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Dynamical encirclement of an Exceptional Point (EP) and corresponding time-asymmetric mode evolution

properties due to breakdown in adiabatic theorem have been a key to range of exotic physical effects in various

open atomic, molecular and optical systems. Here, exploiting a gain-loss assisted dual-mode optical waveguide

that hosts a dynamical EP-encirclement scheme, we have explored enhanced nonreciprocal effect in the dynam-

ics of light with onset of saturable nonlinearity in the optical medium. We propose a prototype waveguide-based

isolation scheme with judicious tuning of nonlinearity level where one can pass only a chosen mode in any

of the desired directions as per device requirement. The deliberate presence of EP enormously enhances the

nonreciprocal transmission contrast even up to 40 dB over the proposed device length with a scope of further

scalability. This exclusive topologically robust mode selective all-optical isolation scheme will certainly offer

opportunities in integrated photonic circuits for efficient coupling operation from external sources and improve

device performances.

Nonreciprocal light propagation associated with breaking

Lorentz’s reciprocity in a nonlinear medium is the funda-

mental requirement to realize optical isolation; where time-

reversal symmetry is not well-maintained. Isolators are in-

dispensable in almost all optical systems, for example, pro-

tection of a high-power laser from back reflection, reduction

of multipath interference in communication system and op-

tical signal-processing (for recent review see ref. [1]). To

this end, the nonreciprocal transmission has commonly been

achieved via magneto-optical Faraday rotation effect [2], how-

ever, on chip-scale integrated photonics, it remains elusive due

to unavailability of necessary materials to achieve sufficient

Faraday rotation effect. Thus, there is an usual challenge in

production of all-optical isolators on chip-scale device foot-

print. Recently, there have been investigations to explore Ex-

ceptional Points (EPs) to achieve extraordinary nonreciprocal

effects [3–5]. Here, exploiting the chiral behavior of an EP,

we look into a step-forward approach to realize a waveguide-

based, mode-selective, topologically robust optical isolator.

EPs are the topological branch point singularities that ap-

pear in the parameter space (at least 2D) of the usually dissi-

pative non-Hermitian systems where the coupled eigenvalues

and the corresponding eigenstates of the underlying Hamilto-

nian simultaneously coalesce [6]. The unconventional physi-

cal effects in the vicinity of EPs [7] have attracted revolution-

ized attention with respect to a wide range of astonishing tech-

nological aspects that include unidirectional light propagation

[8, 9], asymmetric mode conversion/switching [9–11], lasing

and anti-lasing [12], ultra-sensitive optical sensing [13], etc.

Particularly, the chiral topological nature of an EP [14] and

associated geometric phase behavior [15] have been seen in

the adiabatic state-exchange mechanism which is essentially

reciprocal in nature. Here, a sufficiently slow parametric evo-

lution along a closed loop around an EP allows the contin-

uous swapping between the interacting modes/states [9, 10].

Now, if we consider the dynamical EP-encirclement scheme

i.e. time (or analogous length-scale) dependent parametric

variation then the contrast between the effect of EP and the

standard adiabatic theorem enables nonadiabatic evolution of

one of the two interacting eigenstates [16, 17] which leads to

an asymmetric mode conversion phenomenon; where depend-

ing on the direction of rotation a specific eigenstate dominates

at the end of encirclement process [10, 11].

Owing to the precise control of an EP on time-asymmetric

modal dynamics, in this letter, we exploit this reciprocal light

propagation phenomena to achieve huge nonreciprocity in a

gain-loss assisted dual-mode optical waveguide [10]. This is

made feasible by making the corresponding scattering matrix

asymmetric with onset of suitable nonlinearity in the optical

medium. Here, we propose an isolation scheme based on two

different four-port prototypes which are topologically robust

in the same design of the waveguide, however, having differ-

ent amounts of nonlinearity. The designed waveguide sup-

ports a parameter space with longitudinal variation of gain-

loss profile along the propagation direction that encircles the

EP dynamically. Appreciating the associated EP-aided asym-

metric mode conversion scheme, two proposed prototype iso-

lators deliver two different specific modes in different direc-

tions based on the amount of nonlinearity. Here, the allowed

mode is selected by the non-adiabatic corrections around EP

in the respective direction.

We consider a customized step-index planar optical waveg-

uide [10] that occupies the region −W/2 ≤ x ≤ W/2 as

shown in Fig. 1(a). Normalizing the operating frequency

ω = 1, we set the total width W = 20λ/π = 40 in a dimen-

sionless unit (feasibly, one can choose µm). The fixed real re-

fractive indices of the core and cladding have been chosen as

nh = 1.5 and nl = 1.46, respectively. For these specified op-

erating parameters, the waveguide supports the fundamental

mode (LP01, say, ψ0) and the first-higher-order mode (LP11,

say, ψ1).

Now, beyond PT-symmetry, we introduce non-Hermiticity

in the designed waveguide by integrating a transverse distribu-

tion of unbalanced gain-loss profile that can be realized with

the patterned imaginary part of the refractive index. Along

the longitudinal direction, the amount of non-Hermiticity is

modulated by independent tunabilities of two control param-

eters viz. the gain coefficient: γ(z) and the loss-to-gain ratio:
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FIG. 1. (a) Schematic of the proposed specialty optical waveguide.

x and z represent the transverse and propagation directions respec-

tively. (b) Transverse profile of n(x): Blue solid line shows the

Re(n), and the brown dotted line shows the Im(n) for the specific

parameter set (γ = 0.008, τ = 3.161) at EP.

τ(z). Thus, the overall transverse refractive index profile for

a specific cross-section of the waveguide can be written as

n(x) =











nh − iγ, −W/6 ≤ x ≤ 0

nh + iτγ, 0 ≤ x ≤W/6

nl + iγ, W/6 ≤ |x| ≤W/2.

(1)

The profiles of Re(n) and Im(n) (for a fixed γ and τ ) are

shown in Fig. 1(b). Now, the propagation constants (β-values)

of the supported modes are computed from the scalar modal

equation [∂2x + n2(x)ω2 − β2]ψ(x) = 0, using n(x) as given

by Eq. 1.

With the introduction of gain-loss, ψ0 and ψ1 are mutually

coupled. Exploiting the concept of transition between topo-

logically dissimilar avoided resonance crossings (ARCs), we

encounter an EP where the corresponding complex β-values

coalesce [9, 10]. We study the topological dynamics of β0
and β1 and corresponding ARC with crossing/anticrossing of

their real and imaginary parts for different τ values, while γ
varies in a chosen range from 0 to 0.015. Judiciously exam-

ining several cases, we set a specific τ = 3.17 and track the

dynamics of β0 and β1 in Fig. 2(a). Here, it is evident that

near γ ≃ 0.008, they coalesce. Thus, we numerically detect

the EP in the (γ, τ )-plane at (γEP = 0.008, τEP = 3.161).

We execute an EP-encirclement process with consideration

of a device implementation feasible loop in the (γ, τ )-plane

as given by the coupled equations γ(φ) = γ0 sin(φ/2) and

τ(φ) = τEP + a sin(φ). Here, the characteristics parame-

ters a (∈ (0, 1]) and φ (∈ [0, 2π]) control the adiabaticity in

variation of γ and τ around EP. For γ0 > γEP , the param-

eter space encloses EP properly. a > 0 confirms clockwise

evolutions whereas a < 0 allows anticlockwise evolutions.

Fig. 2(b) shows such an quasi-static encirclement scheme

with γ0 = 0.009 (> γEP ) and a = 0.1. Following this spe-

cific contour in the (γ, τ )-plane, we track the corresponding

dynamics of β0 and β1 from their passive locations (where

γ = 0) in Fig. 2(c). Here one complete encirclement around

the EP allows the adiabatic permutation (mutual exchange in

position) between β0 and β1 which revels the exact second

order behavior of the identified EP.

FIG. 2. (a) Encounter of an EP: Trajectories of the complex β0 (dot-

ted blue curve) and β1 (dotted red curve) for a chosen τ = 3.17
with an increase in γ, showing coalescence at EP near γ = 0.008.

The circular markers of the respective colors represent their initial

position at γ = 0. (b) EP-encirclement: Clockwise variation of γ

and τ around the EP. (c) β-switching: Trajectories of complex β-

values following the parametric loop shown in (b). Arrows indicate

the direction of progression. (d) Parameter space mapping on the

waveguide: Variation of Im(n) along both x and z directions.

Now, with the chosen parametric loop in the (γ, τ )-plane as

shown in Fig. 2(b), we realize the dynamical EP-encirclement

process by distributing the corresponding Im(n) profile along

length of the waveguide as shown in Fig. 2(d). Under paraxial

approximation, such a parameter space mapping should fol-

low the time-dependent Schrödinger equation with z as the

time axis. Denoting L0 as the total operating length, the map-

ping equations can be written as

γ(φ) = γ0 sin(πL0/z); γ0 > γEP , (2a)

τ(φ) = τEP + a sin(2πL0/z). (2b)

We assign two ends of the waveguide as P1 at z = 0 (i.e., φ =
0) and P2 at z = L0 (i.e., φ = 2π). Here, one complete pass

(0 ≤ z ≤ L0) along the length-axis describes an exact dy-

namical EP-encirclement scheme (0 ≤ φ ≤ 2π) with simulta-

neous variation of γ and τ . Here, the clockwise and anticlock-

wise parametric evolutions around EP are simply achieved

by changing the propagation directions. Now, dynamically

encircling the EP with quasi-static gain-loss variation in the

waveguide having total length L0 = 104 (dimensionless unit),

we exhibit the beam propagation of ψ0 and ψ1 in Fig. 3.

Once the variation of Im(n) meets the adiabatic limit, the

modal propagations can be simulated using split-step Fourier

method using the modified scalar beam-propagation equation

2iω∂zψ(x, z) = −[∂2x +∆n2(x, z)ω2]ψ(x, z) under paraxial

approximation [18]. Here, ∆n2(x, z) ≡ n2(x, z)− n2

l .
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FIG. 3. (a) Modal propagations from P1 to P2 during clockwise

EP-encirclement; (a.1) adiabatic conversion from ψ0 to ψ1 and (a.2)

nonadiabatic evolution of ψ1 (→ ψ1). (b) Modal propagations from

P2 to P1 during anticlockwise EP-encirclement; (b.1) nonadiabatic

evolution of ψ0 (→ ψ0) and (b.2) adiabatic conversion from ψ1 to

ψ0. Due to proper visibility we re-normalize the modal intensities

at each z and hence the overall intensity variations are essentially

scaled.

During dynamical EP-encirclement process, breaking of in-

version symmetry occurs in the overall loss variation along

the length-scale which results in adiabatic breakdown in the

system-dynamics. Here, one of the interacting eigenstate that

experiences comparably higher loss in comparison to its cou-

pled counterpart behaves non-adiabatically. The average loss

of the individual modes can be estimated by
∮

{Im(β)/2π}dφ,

using adiabatic expectation of corresponding Im(β) from Fig.

2(c). Thus, for clockwise encirclement, ψ0 and ψ1 which have

been individually excited from P1 (z = 0) are essentially con-

verted into ψ1 at P2 (z = L0) as can be seen in plots a.1 and

a.2 in Fig. 3(a). However, for any mode excited from P2 dur-

ing anticlockwise encirclement, the waveguide yields ψ0 at P1

as shown in b.1 and b.2 in Fig. 3(b). The conversion efficiency

of an input mode (ψin) has been calculated by its overlap inte-

gral with corresponding output mode (ψop) as [10]

C =

∣

∣

∫ (

ψop × ψin
)

dx
∣

∣

2

∫

|ψop|
2
dx

∫

|ψin|
2
dx
. (3)

Here, during the clockwise rotation around the EP, we find

C� as 92.82% (±0.02%) for the conversions {ψ0, ψ1} →
ψ1; whereas during anti clockwise rotation, C	 =
62.55% (±0.04%) for the conversions {ψ0, ψ1} → ψ0.

Such bi-directional light transmissions in the optical

waveguide can be realized by assigning a scattering matrix

which is formulated as

[ψop] = [S] [ψin], with S =









0 0 S13 S14

0 0 S23 S24

S31 S32 0 0
S41 S42 0 0









. (4)

Here, the zeros in top left and bottom right blocks of the S-

matrix are chosen to neglect the all possible reflections. Top

right block (say, Mtr) estimates the backward transmission

as TB = |max(Mtr)|
2 and bottom left block (say, Mbl)

estimate the forward transmission as TF = |max(Mbl)|
2.

FIG. 4. Schematic of a 4-port optical isolator on framework of the

proposed waveguide with suitable nonlinearity. Ports (1,2) and (3,4)

of the isolator are associated with waveguide ends P1 and P2, respec-

tively.

The nonzero matrix elements have been calculated using as

Sij =
〈

ψin
j

∣

∣ψop
i

〉

with possible combinations of eigenfunc-

tions at input (ψin) and output (ψop) of the waveguide.

In the linear interaction regime, the EP-aided chiral light

transportation phenomena follow Lorentz’s reciprocal theo-

rem where the associated S-matrix must be symmetric (S =
ST ). Now isolation is achieved when the waveguide allows

only one-way-traffic, i.e., light is blocked in any one direction

and allowed to pass in opposite direction. This implies that

the nonreciprocity in light propagation demands breaking in

Lorentz’s reciprocity with an asymmetric S-matrix (S 6= ST ).

Now, to break reciprocity, we introduce saturable nonlinearity,

having the form ∆nNL(x, z) = n2|ψ|
2/

[

1 + (|ψ|2/Is)
]

, in

the optical medium [19]. Here, n2 is the nonlinear coefficient

and Is is the saturating intensity. Unlike Kerr-nonlinearity, the

chosen saturable nonlinearity has been incorporated to avoid

unstable output while introducing nonreciprocity.

Fig. 4 describes such a schematic 4-port optical isolator

in the framework of the designed dual-mode optical waveg-

uide with saturable nonlinearity. The waveguide hosts the

parameter space that enables to exhibit an EP-aided chirality

driven mode-conversion phenomena as described in Fig. 3.

Here, we propose a prototype isolation scheme having two

variants in the same operating configuration of the waveg-

uide, while, having different amount of non-linearities (to

distinguish them, say, WG1 and WG2). To distinguish the

amount of nonlinearity, we normalize the factor Is and cal-

ibrate n2; where the actual nonlinearity is quantified in the

form of (∆nNL/∆n)× 100% with ∆n = (nh − nl).

First, we introduce 3.75% nonlinearity in the spatial in-

dex distribution of the waveguide and denote this prototype

scheme as WG1. Now, to consider the clockwise dynamical

EP-encirclement scheme we individually launch the coupled

modes with unit magnitude from the P1-end. In Fig. 5 we

study the propagations of ψ0 (plot a.1) and ψ1 (plot a.2). Here,

along the forward direction, both ψ0 and ψ1 are almost fully

transmitted through the waveguide. However, along this di-

rection the EP-aided nonadiabatic corrections yield the dom-

inating mode ψ1 at P2 for both the cases. Meanwhile, when

the modes are propagating in the backward direction i.e. for
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FIG. 5. WG1: Prototype waveguide isolator with 3.75% nonlinearity

in the optical medium where one-way-traffic is active in the forward

direction (from P1 to P2). Forward propagations of (a.1) ψ0 and

(a.2) ψ1 from P1 to P2 for clockwise dynamical EP-encirclement

scheme where both of them are converted to ψ1 at P2. For backward

propagation, T ≈ 0.

anticlockwise EP-encirclement process, both the modes that

have been launched from P2-end of the waveguide are blocked

from transmitting to P1-end. Here, due to breaking of inver-

sion symmetry in overall gain-loss variation in presence of

tailored nonlinearity along z-direction, major portion of the

incoming intensities get attenuated, where overall transmis-

sion T ≈ 0. We calculate the nonzero elements of the asym-

metric S-matrix and quantify the nonreciprocal effect in the

prototype nonlinear waveguide WG1 in terms of isolation ra-

tio using the expression 10×log
10
(TF /TB); where maximum

∼ 40.27 dB isolation is accomplished.

Now, we increase the nonlinearity to 8.75% in the optical

medium of the waveguide having same spatial gain-loss dis-

tribution as described earlier (in Figs. 3 and 5) and desig-

nate this prototype scheme as WG2. Here for clockwise EP-

encirclement process i.e. when the modes are excited from the

P1, there is no transmission (T ≈ 0) in the froward direction

(from P1 to P2). Now, when we consider the anticlockwise

EP-encirclement scheme with launching of ψ0 and ψ1 from

P2, both of them are well-transmitted in the backward direc-

FIG. 6. WG2: Prototype waveguide isolator with 8.75% nonlinear-

ity in the optical medium where one-way-traffic is active in the back-

ward direction (from P2 to P1). Normalized backward propagations

of (a.1) ψ0 and (a.2) ψ1 from P2 to P1 for anticlockwise dynamical

EP-encirclement scheme where both of them are converted to ψ0 at

P1. Here, for forward propagation, T ≈ 0.

tion; and owing to nonadiabatic corrections in this direction,

they are converted to the dominating mode ψ0 at P1, as can

be seen in plot a.1 and a.2 of Fig. 6, respectively. Since,

here the one-way-traffic is active from the backward propaga-

tion, the isolation ratio has been estimated using the expres-

sion 10× log
10
(TB/TF ); where we have achieved maximum

∼ 21.55 dB isolation.

Also, considering the longitudinal gain-loss variation in the

waveguide for which EP is not properly enclosed and accord-

ingly the modes are not converted, we have noted-down the

isolation ratios for different amounts of optical nonlinearity

up to 9%. Investigating such cases, we have achieved max-

imum 6.5 dB (approximate) isolation. Thus, the presence

of EP in parameter space results in giant increase of non-

reciprocal effect (up to ≈ 40 dB isolation) for a compara-

bly low nonlinearity level. Here, the presence of EP acts as

an intrinsic tool to isolate a specifically selective mode. We

have also calculated the mode conversion efficiencies for both

the prototypes by using Eq. 3. In the prototype WG1, we

estimate C� = 98.13% (±0.01%) and for WG2 we obtain

C	 = 74.44% (±0.01%). Here, it should be noticeable that

the conversion efficiencies increase in comparison with the

cases when nonlinearity is not present in the optical medium.

This aspect is also evident in Figs. 5 and 6, where clarity of

the converted outputs are reasonably enhanced.

In summary, a topologically robust and versatile dual oper-

ation optical isolation scheme has been reported on the frame-

work of a dual-mode optical waveguide operating at an EP.

Based on the amount of nonlinearity, our designed nonrecip-

rocal optical waveguide reverses its one-way-active traffic reg-

ulation, when we increase the amount of nonlinearity to a cer-

tain limit. Here, owing to breaking inversion symmetry in

gain-loss variation along z-axis, and corresponding EP-aided

nonadiabatic corrections, our waveguide based two prototype

isolators individually deliver different dominating modes at

the opposite ports. Taking the advantage of giant nonrecipro-

cal effect near the EP, we can set the desired nonlinearity level

in the optical medium of the waveguide to isolate a selective

mode in any of the required directions. Here, the presence of

EP enormously increases the isolation ratio. Also, the pres-

ence of nonlinearity enhances the EP-aided mode conversion

efficiencies which reflects the fact that both the proposed pro-

totypes can efficiently be used as one-way-mode-converter in

integrated photonic devices. Aside from strong impact in fun-

damental physics, with suitable scalability and using state-of-

the-art techniques, our scheme should open up an extensive

platform to realize a new class of all-optical isolators in inte-

grated device footprint. The predicted performance strongly

encourages the experimental realization of the device.
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F. Libisch, T. J. Milburn, P. Rabl, N Moiseyev, and S. Rotter,

Nature 537, 76 (2016); X.-L. Zhang, S. Wang, B. Hou, and C.

T. Chan, Phys. Rev. X 8, 021066 (2018).

[12] Z. J. Wong, Y-L. Xu, J. Kim, K. O’Brien, Y. Wang, L. Feng, X.

Zhang Nat. Photonics 10, 796 (2016); Y. D. Chong, L. Ge, and

A. D. Stone, Phys. Rev. Lett. 106, 093902 (2011).

[13] J. Wiersig, Phys. Rev. A 93, 033809 (2016); H. Hodaei, A.

U. Hassan, S. Wittek, H. G-Gracia, R. El-Ganainy, D. N.

Christodoulides, and M. Khajavikhan, Nature 548, 187 (2017);
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