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We propose a unique framework to study the topological properties of an optical bound state in the contin-

uum(BIC). We employ the interactions between proximity resonances undergoing avoided resonance crossing in

a specialty optical microcavity. We utilize a continuous system parameter tuning to induce destructive interfer-

ence between the resonances with cancelling leakage losses. Similar to the physical insight of Friedrich-Wingten

type-BIC, we demonstrate the evolution of an ultra-high quality mode. We report the formation of a special-

BIC line in the system parameter space connecting locations of multiple quasi-BICs. Aiming to develop a novel

scheme to enhance the performance of optical sensing in microcavity, we study the sensitivity of transmission

coefficients and quality factor to sense even ultra-small perturbations in the system configuration.

Physics governing the interaction between resonances in

optical-platforms has become an ever-increasing area of re-

search and development in the past few years. With particular

emphasis on the modeling photonic systems such as optical

microcavities towards desired optical performance has been

extensively studied [1]. Optical microcavities have the ability

to confine light, enabling the formation of the high-energy-

density of light. This phenomenon is essential for various ap-

plications that are prevalent in the field of nonlinear optics [2],

biosensing [3], low threshold lasing [4], processing quantum

informatics [5], to name a few. However, their performance is

impaired by the task of identifying long-confined resonances

with lower power-requirements. Unlike bulk-media [6], it is

possible to enhance the Purcell factor by increasing the Q/V
ratio, which is the effective quality-factor (Q) of light over the

modal volume [7]. In this context, super-cavity resonances

have shown promise to accomplish the same [8–12]. Re-

cently, a novel approach involving interaction between two

proximity resonances via avoided resonance crossing (ARC)

phenomenon has been identified to hold great potential for the

evolution of high-Q modes [13, 14]. Furthermore, the appli-

cation of the concept of ARC has been widely demonstrated in

various resonator structures such as rectangular, semistadium,

and elliptical microcavities [15].

In particular, the formation of one such high-Q states be-

ing the quasi-Bound states in the continuum (BIC) [16], has

been extensively studied and reported. BICs are mathematical

abstractions wherein a photonic BIC is a state that captures

high-volume of energy, with theoretically infinite efficiency

with closed radiation channels despite being in the continuum

band [17]. In the case of a cavity, a BIC would have no leak-

age radiation outside the cavity and would theoretically con-

fine light for an infinite time. However, a true BIC would

require infinite-size of the cavity or an infinitely high permit-

tivity of the medium [18], which is, however, not physically

implementable. Further, the practical feasibility of the realiza-

tion of BIC in various optical platforms is still an open area of

research [19–21]. In this direction, it has been demonstrated

that two cavity-supported resonances under a strong-coupling

regime undergoing destructive interference, could lead to one

of them evolving with a higher Q [9–12]. This is in agree-

ment with the Friedrich-Wingten theory of continuous param-

eter tuning [22], leading to destructive interference patterns

[23] between the resonances canceling out the losses from the

radiation channel of the lossy modes, thus attaining an im-

pulsive growth in quality factor. The evolution of such finite

high-Q resonances is termed as quasi-BICs.

In this letter, we explore the topological properties of such

high-Q quasi-BICs. We present a scheme where we show

the presence of spatial variation of gain-loss in an optical res-

onator and obtain enhancement in Q up to four orders of mag-

nitude even in an overall lossy system. Devoid the interfer-

ence between Mie resonances, we show the formation of a

quasi-BIC. We show the possibility of carefully tuning and

optimizing the material gain-loss profile to sustain a quasi-

BIC. We employ ARC to show that the enhancement in qual-

ity factor is a consequence of quasi-BIC state. Furthermore,

we show, for the first time to the best of our knowledge, the

formation of a special-BIC line in the parameter space con-

necting multiple such quasi-BICs. This special-BIC line pro-

vides a new degree of freedom to explore further topological

aspects of the BIC and also physically support any cascad-

ing nonlinear effects [24]. Aiming to develop a novel scheme

to enhance optical sensing in microcavity, and we show the

ultra-high sensitivity of transmission coefficients and quality

of light state to be able to sense even slight perturbations.

In an ideal scenario, a resonance would exhibit nearly in-

finite lifetime, in a case where the material loss is negligible.

However, a practical scenario would contain material absorp-

tion losses that need to be dealt with. Therefore, the inter-

action and interference between proximity resonances could

be extensively understood using non-Hermitian quantum me-

chanics. In this case, when we consider the interaction be-

tween two proximity resonances, the system could be ex-

pressed as:

H =

[

η1 0
0 η2

]

+

[

0 V
W 0

]

=

[

η1 V
W η2

]

(1)

where η1,2 are the complex passive states of the system, which

are subjected to an external off-diagonal perturbation (V,W )
similar to the system shown in [13]. The formation of the

BIC using more than two proximity resonances would also

follow a similar approach. However, we limit our discussion

to exploring the features of a quasi-BIC from two proximity
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resonances. To ensure we limit the external coupling to 0,

we impose the condition of V =W ∗. Under such constraint,

we can calculate the energy eigen-values of the system as

E1,2 = (η1 + η2)/2 ±

√

((η1 − η2)/2)
2
+ |V |2. Without

any loss in generality, it is safe to say that on the basis of

the value of V , the resonances undergo ARC under different

coupling regimes [25]. This ARC thus established generally

induces mutual energy exchange, which in particular evolves

with a longer-living state along with a subsequent decay in the

lifetime of the latter [9, 10]. Note that the system mentioned

above is mathematically realized, but for the sake of physical

implementation, we exploit the correlation between the poles

of the scattering matrix (S-matrix) and the eigenvalues of the

hamiltonian. This physical equivalence has been exploited to

a great extent in [13, 14]. Using this knowledge, we design

a two-port 1D Fabry-Perot type optical microcavity, in which

we carefully select spatially varying complex gain-loss pro-

file in a constant real background refractive index nR as can

be seen in Fig 1(a). We give special emphasis on integrated

photonic devices and hence for this study we restrict the value

of real refractive index nR = 1.5 for silica (SiO2). Note

that there is no restriction in the selection of the geometry of

the cavity, nor is there any constraint in the dimensions of

the structure. We choose Fabry-Perot type resonators for the

sake of understanding interference physics along the axis of

the cavity. Along the length of the resonator L = 10µm, we

divide into two sections having lengths LG and LL, which are

the lengths of the material gain and material loss dominated

regions. For the sake of simplicity, we take equal lengths for

both sections, LL = LG = 5µm. The refractive indices are

defined as nG = nR − iκ and nL = nR + iακ, where nG

and nL are the complex refractive indices of the gain and loss

FIG. 1. (a) Schematic of gain-loss assisted 1D Fabry-Pérot type

microcavity occupying the region 0 ≤ x ≤ L. {ψ+

L
, ψ−

L
} and

{ψ+

R
, ψ−

R
} represent the complex incident and scattered wavefunc-

tions respectively. (b) The dynamics of a pair of chosen coupled-

poles of S-matrix showing ARC in complex k-plane with an increas-

ing κ for a fixed α = 2.23. (c) The corresponding variation of the

Re[k] (upper panel) and Im[k] (lower panel) with κ.

regions. Here κ is the gain-coefficient, and α is the ratio of

loss to gain coefficients. The introduction of κ serves the

purpose of introducing the system’s non-hermiticity. It also

provides the ability to tune the system material for enhanced

feasibility for fabrication. This tuning ability is per the causal-

ity condition of the Kramer-Konig relationship, which permits

the flexibility of independent tuning of Im[n] at a single fre-

quency of operation [26]. A further selection of the virtual

states represented by Eq.1 is made by calculating the poles of

the S-matrix, which is of the form of:
[

B
C

]

= S(n(x), ω)

[

A
D

]

(2)

where the incident and the scattered complex wavefunctions

are represented by A,D and B,C respectively. This calcu-

lation of the poles of S=matrix is numerically executed with

the help of 1/max(Eig(S)) = 0, where max(Eig(S)) is the

maximal-modulus eigenvalues of the S-matrix. As mentioned

above, the entire analysis revolves around the fact that the

poles obtained are indicative of the scattering states present

inside the cavity. These proximity resonances contain the in-

formation related to the continuous confinement of the particle

responsible for the scattering of the light and hence is justified

to be equivalent to the poles of the S-matrix in the complex

frequency plane (k-plane). For a given complex pole in the

k-plane, the real part is indicative of the eigen-frequencies at

which the linear scattering is exhibited by the system. How-

ever, the imaginary part would depict the coupling loss that

the pole undergoes during ARC. Here, it becomes vital to state

that the coupling loss, which is the channel for radiation of the

quasi-BIC, must be limited to null values for it to exhibit di-

verging lifetime. The advent of the introduction of gain-loss

within the system serves the purpose of reducing this coupling

loss to theoretically zero values, manifesting nearly no leak-

age radiation from the quasi-BIC resonance.

We demonstrate the same, using two proximity resonances

chosen in accordance with the structure dimensions as per

[27]. We choose two proximity resonances between 8.3 and

8.7 µm in the Re[k]. With the introduction of gain-loss, these

proximity resonances now under the coupling regime gov-

erned by the external perturbation are forced to interact mu-

tually. With a fixed parameter α=2.23, we increase the gain

from 0 to 0.1. Upon this exercise, we observe the occurrence

of an ARC phenomenon, with ℜ[k] undergoing crossing and

the ℑ[k] having an anti-cross as can be seen in fig 1(b),(c).

Upon close inspection, we observe that the point of ARC in

the system when the Re[k] approaches 8.475 µm. The selec-

tion of parameters for α was on the basis of the observation

of the divergence of the quality factor, which is defined as

0.5Re[k]/Im[k] where k is the complex pole of the S-matrix

corresponding to the proximity resonances. Furthermore, we

observe a divergence in Q of one of the resonances at a par-

ticular value of κ = 0.0527, where the Q diverges to more

than four orders of magnitude as can be seen in fig 2(a). In

contrast, subsequent decay in the other resonance is also ob-

served. The Q-factor of the pole at the quasi-BIC state, we
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denote as QBIC ≈ 7.78 x 105, while the subsequent decay-

ing mode had a Q-factor Qdecay ≈ 7. This simultaneous de-

cay of one mode and the divergence is of much importance

for the understanding of why we call the diverging resonance

as a quasi-BIC. For a given carefully selected parameters of

the system, we observe that one of the resonances decays in

lifetime having characteristics similar to a continuum mode

with very high leakage radiation, while the other despite be-

ing in the same system preset, undergoes enhanced lifetime

from very low to ultra-high Q-factor.

FIG. 2. (a) Q-factor of the chosen coupled poles as a function of

κ. Here, the divergence of the Q-factor of a specific pole (repre-

sented by red-line with diamond marker), has been observed near

κ = 0.0527 which indicates the quasi-BIC state. The Q-factor has

been enhanced by more than 4 orders of magnitude than the decaying

pole (represented by blue line). (b) Transmission sensitivity due to

the slight variation in α (in terms of ∆α) from quasi-BIC state. The

point at ∆α = 0 represent the transmission coefficient of quasi-BIC

state as indicated in (a), where the other points indicates different

transmission coefficients for different ∆α.

Another important aspect of our system is that it is over-

all lossy. We ensure this by taking the value of α signifi-

cantly higher than 1. This is justified for our preset where

we take the spatial dimensions of the gain and loss regions as

equal. This is of very high physical significance, as natural

materials that are considered always posses material absorp-

tion losses. Therefore, the amount of gain, which is lower

than the amount of loss, has the function of inducing inter-

ference patters that are out of phase and hence destructive in

nature. The extremely diverging values of Q we obtain from

a quasi-BIC driven resonance has its dependence on a vari-

ety of system parameter. In fact, the quasi-BIC could also be

explored with the change in the length of both the gain and

loss regions. However, in this letter, we limit our discussion

by fixing our physical dimensions as constants so as to real-

ize the effects of other critical system parameters, namely the

ones that govern the system absorption losses. In our system,

these parameters are κ and α. For this purpose, to investigate

the potential sensing abilities that these structures provide, we

try to introduce an irregularity in the gain-loss profile. How-

ever, to carry this out in a systematic manner, we keep the

material of the gain region intact and vary the material of the

second block that is loss dominated. This can be done with

the introduction of small index-modifications that can change

the loss coefficient. We only introduce index-change as low

as 1% variation in α so as to test the sensitivity for small per-

turbations. In summary, we vary the α for a fixed gain. We

further study the transmission coefficients of the system under

parameters that lead to the quasi-BIC and at various different

parameter presets near the quasi-BIC in the system parameter

space. As can be seen in figure 2(b), we vary the parameter α,

keeping the gain pumped as constant. Here for ∆α = 0, we

get transmission coefficients at quasi-BIC state. Now we find

the transmission of light through the structure for all different

systems that we derive by changing α by 1% to 10% of the

original α = 2.23. By plotting them with the change in α in

log scale, and subsequently curve fitting them, we observe an

inverse square dependence of loss to gain ratio on transmis-

sion. We find that log(T ) ≈ log(T0) − α2, where T0 refers

to the transmission coefficient of the system at the quasi-BIC

parameter configuration.

Utilizing the same proximity resonances, we work out

different configurations of the system with constant length,

where there is enhanced trapping of light. In this context, we

confirm the claim with the help of ARC between the poles,

now in the presence of different tunable parameters α and

κ. For this analysis, we deliberately use structures that have

properties of high absorption loss. For the corresponding val-

ues of α, we find a different κ, which is other than the κ
for the quasi-BIC we have reported earlier. We report five of

such quasi-BICs in the parameter (κ, α) plane that have sim-

ilar properties as reported above. Upon close inspection and

using a curve fitting tool, we have discovered that all these

special points, identified and labeled as quasi-BICs (using the

FIG. 3. (a) Multiple quasi-BIC states (indicated by figure legends)

between the same pair of coupled poles for different gain-loss pump-

ing in (κ, α)-plane; which are forming a straight line (fitted), coined

as special BIC-line (indicated by dotted brown line). (b) The ver-

ification of these five quasi-BICs in terms of diverging Q-factors.

The different colors of Q-factors of five quasi-BICs correspond to

the colors used to indicate the respective quasi-BIC points in (a). (c)

Sensitivity coefficientsW with the variation of ∆α due to slight per-

turbation for all the five quasi-BICs. All of them show at least 3.4 dB

sensitivity response for 1% change in the α.
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similar process of ARC) lie on a straight line in the param-

eter (κ, α) plane. This straight line, which connects all the

discrete quasi-BICs as depicted in fig 3(a), is referred to as

a special-BIC line. A simple technique to check if any point

is a quasi-BIC in the parameter space is to check the ratio

of the Q-factor of the resonance that shows quasi-BIC fea-

ture at the configuration defined by the (κ, α) parameters to

the Q-factor of the same resonance for a passive cavity. The

presence of a quasi-BIC would be well established when the

ratio, as mentioned above, would diverge to enormous val-

ues. Furthermore, we find that the quasi-BIC at α = 2.23
and κ = 0.0527 lie on this special-BIC line which we cross-

verify by extrapolating the special-BIC line. Interestingly, this

line could be instrumental for understanding the BIC-physics

straightforwardly as the cumbersome task of identification and

labeling of a quasi-BIC could be bypassed. Also, the forma-

tion of such a BIC-line introduces a new degree of freedom

for the exploration of unconventional BIC-physics in various

cavity geometries.

For a more detailed study of these quasi-BICs, we study

the isolated Q-factors of the same resonances under the dif-

ferent quasi-BIC configurations. The same has been plotted

in fig 3(b), where the quality factor variation with κ has been

color codded with the five quasi-BICs, as can be seen in fig

3(b). We notice that the increase in α would require a lesser

amount of κ to be introduced in the system. This inverse rela-

tionship between the parameters is of paramount importance

from the fabrication point of view. With the help of state-of-

the-art fabrication and implementation techniques, the novel

scheme could be implemented with ease in different appli-

cations such as low-threshold lasers and integrated photonic

devices for higher optical performance.

Furthermore, in the direction of understanding the device

application and the utility of the special-BIC line, we define

a new parameter W = 10log(Q/Q0), where Q quality fac-

tor at a given set of parameters (κ, α) and Q0 is the Q-factor

at the quasi-BIC. Here, we express W in decibels. This pa-

rameter, W , captures the change in quality factor due to the

change in the parameters of the system. This is interesting

in the sense of detecting any small perturbation inducing ma-

terial changes in the system. These small perturbations that

make changes in the system could, as a consequence, change

this sensitivity coefficient W . Since Q is a quantity that is

measurable with ease with modern advances and technologi-

cal development, thereby parameter W would unarguably be

more physically realizable. Similar to the transmission sensi-

tivity study we have performed, we try to see the sensitivity of

quality factor as we move away from the quasi-BIC point of

operation. Here, we plot sensitivity in terms of quality factor

as opposed to sensitivity in terms of transmission character-

istics. We perform the analysis of keeping the gain constant

and varying the α parameter. We try to plot for all the five

quasi-BICs we obtain, and curve fit them for better visualiza-

tion and extrapolation. We observe more than 12.7 dB change

in degree of confinement, when there is a 10% change in α as

compared to the configuration supporting quasi-BIC. In fact,

BIC-2 achieves a sensitivity factor of more than 20dB with the

same change. Upon much closer inspection, we find that the

curve has significant change with even smaller changes away

from the BIC. The magnitude of the change for smaller per-

turbation as small as 1% for BIC-i for i = 1, 2, 3, 4, 5 are as

high as 9.6 dB for BIC-2. Please note that the nomenclature

for naming the BICs is the same as expressed in the special-

BIC line. Unlike transmission properties having an empiri-

cal dependence on the material properties, there seemed to

be no distinctive concrete relationship between quality fac-

tors of different quasi-BICs. For illustration, BIC-2 has max-

imum sensitivity despite having lower κ values or lower gain

in the system to close the radiation channel. Therefore, we can

safely say that gain hereby in such a system that is governed

by ARC, would have the function of making sure that the leak-

age losses are being reduced to null, despite the fact that the

system overall lossy.These results, in emphasis, could be im-

plemented in different structures to enhance different optical

performances; however, the underlying principle guiding the

quasi-BIC would be similar.

In summary, we explore the phenomenon of ARC to en-

hance the degree of confinement of light in a Fabry-Perot type

resonator equipped with varying gain and loss character. We

notably show the ability to host a quasi-BIC through proper

parameter tuning. We demonstrate how to exploit the pres-

ence of a quasi-BIC in terms of performance of a sensor in

two ways-transmission and quality factor sensing. We theoret-

ically study in depth the formation of a quasi-BIC and its con-

sequences. We show a drastic divergence of a lifetime up to 4

orders of magnitude as we approach quasi-BIC state. By con-

trolling these parameters, we show that it is possible to host

multiple BICs in a cavity between the same pair of connected

proximity resonances. This fine-tuning ability was extended

where all these distinct multiple BICs led to the formation of

a novel special-BIC line to provide a new degree of freedom

to study the BIC-physics in resonators. These results to opti-

mize modes to give ultra-enhanced optical performance opens

up a massive potential in terms of many applications such as

bio-sensing and imaging, high-performance integrated pho-

tonic devices, low threshold nano/micro-lasers, and device-

level sensors. We believe that these results, through state-

of-the-art fabrication techniques and with more advancements

in resonator physics would open up further research and ap-

proach in various fields of non-linear optics and meta material

physics.
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