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Viscoelastic nature of Au nanoparticle–PDMS nanocomposite gels
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Abstract. A stable gel of Au nanoparticles in polydimethylsiloxane (PDMS) nanocomposite is prepared by employ-

ing the curing agent of PDMS elastomer as a reducing agent for the formation of Au nanoparticles by an in-situ

process. The viscoelastic nature of these gels is very sensitive to the Au nanoparticle loading and the synthetic tem-

perature conditions. Even a very low Au content of 0.09 wt% is sufficient enough to bring in the transition from

sponge state to gel state at room temperature. Higher synthetic temperature also forms sponge formation. Infrared

and ultraviolet–visible spectroscopy measurements have provided insight into PDMS crosslinking and nanoparticle

formation, respectively. The optimization of the gel properties can have direct influence on the processability of Au

nanoparticle–PDMS nanocomposite gels, with interesting implications in electronic, optical and microfluidic devices.

Keywords. Stability; viscoelastic; poly(dimethylsiloxane); Au nanoparticles; gels; crosslinking.

1. Introduction

Among the elastomeric gels, polydimethylsiloxane (PDMS)

is well known for its structural and viscoelastic properties.1

In PDMS, the Si–O–Si chains forming the backbone exhibit

low torsional barrier about the Si–O bonds and as a result,

the polymer exhibits a low glass transition temperature of

−125◦C.2 For similar reasons, it shows high flexibility and

enhanced thermal stability.3 These unique properties have

been utilized in a wide variety of applications from mak-

ing of soft lithography stamps, encapsulation material to

sealants, adhesives, stretchable devices, paints and even in

cosmetics.4–9 It has been observed that PDMS in the form of

a nanocomposite possesses unique and multifunctional prop-

erties as compared to its individual ingredients.10 The overall

nature of PDMS can be significantly modulated by the addi-

tion of fillers. For example, silica and clay particles are added

to PDMS to increase its mechanical stability. Similarly, con-

ductive fillers such as carbon black, Ag flakes, graphene and

carbon nanotubes (CNTs) are added to realize stretchable and

compliant electrodes.11–13 A PDMS–CNT nanocomposite is

shown to exhibit improved thermal properties.14,15

There are different ways of adding fillers to the polymer

matrix, though the common method relies on physical mixing

resulting in a solid suspension.16 While a uniform dispersion

maximizing the interaction of the filler particles with the

∗Author for correspondence (guk@cnsms.res.in)
#On lien from JNCASR, Bangalore 560064, India.

PDMS matrix is highly desirable, any tendency towards

aggregation due to particle–particle interaction can hinder

the performance of the nanocomposite.17 A uniform disper-

sion of the nanomaterial is critical for the development of
a PDMS nanocomposite for useful applications.18 The state

of dispersion and influence of filler particles can be eas-

ily understood by studying the underlying rheological prop-

erties of the nanocomposite in gel form.19 The rheological

properties of PDMS dispersed with CNTs, silica, clay,

graphene have been examined in the past. Most of these stud-

ies involve only the PDMS elastomer without any crosslinker

solidification.20–24 Often, the crosslinker is prevented or

poisoned.25 In this study, we investigate the rheological

properties of a nanocomposite, in-situ synthesized Au nano-

particles in PDMS matrix (AuPDMS), whose synthesis, es-

sential characterization and some important properties were

reported by us recently.26 During the synthesis, the curing

agent in addition to serving as PDMS crosslinker acts

as a reducing and stabilizing agent for Au nanoparticles

(scheme 1), and thus the nanoparticles get embedded in

PDMS. The nanocomposite prepared at ambient temperature

was in the form of a gel, while at elevated synthetic tempe-

ratures (> 56◦C) a sponge-like nanocomposite resulted.
Here in this study, we have systematically varied the

synthetic temperature as well as the Au content and have

investigated their influence on the viscoelastic properties of

AuPDMS nanocomposites. The nanocomposites were also

characterized by ultraviolet (UV)–vis and infrared (IR) spec-

troscopy to relate polymer crosslinking and nanoparticle

formation with the viscoelastic behaviour.
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Scheme 1. Schematic of possible mechanism of Au nanoparticle formation in PDMS.

(a) The elastomer units compete with aqueous Au precursor for H-terminated Si sites

present in curing agent. (b) Water molecule oxidizes the H-terminated Si sites present in

the curing agent (top site) and in the process gives out electrons to the Au3+ ion. Such

electrons coming from neighbouring sites (not shown) reduce the ion. (c) Nucleation of

a Au nanoparticle at the Si–O linkage. Some Si–H sites (bottom) are utilized in direct

crosslinking reaction.

2. Experimental

In all, seven AuPDMS nanocomposite gels were prepared for

this study by following the procedure published previously.26

Briefly, in each case, an uncured PDMS mixture was pre-

pared by mixing thoroughly the elastomer and the curing

agent in a 10:1 v/v. The mixture weighing 2 g was taken

in a glass vial containing 10 ml of aqueous KAuCl4 solu-

tion of fixed concentration (0.2, 0.5, 1 and 2 mM) and stirred

at room temperature (26◦C) while carrying out the synthe-

sis for 2 h to form gel. The same procedure was repeated

for a fixed aq. KAuCl4 solution of 1 mM solution and vary-

ing the synthetic temperature (36, 46 and 56◦C). Importantly,

the unreacted KAuCl4 was decanted out after each reaction

and UV–vis measurement was done before and after reaction.

The Au loading was calculated by estimating the KAuCl4
consumed using a calibration curve, which scales linearly

with the KAuCl4 concentration (supplementary figure S1).

The samples were washed with ethanol and kept in desicca-

tor for 2 h to remove trapped air bubbles prior to rheological

measurements. The ethanol washing is crucial for the stabi-

lization of gels as seen in supplementary figure S2. A con-

trolled stress rheometer (MCR 301-WESP) with a cone-plate

geometry (diameter 25 mm and a cone angle of 2◦) was used

for the rheology measurements as shown in supplementary

figure S3. All measurements were performed at room tem-

perature and the humidity was maintained by enclosing it

with an ordinary sponge wetted with water. The oscillatory

strain amplitude sweep measurements were performed at a

frequency of 10 rad s−1 with strain varying from 0.01 to

1000%. The Fourier transform infrared spectroscopy (FT-IR)

spectra were recorded using a Bruker IFS66-V/S spectrome-

ter. The samples were prepared by mixing a small quantity of

gel in KBr pellet. The UV–vis spectra were recorded directly

from the films of AuPDMS sandwiched between two glass

slides.

3. Results and discussion

The AuPDMS nanocomposites were prepared with differ-

ent Au loadings (0.03–0.38 wt% designated as gel 1–4, see

below) following the method published previously.26 The Au

nanoparticle loading in nanocomposite was calculated from

the consumption of KAuCl4 in PDMS as shown in supple-

mentary figure S4 and expressed in wt%. Briefly, the PDMS

mixture (elastomer and curing agent in 10:1 ratio) was stirred

with aq. KAuCl4 solution of varying concentrations (0.1, 0.5,

1 and 2 mM) and at different temperatures (26, 36, 46 and

56◦C). The nanocomposites thus prepared exhibited the char-

acteristic pinkish-purple colour (figure 1a), corresponding to

fine dispersion of Au nanoparticles. For low Au content of

0.03 wt% (gel-1), the composite was obtained in the form of

a viscoelastic solid and viscoelastic liquid at 0.09 wt% (gel-2).
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Figure 1. (a) Optical photographs and (b) UV–vis absorption spectra of AuPDMS

nanocomposites prepared with different ratios of Au content and PDMS, (c) FT-IR spec-

tra of the nanocomposites. The vertical lines mark the FWHM of Si–O–Si spectral fea-

ture. (d) Relative changes in the absorption intensity (right) and Si–O–Si peak intensities

(left) for different Au content (wt%) in PDMS. The numbers in a, b and c indicate the

nanoparticle loading in the gel, 0.03 wt% (1), 0.09 wt% (2), 0.19 wt% (3) and 0.38 wt%

(4).

With higher Au loading of 0.19 and 0.38 wt% in gel-3 and

gel-4, respectively, the obtained nanocomposites remained

in the viscoelastic liquid state at room temperature (see

figure 1a). This clearly represents a transition from a vis-

coelastic solid to a viscoelastic liquid with Au content as a

tunable parameter. The UV–vis spectra (figure 1b) showed

an absorption band at 530 nm corresponding to the surface

plasmon of Au nanoparticles; it is broad and less intense for

lower Au contents but gets well defined as the Au content

increased in the nanocomposite (see figure 1b).

There is significant asymmetry at lower Au loadings

probably due to polydispersity of nanoparticles. Electron

microscopy examination requires disruption of the PDMS

matrix for probing, and for this reason, imaging proved dif-

ficult. Nonetheless, at higher Au loadings (0.38 wt%), the

nature of particle dispersion could be examined in scanning

electron microscopy (SEM; see supplementary figure S5).

The nanoparticles were seen finely dispersed with an aver-

age size of ∼20 nm. The degree of crosslinking for AuPDMS

nanocomposite was examined by FT-IR spectroscopy. For

spectral assignments, the literature values were used.27 The

spectra exhibited a broad Si−O−Si asymmetric stretching in

the range 1000–1130 cm−1. The Si–O–Si band gets broad

and intense as the Au loading increases in PDMS gel as seen

in figure 1c. The band at 1263 cm−1 due to Si–CH3 (stretch)

is expected to be unaffected and can thus be used for internal

normalization. When the reduction of aq. KAuCl4 takes place

in the PDMS matrix, the Si–H sites present in the elastomeric

chains get oxidized and convert to Si–O–Si linkage.28–30

Interestingly, there is an increase in the spread of the Si–

O–Si band on Au loading, which could probably be due to

the changes in the structure of Si–O main chain due to vari-

ety of distortions, branching and crosslinking.31 This clearly

indicates that Au reduction to form nanoparticles in PDMS

has a direct influence on its crosslinking property. The rela-

tion between the Au plasmon band intensity and the degree of

crosslinking in PDMS was examined to understand the syn-

ergy between the nanoparticle formation and the crosslink-

ing process (figure 1d). The plasmon peak intensity is seen

to increase due to the higher density of nanoparticles and

decreased crosslinking.

The PDMS curing time gets greatly accelerated on increas-

ing the temperature.32 The enhanced crosslinking is marked

by decreasing intensities of Si–H and Si–vinyl stretching
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Figure 2. (a) UV–vis spectra of AuPDMS gels prepared at differ-

ent temperatures; the photographs of the gels are shown alongside.

(b) The corresponding IR spectra, (c) a double y-axes plot showing

variations in the 530 nm plasmon peak intensity and the width of

the Si–O–Si band with the synthetic temperature. The vertical lines

in b mark the width of the Si–O–Si spectral feature.

occurring at 2159 and 1597 cm−1, respectively.30 There is

also an equivalent effect on the formation of nanoparticles

due to increased temperature. Thus, the influence of tempera-

ture on the nanoparticle formation and the curing of PDMS

were further investigated (figure 2). The gels were prepared

at different temperatures (26, 36, 46 and 56◦C) for a fixed

precursor concentration of 1 mM (Au content = 0.19 wt%).

The UV–vis absorption spectra showed intense plasmon peak in

all the cases, with only a small gain in the intensity (figure 2a).

Although Au content is fixed, the rate of nanoparticle for-

mation differ for different temperatures. At higher prepara-

tion temperatures, the density of particles becomes higher

along with increase in crosslinking of the polymer. However,

the width of the plasmon absorption band is nearly constant

indicating not much variation in the particle size distribution.

This observation implies that the different degrees of poly-

mer crosslinking and the different rates of nanoparticle for-

mation are responsible for the transition of the physical state

of the nanocomposite from liquid-like to solid form. As seen

in FT-IR spectra, the Si–O–Si band is narrowed with higher

crosslinking (figure 2b). A correlation similar to that in

figure 1c could be obtained between the crosslinking process

and the plasmon peak intensity for varying synthetic temper-

ature. Given the difficulty associated with microscopy imag-

ing in PDMS matrix, a study of the viscoelastic properties

is worthwhile for understanding the nanoparticle dispersion

and/or aggregation.33

In the case of AuPDMS nanocomposite, the Au nanoparti-

cles hinder the curing process and its drastic influence can be

quantitatively seen in viscoelastic measurements. The stor-

age modulus (G′) is related to the elastic properties, whereas

the loss modulus (G′′) describes the viscous behaviour of the

material. For an uncured native PDMS, the G′′ value is usu-

ally high compared to G′, which is negligibly small and vice

a versa for cured PDMS.34 As discussed above, there are, in

all, three factors that can influence the viscoelastic properties

namely, the nanoparticle density, size and distribution, and

the degree of crosslinking of PDMS polymer. The linear vis-

coelastic behaviour of gels is expected to depend on all the

above factors.35

The strength of the nanocomposite was characterized by

carrying out amplitude sweep measurements with the strain

amplitude varying from 0.01 to 500% at an angular fre-

quency of 10 rad s−1. Figure 3a shows the variation of G′′

(loss modulus) and G′ (storage modulus) for plain PDMS gel.

The viscoelastic response of plain PDMS is highly unstable

due to the rapid crosslinking. Interestingly, the viscoelastic

response becomes stable with the loading of Au nanoparti-

cles as shown in figure 3b. The value of G′ is ∼105 Pa for Au

content of 0.03 wt%, whereas it decreases to ∼4 Pa at 0.19

wt% and remains almost constant up to 0.38 wt%. For all

the different Au loadings, the response is linear for a strain

range of 0.01–50% with an overall decrease in its value with

increasing Au loading. With increasing strain beyond ∼50%,

G′ exhibits a deviation from the linear response and becomes

nonlinear, corresponding to the critical strain (figure 3b). The

strain dependence of the dynamic viscoelastic properties in

polymer nanocomposites is well known and often referred

to as the Payne effect. For the least Au nanoparticle load-

ing of 0.03 wt%, we observe that at the critical strain, the

decrease in G′ is also accompanied with a maximum in G′′,

indicating the existence of Payne effect in these systems.34

Unlike what is routinely observed for polymer nanocompos-

ites where G′ and Payne effect increase with filler loading,

surprisingly, here we find that with increase in Au nanopar-

ticle loading (filler in our case), G′ and G′′ decrease and cor-

respondingly the Payne effect is also reduced.33 In addition,

the absence of nonlinear effects up to 100% strain for all

the nanoparticle loadings suggest that Au nanoparticles are

finely dispersed in the PDMS matrix.34 This is also consistent

with what has been observed in scanning transmission elec-

tron microscopy and SEM images (see supplementary figure

S5). The wide range observed for the linear regime in these

nanocomposite systems is remarkable. The higher value of

loss modulus in figure 3c indicates a liquid-type behaviour.

Further, figure 3d shows a clear transition from solid to liquid

type behaviour at a critical nanoparticle loading of 0.09 wt%.
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Figure 3. The strain amplitude sweep for (a) PDMS, (b) storage modulus (G′) and

(c) loss modulus (G′′) for Au PDMS composite gels with different Au content at con-

stant frequency of 1 rad s−1 for strain varying from 0.01 to 1000%. (d) The average

storage and loss moduli of different gels prepared with different Au content.

The value of G′′ increases only marginally with higher load-

ing of Au nanoparticles, whereas G′ for 0.09 wt% is nearly 25

times lowered as compared with 0.03 wt%. This is in accor-

dance with the FT-IR data, which points to lesser crosslink-

ing with higher loading of AuNPs (figure 3). The liquid-type

behaviour due to lower crosslinking affirms the fact that

some part of curing agent is utilized in the reduction of Au

precursor to AuNPs.

Thus far, our results show that curing agent plays a crucial

role not only in crosslinking PDMS but also in the reduction

of Au nanoparticles. However, it is well known that the

degree of crosslinking in plain PDMS depends on tempera-

ture.32 Hence, to probe the effect of temperature on the nature

of AuPDMS nanocomposites, rheological measurements

were performed on gels prepared at different temperatures

for a fixed loading of Au nanoparticles. Figure 4 shows G′

(solid symbols) and G′′ (hollow symbols) for a nanoparti-

cle loading of 0.19 wt% prepared at 26, 36, 46 and 56◦C.

For AuPDMS prepared at lower temperatures such as 26◦C,

the value of storage modulus is quite low, being less than

5 Pa (figure 4a). With increase in temperature, both G′ and

G′′ show an increase (figure 4b–d). The values of both G′

and G′′ remain almost linear up to 100% of applied strain,

suggesting the absence of nanoparticle–nanoparticle interac-

tions at room temperature as well as at higher temperatures

(due to fine dispersion of nanoparticles) as also confirmed

by transmission electron microscopy analysis. Interestingly,

the value of G′ increases by nearly 160 times due to the for-

mation of more viscoelastic solid-like gel of the nanocom-

posite at 56◦C, which can be seen in the histogram plotted

in figure 4e. The variation in the damping factor (given by

tanδ = G′′/G′) can be used to characterize the viscoelastic-

ity of the nanocomposite. A higher value of tan δ implies

that the material is predominantly liquid-like. As shown in

figure 4f, there is clearly a trade-off between the storage

modulus and damping. The elevated temperatures increase

the solid-like viscoelastic behaviour of the nanocomposites

and decrease the liquid-like behaviour at a given oscillatory

frequency; this is due to the rapid rate of reduction of the Au

precursor accompanied by the faster curing of PDMS.

4. Conclusions

In conclusion, we have shown that by a simple in situ reduc-

tion of Au nanoparticle in PDMS, a well-dispersed nanocom-

posite may be synthesized. Even under high strain, the parti-

cle dispersion in these nanocomposites remains stable. Only

strains beyond 100% make them structurally collapse. The

reduction of Au nanoparticle in PDMS at room tempera-

ture is an interesting process. It takes place inside the PDMS

matrix in situ without any external reducing or capping agent.

The Au nanoparticle loading helps to stabilize the gel. As the

Auwt% in PDMS increases (0.38 wt%), the nanocomposite

assumes a flowing gel state as opposed to a solid film at lower

loadings (0.03 wt%). We find that the strain at which soften-

ing sets in, shifts to a higher value with increase in Au load.

Furthermore, with increase in nanoparticle loading the values

of G′ and G′′ as well as the Payne effect decrease. Depend-

ing on the preparation temperature, the crosslinker may get
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Figure 4. The strain amplitude sweep at constant frequency of 10 rad s−1 for strain

varying from 0.01 to 100% for AuPDMS nanocomposite (Au content of 0.19 wt% pre-

pared at (a) 26 (b) 36 (c) 46 and (d) 56◦C). Solid and hollow symbols correspond to G′

and G′′, respectively. (e) A histogram of storage and loss moduli and (f) the damping

factor, tanδ, for the nanocomposites prepared at different temperatures.

preferentially engaged in the polymerization process or in the

nanoparticle reduction (see scheme 1). The insights obtained

in this study may be useful in understanding the viscoelas-

tic behaviour of nanocomposites in general and even while

designing new nanocomposites.
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