acid (HBr), cyclo-hexyl-ethylamine 

(C6H9C2H4NH2), reduced graphene oxide (rGO), electrochemical grade propylene carbonate, 

ethylene carbonate, diethyl carbonate, N-methyl-2-pyrrolidone, polyvinylidene fluoride (PVDF) 

and metal foils (Al, Cu and Li). Polypropylene layers were purchased from Cell Guard. The 
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phenyl-C61 butyric acid methyl ester (PCBM) of >99.5 % purity grade was purchased from 

Solenne B.V. 

 

Synthesis of perovskites. The synthesis of 2D perovskite is performed by using a sol-gel method 

reported previously19,30. First (C6H9C2H4NH3)X (X=I or Br) was synthesized from the mixture of 

1:1 molar ratio of aqueous solutions of HX (HI or HBr) and cyclo-hexyl-ethylamine 

(C6H9C2H4NH2) (100ºC and stirring at 2000 rpm). The precipitate from the reactant solution is 

separated and then washed with diethyl ether. To synthesize 2D perovskites 

((C6H9C2H4NH3)2PbX4), stoichiometric amounts of (C6H9C2H4NH3)X and corresponding lead 

halide (PbI2 or PbBr2) were dissolved in N,N-dimethylformamide (DMF) (hereafter, the resultant 

compounds are referred to as CHPI and CHPB, respectively). Perovskite powder is extracted from 

the above prepared solution by drying overnight in a vacuum oven at 60 ºC.  

 

Preparation of electrodes. Perovskite photo-battery electrodes were prepared by using different 

additives, rGO and PCBM. For both additives, lead halide perovskites are made following a similar 

recipe. 10 mg of rGO or PCBM is dissolved in 1 ml N-methy-2-pyrrolidone (NMP, in glove box) 

and sonicated for 1 hour. 85mg of perovskite is dissolved in the same solution and stirred 

overnight. Then, 5 mg of polyvinylidene fluoride (PVDF) binder is added followed by 2 hours of 

stirring. CHPI electrodes using PCBM/PVDF as additives are referred to as B1 and rGO/PVDF as 

B2 respectively. Both B1 and B2 were transferred in a glove box to prepare the electrodes. 60 µl 

of B1 or B2 is drop-casted on pre-cleaned and UV-ozone treated FTO substrates and left on a hot-

plate for drying overnight at 45 ºC. All devices are made on FTO substrates with an area of 1.0 cm 

x 1.5 cm. 

 

Fabrication of the photo-batteries. Perovskite photo-batteries are assembled in an Ar filled 

glovebox. Al-metal foil and Li-metal foil (25µm) are stacked on stainless steel (SS) disks. 

Whatman borosilicate paper, soaked with 1 M LiPF6 as electrolyte, is placed on Li-metal as a 

separator. On top of the separator, the perovskite electrodes with a Cu-foil extended electrode are 

gently flipped and covered with another glass slide (2.5 cm x 3.7 cm) to hold all layers together. 

Finally, the edges were sealed and clips were used to maintain the interfacial contacts between all 

components of device.  
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Characterizations. All photo-battery measurements were performed in air by using a Biologic 

VMP-3 galvanostat. For photo-charging, an LED-based broadband (λ~420-650 nm, 

intensity~100mW/cm2) source is used for irradiation. Open circuit voltage (OCV) is measured to 

obtain the photo-charge and discharge potential curves. For discharge, the photo-battery is 

connected to either a resistor of 21.5 kΩ load or a commercial 3V white light LED. A 447nm diode 

laser is coupled to an Olympus BX-51 microscope for confocal PL measurements. For PL imaging, 

deep UV (300 nm, Thorlabs-M300L4) and UV (365nm, Thorlabs-M365L2) mounted LEDs are 

used. For post-mortem analysis, the photo-batteries are opened in an Ar-glove box and dried 

overnight at 40 ºC. The XRD measurement are performed on a Bruker D8, Raman on a Renishaw 

InVia Raman Microscope, and FTIR measurements on a Perkin Elmer Frontier. 
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