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Abstract Abstract 
Accurate characterization and reporting of organic photovoltaic (OPV) device performance remains one 
of the important challenges in the field. The large spread among the efficiencies of devices with the same 
structure reported by different groups is significantly caused by different procedures and equipment used 
during testing. The presented article addresses this issue by offering a new method of device testing 
using "suitcase sample" approach combined with outdoor testing that limits the diversity of the 
equipment, and a strict measurement protocol. A round robin outdoor characterization of roll-to-roll 
coated OPV cells and modules conducted among 46 laboratories worldwide is presented, where the 
samples and the testing equipment were integrated in a compact suitcase that served both as a sample 
transportation tool and as a holder and test equipment during testing. In addition, an internet based 
coordination was used via plasticphotovoltaics.org that allowed fast and efficient communication among 
participants and provided a controlled reporting format for the results that eased the analysis of the data. 
The reported deviations among the laboratories were limited to 5% when compared to the Si reference 
device integrated in the suitcase and were up to 8% when calculated using the local irradiance data. 
Therefore, this method offers a fast, cheap and efficient tool for sample sharing and testing that allows 
conducting outdoor measurements of OPV devices in a reproducible manner. 
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Abstract 

 

Accurate characterization and reporting of organic photovoltaic (OPV) device performance 

remains one of the important challenges in the field. The large spread among the efficiencies of 

devices with the same structure reported by different groups is significantly caused by different 

procedures and equipment used during testing. The presented article addresses this issue by 

offering a new method of device testing using “suitcase sample” approach combined with 
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outdoor testing that limits the diversity of the equipment, and a strict measurement protocol. A 

round robin outdoor characterization of roll-to-roll coated OPV cells and modules conducted 

among 46 laboratories worldwide is presented, where the samples and the testing equipment 

were integrated in a compact suitcase that served both as a sample transportation tool and as a 

holder and test equipment during testing. Additionally, an internet based coordination was used 

via plasticphotovoltaics.org that allowed fast and efficient communication among participants 

and provided a controlled reporting format for the results that eased the analysis of the data. The 

reported deviations among the laboratories were limited to 5 % when compared to the Si 

reference device integrated in the suitcase and were up to 8 % when calculated using the local 

irradiance data. Therefore, this method offers a fast, cheap and efficient tool for sample sharing 

and testing that allows conducting outdoor measurements of OPV devices in a reproducible 

manner.   

 

Keywords: OPV, round robin, interlaboratory study, worldwide coverage, organic photovoltaic, 

web based reporting, efficiency reporting 

Introduction 

 

12 % record efficiency [1] is the number that represents the organic photovoltaic (OPV) 

technology today. However, in the OPV community today, the constantly reported efficiencies of 

different OPV technologies are scattered along a wide scale with an average performance much 

below the current record efficiency [2-3] creating concerns whether the technology is mature for 

industrialization. Besides the challenges of reproducible manufacturing of the devices, the large 

spread in the reported efficiencies is often generated by the inaccuracy of testing procedure. 

Given the costly and time consuming process of device performance certification at accredited 

laboratories, many researchers choose to test their device in their own laboratories using the 

equipment on hand and procedures attuned to the equipment and device architectures. Since 

OPVs are sensitive towards the testing conditions, the reported results are linked to the local 

testing procedures and thus, become irreproducible in other laboratories. Therefore, the field is in 

need of common testing procedures and protocols (for example according to International 
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Electrotechnical Commission standards) that can allow more harmonized procedures and can 

deliver reproducible results. This issue is currently one of the primary focuses within the OPV 

topic in the Project of European Research Infrastructure (SOPHIA) and the European Energy 

Research Alliance (EERA).   

One of the best techniques for establishing common testing methods is the round robin or 

interlaboratory study, where the set of test samples is shared among a number of laboratories and 

testing and intercomparison are performed [4-11]. A round robin is a useful tool that allows 

reaching consensus on best practices for both designing device architectures, utilizing the most 

suitable test equipment, and creating common test protocols. Within the OPV field, a number of 

different round robin studies have already been presented for both initial power output [12-14] 

and lifetime [15-18] measurements, which addressed the issue of large spread of data among 

different laboratories. 

While many lessons have been learned this article presents a new characterization method 

for photovoltaic devices that involves an innovative approach of “suitcase samples”. The 

samples are integrated in a special compact suitcase that provides sample protection and at the 

same time allows easy transport, mounting, electric contacting, and testing of the samples with 

virtually no use of external equipment and therefore, allows sample sharing and round robin 

characterization using low cost tools and equipment. The method was tested in an outdoor round 

robin study conducted for roll-to-roll produced OPVs among 45 laboratories (+ 1 coordinator) 

worldwide. To cover such large scale study, an internet based coordination was used. A website 

infrastructure was created to allow central coordination and communication between all the 

laboratories, transportation of the samples, and reporting of the results in a controlled format. 

The manuscript describes in detail the sample development, the web based coordination process 

and the control of the reporting procedures. It further analyzes the results of the measurements 

and discusses the advantages and shortcomings of the new method. 

 

Experimental 

 

Sample and Suitcase Preparation: 
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Roll-to-roll coated OPV modules produced at the Technical University of Denmark (DTU) 

were used for the tests. The devices had an ITO free structure of Ag 

grid/PEDOT:PSS/ZnOx/P3HT:PCBM/PEDOT:PSS/Ag grid/PET substrate. The two 

PEDOT:PSS layers on both sides have different chemical alterations and therefore have different 

energetic levels. The devices were encapsulated using flexible Amcor packaging barrier foil and 

epoxy adhesive (DELO LP655) and fixed on a rigid platform. The device terminals were 

connected to easily accessible electric plugs as shown in figure 1. Three sample designs were 

used with correspondingly serially connected 1, 3 and 6 stripes of solar cells in each module. The 

terminals of the modules were additionally sealed by epoxy to prevent the diffusion of oxygen or 

water inside the device. Si photovoltaic modules were additionally used as references. A 

thermocouple was glued on the backside of one of the OPV samples for temperature 

measurements. Table 1 shows the ID and the average performance of the samples (together with 

standard deviations) tested under solar simulator in DTU with the sample temperatures set close 

to 60 
o
C and the light intensity calibrated to 1 sun using photodiode with a KG5 filter. Such 

calibration provides good accuracy for P3HT:PCBM devices, but not for the Si module and 

therefore, significantly lower values were obtained for Si compared to AM1.5G. This, however, 

is not critical, since the same conditions were used for post-ageing measurements to record any 

changes. Figure S1 – S4 in the supporting material additionally shows typical IV curves for each 

type of sample. 

Table 1: Description and the average performance of the different samples. The values represent 

the average of four samples tested under solar simulator with light intensity close to 1 sun and 

sample temperature of 60 
o
C. 

Sample ID Description Active Area (cm2) Voc [V] 

(STD %) 

Isc [mA] 

(STD %) 

FF [%] 

(STD %) 

PCE [%] 

(STD %) 

Cell 1 OPV module with 3 stripes 21.32 1.52 (2.3) 33.3 (10) 57 (3.2) 1.35 (13) 

Cell 2 OPV cell with 1 stripe 6.9 0.54 (1.4) 38.8 (3.6) 52 (5.1) 1.58 (5.5) 

Cell 3 OPV module with 6 stripes 67 2.93 (1.1) 56.9 (4.7) 52 (4) 1.3 (5.7) 

Cell 4 Si reference module 47.4 4.14 (0.5) 160 (0.4) 72 (1) 10.1 (0.8) 
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Figure 1: Three OPV modules and one Si reference module fixed on a rigid platform 

 

 

The compact suitcase (36 x 29 x 17 cm) used for sample transportation was customized to 

serve also as a sample holder during testing. Figures 2(a-e) demonstrate the mounting of the 

sample platform both inside the suitcase (for transportation) and on top of the suitcase (for 

testing). Both the platform and the lid contained integrated magnets to allow easy fixing of the 

platform inside the lid (figure 2a) and on top (figure 2 b and c). The threaded rod allowed fixing 

of the angle of the lid at a certain position. The “angle adjustment tube” easily mounts on the 

platform and allows for determination of the angle for direct incidence of sun irradiation (figure 

2 d and e). Figure 2a also shows the components provided in the suitcase, such as the multimeter 

for measuring open circuit voltage Voc, short circuit current Isc and temperature of the samples, 

cables for electrical measurements and an angle measuring scale. 
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Figure 2: a) General view of the suitcase and its content, b) mounting of the sample platform on 

top of the suitcase, c) adjusting the angle of the lid via a rod with a thread, d) adjusting the angle 

to sun altitude and e) measuring the angle.  

 

Measurement Procedures: 

The suitcase contained a copy of the detailed protocol (also made available at the round 

robin website) describing the testing procedure of the samples and the reporting of the data. The 

protocol contained detailed instructions on setting up the samples, soaking the samples under 

light for 30 minutes followed by performance testing. The experimenter was recommended to 

perform both full I-V testing (depending on locally available equipment) and measure Isc and Voc 

of each sample using the provided multimeter. The Si reference device was used both as a test 

sample and as a reference for irradiance. The experimenter was also recommended to use local 

sensors (if available) to record the local irradiance level. The temperature of the samples was 

recorded via the thermocouple attached to one of the samples and the multimeter. 5 

measurements for each parameter of each cell were required. Reporting of the results was done 

(a)

(b)

(c)

(d) (e)
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via the electronic form set up on the website. A copy of the original protocol is provided in the 

supporting document (S2). The website used for coordination and data reporting is described in 

the supporting document (S6). 

 

Participating laboratories: 

The participants were originally recruited at the International Summit on OPV Stability 

(ISOS-5). The studies were additionally advertised at http://plasticphotovoltaics.org/roundrobin 

and a few participants were engaged this way. Finally a number of laboratories were contacted 

directly in an attempt to fill out the world-map. The finalized list of participants can be seen in 

table 2 and the geographic location in the map in figure 3. To carry out the round robin among 

such a large number of participants within a reasonable time, four identical suitcases were 

circulated at the same time in four loops. Certain labs (marked blue in the map in figure 3) 

volunteered to perform more than one test. Due to time constrains, however, each participant 

eventually received the samples only once. 

Table 2: The full list of the participants in the study. 

 University / organisation Contact person Country 
1 Belelectric Hans-Joachim Egelhaaf Germany 

2 Ben-Gurion University of Negev Eugene Katz Israel 

3 CEA-INES OPV group Matthieu Manceau France 

4 Cin2 Monica Lira Cantu Spain 

5 CSEM Ton Offermans Switzerland 

6 ECN Jan M. Kroon Netherlands 

7 ENEA Pasquale Morvillo Italy 

8 University of Erlangen-Nuremberg Florian Machui  Germany 

9 Inside2Outside Robert Carpenter England 

10 IAPP Martin Hermenau Germany 

11 IKERLAN Roberto Pacios Spain 

12 Ilmenau Roland Roesch Germany 

13 Imperial College Sachetan Tuladhar England 

14 IMS Guillaume Wantz France 

15 Fraunhofer ISE Birger Zimmermann Germany 

16 Joint Research Centre Giorgio Bardizza Italy 

17 KAST Katsuhiko Takagi Japan 

18 Cyprus University of Technology Marios Neophytou Cyprus 

19 NPL Fernando Araujo de Castro England 

20 National Taiwan University Jr-Hau He Taiwan 

21 Northearstern Univeristy Latika Menon USA 

22 Pomona College Gretta Mae Ferguson USA 

23 University of Groningen L. Jan Anton Koster Netherlands 

24 Bangor University Jeff Kettle Wales 

25 Siano Changqi Ma China 

26 Holst Centre Yulia Galagan Netherlands 

27 TU Chemnitz Chaitanya Bapat Germany 

28 Graz University of Technology Thomas Rath Austria 

29 University Hasselt Jean Manca Belgium 

30 Tübitak Elif Alturk Parlak Turkey 
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31 University of Wollongong Ziqi Sun Australia 

32 University of Southern California Barry Thompson USA 

33 Wuhan University Jiangbin Xia China 

34 American University of Armenia Artak Hambarian Armenia 

35 The University of Queensland Mike Hambsch Australia 

36 Jawaharlal Nehru Centre for Advanced Scientific Research Giridhar U. Kulkarni India 

37 CSIRO Energy Technology Chris Fell Australia 

38 International Laser Center & Faculty of  Physics, 

M.V.Lomonosov Moscow State University 

Dmitry Paraschuk Russia 

39 Federal University of Paraná Lucimara Stolz Roman Brazil 

40 Technical University of Cartagena Antonio Urbina Spain 

41 Addis Ababa University Teketel Yohannes Ethiopia 

42 Changchun Institute of Applied Chemistry Zhiyuan Xie China 

43 Department of Polymer Science and Engineering, Zhejiang 

University 

Hongzheng Chen China 

44 Peking University Xiaowei Zhan China 

45 Dipartimento di Ingegneria dell Informazione, Universita 

di Padova 

Andrea Cester Italy 

46 Technical University of Denmark (Coordinator) Morten V. Madsen/Suren Gevorgyan Denmark 

 

 

Figure 3: The flags in the google map correspond to the locations of the 46 participants. Blue 

colored locations were the sites intended for multiple measurements. 

 

Results and Discussion 

 

Logistics 

Four loops were organized among 45 laboratories with four suitcases circulating in parallel. 

Figure 4 presents the map with the tracking lines of the suitcase routes and a table with the 

numbers of laboratories in each loop and the total time of measurements. While 2 weeks was 

originally set for testing and transportation for each participant the actual average time reached 
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3.5 weeks and the total test period lasted around 10 months. Such an extension was mainly 

caused by custom clearance procedures at the country borders, especially when the suitcase was 

traveling across continents. Express services were used to accelerate the transportation. 

However, it was later discovered that using regular posting service did not require slow and 

expensive custom clearances and therefore had a much better result.  

 

Figure 4: The routes of the four suitcases. The table below shows the number of participants and 

total time of experiments for each loop. 

 

While 6 of the participants had to perform the measurements in a cloudy day with no direct 

sunlight, in most cases a clear sky measurement was achieved. Although the “cloudy” 

measurements gave a good insight on the linearity of the devices versus the irradiance, the 

overall deviations were somewhat larger and therefore these data were not taken into account 

during the calculation of the average performance. Additionally, in some cases the testing was 

performed under unusual conditions, such as at 3000 m elevation in Armenia or at -15 
o
C air 

temperature in Russia, the former not having significant effect on data deviations, while the latter 

resulting in reduced performance of the OPVs compared to the Si reference device. The 

Suitcase ID (line color) Number of participants Total time of testing (days) 

S1 (Blue) 9 232 

S2 (Red) 12 310 

S3 (Green) 10 259 

S4 (Pink) 14 309 
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participants were also recommended to perform the testing as close to noon time as possible, to 

reduce the spectral mismatch effects of sunlight. 

 

Degradation and failure of samples 

The samples were tested before and after the experiments at the host laboratory (DTU) to 

record possible degradation effects during transportation and tests. Figure 5 shows the 

performance of all the samples after the experiments, normalized to the initial values. Three out 

of twelve OPV samples showed degradation (marked with black circle in figure 5) caused mostly 

by the drop of fill factor FF, but for some also by Voc and Isc. However, for the cell 3 in the 

suitcase 4 the lower FF was recorded only at the laboratory of origin upon return, while the 

actual round robin measurements did not show patterns of degradation. Since the encapsulation 

of devices was entirely automated (made by R2R machinery), which secures good 

reproducibility of lifetimes, the reason of degradation was assigned to the sealing of the device 

terminals, which was performed manually and possibly imperfect in some cases, resulting in 

diffusion of oxygen and water inside the barrier, which is a common failure mechanism as was 

reported earlier [18-19]. Visual inspection of the samples did not reveal any failures. The 

reported measurements that showed degradation patterns were not used in the calculations of the 

average performance.  

Some of the participants additionally reported a weak contact of the terminal of cell 1 in 

suitcase 3, which was resolved by pressing on the contact. Detachment of the thermocouple from 

the back of the samples was also recorded. The issue was resolved by re-attaching of the sensor 

with new epoxy adhesive. 
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Figure 5. Performance of all the samples after the experiments normalized to the initial values. 

C1 to C4 refer correspondingly to Cell 1 to Cell 4 in each suitcase (Table 1). The three samples 

which showed degradation are marked with a black circle. 

 

Spread of data 

According to the test protocol the participants were required to record the photocurrent of 

the reference Si (the Si devices were not calibrated prior to the studies) during testing of each 

sample, as well as record the local irradiance, if a local sensor was available. 17 labs reported 

locally recorded global irradiance data, which was typically recorded using a pyranometer 

positioned in the same plane as the samples. The reported irradiance data was used to normalize 

the reference Si Isc data to 1000 Wm
-2

, which was then used to estimate the temperature 

coefficient for Si devices (the data for all Si devices from four suitcases were combined to 

improve the statistics and outliers were not taken into account) and normalized the data to 

temperature. Sample temperature of 40 
o
C was used for normalization. The same procedure was 

performed for OPV samples. For the latter, however, the OPV Isc was normalized to the already 

temperature corrected Si Isc. To do so the average 1 sun value of Si Isc was identified, which was 

183 mA and this value was used for normalization. Exception was made for the data of the Joint 
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Research Center that reported the accurately calibrated and normalized data including the 

spectral mismatch calibration. In the case of Voc only the data above 600 Wm
-2

 were used (Voc 

was not corrected to irradiance) for estimation of the temperature coefficients for both OPVs and 

Si. Table 3 shows the determined coefficients. This method has a number of underestimations, 

such as: 

• Spectral mismatch in different geographic locations and between Si and OPV devices is 

not taken into account 

• In some cases, there is a time delay between measured Isc and temperature values 

• Temperature is measured only on one OPV sample per suitcase and while valid for the 

other OPV samples, it may not reflect accurately the temperature changes in the Si 

device 

• The temperature range is mostly limited to 20-50 
o
C 

• Voc values are not normalized to irradiance 

Despite these deviations, the large quantity of the data is believed to give sufficient precision for 

temperature corrections. To confirm this, p-values were calculated for the different parameters, 

which represents the statistical significance of the data trend. The results revealed very low p-

values for the three coefficients in the table 3, while a value of 0.07 was observed for the 

temperature coefficient of Si Isc suggesting that the data for the former is statistically significant, 

while for the latter the significance is low. Taken the aforementioned underestimations the 

obtained values must not be treated as generic, but rather as values that describe the sample 

behavior under different temperatures for the given method of temperature and device 

performance measurements. 

   

Table 3: Temperature coefficients of Isc and Voc of the test samples 

 

In order to calculate the deviations among the reported measurements, first the data were 

corrected to a common temperature of 40 
o
C with the temperature coefficients in table 3. Then 

these were filtered for any outliers caused by device failure or extreme testing conditions 

Device Isc temp. coeff. (% /
o
C) Voc temp. coeff. (% /

o
C) 

Si device 0.12 -0.26 

OPV device 0.17 -0.041 
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(irradiance below 600 Wm
-2

 or air temperatures below 0 
o
C). As a next step the average of 5 

measurements was calculated for each laboratory (as there were 5 measurements performed for 

each sample by each laboratory). This was followed by calculation of the weight average of the 

data among laboratories for the same sample and then re-calculation of a new weighted average 

using only the data within 10 % deviation from the first weighted average. The weighted average 

was chosen since some of the laboratories reported less than 5 measurements per sample. Figure 

6 shows the distribution of the deviations of all the laboratories for all the cells in each suitcase. 

The following labeling is used to identify the large deviations: 

• The orange columns represent the data that were either qualified as outliers due to 

extreme testing conditions or were above a deviation of 10 %.  

• The red columns represent the degraded samples.  

• The black solid lines separate the measurements of each suitcase and the dotted line 

separates the samples.  

• The error bars represent the standard deviation of the 5 measurements.  

The actual values of all the deviations are presented in S3 in the supporting document.  
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Figure 6. Deviations of reported PV parameters for all the laboratories for each suitcase. The 

orange columns represent the data that was qualified as an outlier due to extreme testing 

conditions. The red columns represent the data of degraded devices.  
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Figure 7 shows the standard deviation among the data presented in figure 6 for each sample. 

Results are shown for both the filtered data (dark blue) and the data with the outliers (light blue). 

The degraded devices are marked by red. While the calculations of Isc and Voc are based on at 

least 9 and more measurements/labs, for FF and maximum power Pmax fewer data points are 

available (since only some performed IVs or reported FF) and thus may not represent the true 

spread accurately. According to the results, the agreement among the data is not affected by 

device failure or critical weather conditions and is somewhere at 5% and less, which is a rather 

small spread, given the nature of the testing conditions and the device sensitivity towards testing 

conditions. The data are presented for the case in which Isc (consequently also Pmax) was 

normalized to the measured reference Si module. The same calculations made with Isc 

normalized to the locally reported irradiance values (with less statistical data, since limited 

number of laboratories reported irradiance) gave up to 8 % average standard deviations for both 

Isc and Pmax (the plots of standard deviations of those are provided in S4 in the supporting 

document). All the values of the standard deviations are given in S5 in the supporting document.  

Additionally, the Voc and Isc values were compared between the measurements performed 

by the provided multimeter and the local measuring units, which did not reveal significant 

differences.   
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Figure 7. Standard deviation for all the devices in each suitcase among the laboratories. Results 

are shown for both the filtered data (dark blue) and the data including the outliers (light blue). 

The degraded devices are marked by red. Since Isc (and consequently Pmax) was normalized to 

the measured reference Si module there is only 3 columns in the ISC and Pmax plot. 

 

Discussion 

A number of conclusions can be drawn from the results:  

1. The internet based coordination allowed the realization of a round robin at a massive scale 

involving 45 laboratories from all populated continents (excluding Antarctica). The internet 

based platform allowed having efficient communication with many participants in parallel and 

quickly resolving any issues and saving time. Additionally, the internet based reporting allowed 

controlling the format of the data and significantly eased the analyses of the immense amount of 

data. The online method therefore suggests a novel format of round robin coordination with 

significantly improved speed and quality of experiments and data reporting.   

2. The customized “suitcase” design of the sample holder allowed having good protection of the 

samples, easy transportation and most importantly did not require special external tools for 

mounting the samples for measurements. The approach saved both significant amount of time 

and possible extra costs for installation and measurements of the samples for participants. This 

also allowed a larger number of participants (especially groups with limited budgets) and 

therefore, significantly increased the “OPV consortium” for improved and harmonized testing of 

OPV devices. 

3. It is well established that OPVs are rather sensitive to the light spectrum and therefore for 

sample characterization it is recommended to use light sources as close to real sun light as 

possible [20]. Additionally, solar simulators often have the problem of limited spatial uniformity 

of illumination and therefore put constrains on the dimensions of samples that can be accurately 

characterized [21,22]. Obviously, using the real sun helps avoid costly equipment with 

aforementioned limitations. The results presented in this manuscript suggest that the accuracy of 

outdoor testing is not inferior to earlier reported indoor tests [14] and even more accurate in 

some cases. The spread is confined within approximately 5 % if considering only the tests under 

reasonable weather conditions (clear sky and above 0 
o
C air temperature) and if a reference Si 
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module is provided as a reference. If local irradiance data is used then the spread can be up to 8 

%, which is still a relatively good value. 

4. The tests additionally allowed the participants to address the accuracy of the local irradiance 

measurements and the procedures of OPV power output measurements. 

Based on the aforementioned results it can be concluded that the described approach offers 

fast and cheap technique for testing and reporting photovoltaic device performances in a 

reproducible manner using only basic equipment on hand and sharing the samples with a number 

of laboratories. One has to bear in mind that this regards the consistency of results between 

laboratories, but does not make a statement about the deviations from the (unknown) true 

performance of the devices. 

 

Shortcomings 

1. The main shortcoming of the technique is linked to the weather conditions and possibly cannot 

be used in winter season especially in countries with limited amount of sunny days. 

2. The provided multimeter has limited accuracy and thus, needs to be rechecked and calibrated 

with an accurate source meter prior to and after such studies. Additionally, the multimeter is only 

suitable for extracting Voc and Isc parameters, while an appropriate source meter is required for 

full I-V scan and determination of power output of the device. 

3. While the aim of this study was to investigate the deviations among the laboratories, in order 

to accurately determine the tested sample performance the provided Si reference devices need to 

be traceably calibrated (including temperature coefficient) and must also contain an integrated 

temperature sensor. Furthermore spectral mismatch corrections need to be performed.    

 

Conclusions 

The article presented a new method of OPV characterization in outdoor conditions using a 

suitcase sample approach, where the test samples and the testing equipment were packaged in a 

compact suitcase, which served both as a transportation tool and as a holder for the samples 

during outdoor round robin testing. Outdoor round robin characterizations of roll-to-roll coated 

OPV modules were conducted among 45 laboratories worldwide using this method. The study 
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additionally involved internet based coordination via a common portal that allowed centralized 

and efficient communication among the partners and a controlled reporting format of the results. 

The OPV sample performances were tested at each laboratory and compared with a reference Si 

module. The results revealed a standard deviation of around 5 % and less for measurements 

performed on clear sky days. When the data was normalized to local irradiance values, the 

standard deviations reached up to 8 %, which is still reasonably low compared to earlier reported 

indoor round robin studies.  

Although the technique is applicable only in good weather conditions, based on the 

aforementioned facts it may offer fast and cheap testing and reporting of performance of organic 

photovoltaic devices and modules in a comparable and reliable manner and therefore can 

improve the interoperability among the different groups. 
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