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Abstract  

We investigate the influence of the phase-front curvature of an input light beam on the transverse localization of 
light by choosing an evanescently coupled disordered one-dimensional semi-infinite waveguide lattice as an 
example. Our numerical study reveals that a finite phase front curvature of the input beam indeed plays an 
important role and it could degrade the quality of light localization in a disordered dielectric structure. More 
specifically, a faster transition from ballistic mode of beam propagation due to diffraction to a characteristic 
localized state is observed in case of a continuous wave (CW) beam, whose phase-front is plane as compared to 
one having a curved phase front.  
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1.  Introduction 
 

The concept of transverse localization of light [1] in 

disordered, one-dimensional (1D) and two-dimensional 

(2D) discrete optical systems has attracted a great 

deal of interest in view of its underlying interesting 

p h y s i c s ,  and potential novel applications [2, 3]. It 

is known that, with deliberately introduced disorder, 

light confinement occurs only in a plane perpendicular 

to the direction of light transport, both in temporarily 

realized [4] and permanently formed lattices [5]. With 

the ongoing intense research on photonic bandgap 

structures and discrete photonic systems, light 

localization has emerged as an intense field of 

contemporary research in the context of disordered 

optical structures [4-11]. In a recent study, we have 

shown that this phenomenon of light localization is 

independent of the input beam shape by taking the 

example of an evanescently coupled 1D disordered 

waveguide lattice [7]. Interactions between initially 

chosen transverse phase of the propagating beam and 

multiple scattering that takes place with propagation 

along the disordered sample could significantly change 

the interference property, which is the key to light 

localization and hence we expect that an input beam 

with a curved phase-front could play an important role 

in the localization of light. However, no study in this 

direction has been reported to date.  

In this paper, we numerically investigate the effect of 

the input beam having a finite phase-front curvature on 

its localization in a disordered coupled waveguide 

lattice. 

 

2.  Numerical modeling of light localization in a disordered 

waveguide lattice  
 

We consider an evanescently coupled waveguide lattice 

consisting of a large number (N) of unit cells, and in 

which all the waveguides spaced equally apart are buried 

inside a medium of constant refractive index n0 [12,13]. 

The overall structure is homogeneous in the longitudinal 

(z) direction along which the optical beam is assumed to 

propagate, as shown in figure 1(a). The perturbation in 

refractive index Δn (x) (over the uniform background 

of n0) due to disorder in this 1D waveguide lattice is 

assumed to be of the form 
 

 ( ) ( ( ) ( )) (1)n x n H x C xp δΔ = Δ +

here C is a dimensionless constant, whose value governs 

the level/strength of disorder; the periodic function H (x) 

takes the value 1 inside the higher-index regions and is 

zero otherwise; Δn (x) consists of a deterministic 

periodic part Δnp of spatial period Λ  and a spatially 

periodic random component δ (uniformly distributed 

over a specified range varying from 0 to 1). This 

particular choice of randomly perturbed refractive 

indices in the high index as well as low index layers 

enables us to model the diagonal and off-diagonal 

disorders to study the localization of light [5]. In our 

modeling, we have ignored any disorder in spatial 

periodicity [7, 14, 15]. Wave propagation through the 

lattice is governed by standard scalar Helmholtz 
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equation, which under paraxial approximation could be 

written as  
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k n cω= . To study the effect of having a curved phase 

front of an input beam on the phenomena of transverse 

localization of light, the initial field amplitude of such 

an input Gaussian beam centered at x0 is assumed to be 

of the form  
 
 

where the parameter B represents the phase-front 

curvature, and ω0 is the characteristic spot size of the 

Gaussian beam. In the case of a CW beam having a 

plane-phase front as the input, for which B = 0, Eqn. (2) 

yields localized exponential solutions [1, 7].  

We solve Eqn. (2) with the scalar beam 

propagation method which we have implemented in 

Matlab® and consider input beams characterized with 

different values of the B-parameter. Details of the 

modeling methodology have been discussed in [7]. Our 

chosen waveguide array consists of 150 evanescently 

coupled waveguides, each of 7 μm width and separated 

from each other by 7 μm (i.e. center-to-center spacing is 

14 μm). Such a waveguide array is realizable through 

laser inscription in glass for direct observation of 

localized light [14]. We deliberately choose a relatively 

small refractive index contrast along with a relatively 

long unit-cell period compared to the wavelength (Λ ›› 

λ) to ensure that the bandgap effects remain negligible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  (Color online) a) Schematic of the refractive 

index disordered waveguide lattice with different colors 

indicating different refractive indices; b) ballistic mode 

of propagation through a perfectly ordered lattice; c) 

transition to a localized mode after propagation through 

a 20 mm (L) long 20% disordered lattice. 

The value of Δnp was chosen to be 0.001 over and 

above the background material of refractive index n0 = 

1.46. To appreciate transverse localization of light in a 

disordered optical medium, we present in figure 1 results 

for propagation of an input CW beam with a plane phase 

front at an operating wavelength of 980 nm. Figure 1(a) 

depicts the array of waveguide lattices chosen for 

simulation study while figures 1(b) and 1(c) respectively 

correspond to C = 0 (indicating absence of disorder) and 

C = 0.2. The input beam is assumed to cover few lattice 

sites around the central unit cell at the input plane; 

chosen beam width ω0 (FWHM) was 12 μm (> width (7 

μm) of an individual lattice site). From figure 1(c), a 

clear signature of transition to a localized state after an 

initial ballistic mode of propagation could be seen as the 

beam propagates along the length through the disordered 

waveguide lattice.  
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3.  Results and Discussions 
 

In order to investigate quantitatively the effect of having 

a finite phase front curvature of the input beam on its 

localization in a disordered medium, we have studied the 

beam dynamics for different lengths of the lattice and for 

different values of the B-parameter [incorporated in eq 

(3)]. A measure of the localization is assumed to be 

quantifiable through decrease in the average effective 

width (ωeff) (as defined in [7])  
 
 
 

 
of the propagating beam after including the statistical 

nature of the localization phenomenon in a finite system; 

where <...> represents a statistical average over several 

realizations of the same level of disorder. After a certain 

propagation distance, depending upon the strength of 

disorder and lattice aspect ratio, ωeff becomes almost 

unchanged with characteristic statistical fluctuations. It 

is worthwhile to point out that physically as we increase 

the value of C parameter, the total number of localized 

eigen-states supported by a particular realization of the 

disordered lattice increases for a given length [5], which 

eventually favors a smaller ωeff value. Naturally, a larger 

value of ωeff in the localized regime as well as an 

increase in the localization length [4, 7] of an eigen-state 

in a disordered medium would imply degradation in the 

quality of localization. Results of such an effect due to a 

finite curvature of the input beam’s phase front are 

illustrated in figure 2. This plot of ωeff (ensemble 

averaged over 200 different realizations of a particular 

level of disorder and normalized with respect to ω0) with 

L clearly reveals degradation in the quality of 

localization with propagation for a finite value of the 

parameter B in the chosen disordered waveguide array.  
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Figure 2.  Variation in the ensemble averaged effective 

width (ωeff) of a Gaussian beam (of initial FWHM 12 

μm) with propagation through the disordered waveguide 

lattice. The curves are labeled in terms of the disorder 

parameter C for three different values of the phase front 

curvature parameter B. The error bars are the statistical 

standard deviations for the effective beam widths over 

200 realizations. 

 

For a waveguide lattice with a given strength of 

disorder, the localized eigen-channels supported by the 

lattice are given. A light beam having a finite input 

phase front curvature would preferably excite one of the 

extended (non-localized) natural eigen-states of a finite 

disordered lattice along with the localized states in few 

cases while performing the ensemble averaging over 

different realizations of the disorder. Hence, figure 2 

essentially depicts the interplay between the strength of 

disorder and the phase front curvature of an input beam 

in the disordered lattice of finite length. As a sample 

result, we have plotted the beam dynamics for three 

different B-parameters when the values of C are set at 

0.2, 0.4 and 0.6, respectively. It may be noted that a 

similar trend was seen in our numerical simulations for 

negative values of the B-parameter.   

To appreciate the above-mentioned degradation on the 

evolution of localization, in figure 3 we have plotted the 

ensemble-averaged (over 100 realizations) output 

intensity profiles from a 15 mm long disordered 

waveguide lattice of the above kind for B = 0 as well as 

a finite B-parameter (both positive and negative) when 

the level of disorder is set at C = 0.2. The plots in figure 

3 correspond to an intermediate regime of propagation, 

in which both diffraction and localization are 

simultaneously present, before it attains a localized 

state. If we compare the plots corresponding to finite B 

relative to the plot for B = 0, this particular trend also 

indicates that the finite B has a detrimental effect on 

simultaneous suppression of the ballistic side lobes to 

achieve characteristic localized tails. Hence, it can be 

concluded that an input beam with plane phase front 

would favor a faster transition to localization in 

comparison to a beam with a finite phase front curvature. 
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For a deeper appreciation of this effect on the degree 

of localization, we estimate the so called localization 

length (lC) characteristic of a localized state in a 

particular disordered lattice [4]. To obtain lC, we 

averaged 100 output intensity profiles for a given value  
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Figure 3.  Comparison of building up of a central peak 

(a transition towards the localized state) and suppression 

of ballistic side lobes from figures (a), (b) and (c) 

respectively; clearly indicates a significant effect on 

localization transition due to initial curved phase front of 

the light beam. Side lobes are more prominent in the 

case of propagation of input beam with finite phase 

fronts. 
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of C and then performed a three-point moving average 

to smoothen further the resulting profile as mentioned in 

[7]. As a particular localized state carries the signature 

of a corresponding disordered optical system, in general 

the state is not symmetric on either side of the peak. The 

corresponding variation of lC (fitted on either sides of 

the peak of the output intensity profile) for various B-

parameters is shown in figure 4. These plots also 

confirm the advantage of a plane phase front over a 

curved one from localization point of view. It is obvious 

that larger the absolute value of the initial phase-front 

curvature, stronger would be the degradation in the 

quality of localization. These results should form useful 

guidelines while undertaking experimental studies on 

localization of light in a disordered dielectric. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 4.  Localization lengths (lc) on either side of a 

localized state have been plotted as a function of 

curvature parameter (B) for the same Gaussian input 

beam profile along 15 mm long lattice geometry of 60% 

disorder. Due to characteristic asymmetry of a localized 

state around its peak, some difference in the variation of 

the localization length with B on either side of peak of 

the profile is evident from (a) and (b). Bars show 

possible error encountered during curve fitting. 
 

3.1. Effect of input beam width 
 

Until now, we have chosen an input beam with a width 

ω0, which covers nearly four sites (high and low index) 

of the lattice to excite the eigen-modes supported by the 

same disordered waveguide lattice. Naturally, the input 

excites only those eigen-modes that are localized near 

the spatial location of excitation. In this subsection, we 

investigate the influence of the width of an input 

excitation while investigating the effect of a finite 

phase-front curvature on the phenomena of transverse 

localization of light. For this study we choose two 

different input beam widths that cover a single site and 

nearly 18 sites of the lattice. As before, the values of the 

B-parameter were chosen to be 0, ± 0.6, and the level of 

disorder was set at 20%. This choice of relatively small 

C was to visualize the trend in variation of effective 

beam width with B parameter for different strengths of 

disorder (as shown in Fig. 2), which clearly shows that 

the influence of a finite phase front curvature is more 

visible at a relatively weaker disorder. In figure 5, we 

have plotted the variation in ωeff (normalized with 

respect to ω0) as a function of propagation length for the 

two different input beam widths. Figure 5a corresponds  
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Figure 5.  Variation of the ensemble averaged effective 

width (ωeff) of a Gaussian beam with two different input 

FWHMs with propagation through the waveguide lattice 

for C = 0.2. The error bars are the statistical standard 

deviations for the effective beam widths over 250 

realizations. The chosen input widths cover; a) ~ one site 

of the lattice, b) ~ 18 sites of the lattice. 

 



to the case when input beam width ω0 (3 μm) covers 

only one waveguide of the lattice; it could be seen that 

after propagation of only a few mm of the sample length, 

the ωeff corresponding to the B-parameter (± 0.6) 

approaches to the nearly same final value, where as for 

B = 0 the beam evolved to a ωeff, which is much smaller 

relative to the previous value. Next, we choose a much 

broader input beam of ω0 (60 μm) that covers nearly 18 

lattice sites and the corresponding propagation dynamics 

is shown in figure 5b. Interestingly to explain the 

behavior depicted in figure 5, we may need to analyze 

the results in terms of the transverse wave number (k┴) 

which is inversely proportional to the width (ω0) of the 

input beam [4]. This k┴ is large when the input beam is 

narrow and simultaneously if we introduce the phase 

front curvature as defined in Eqn. (3), the phase of the 

input beam strongly oscillates along the transverse 

profile of a localized mode. As a result, the input beam 

does not excite the localized modes efficiently. 

Apparently, the effect of this inefficient coupling as 

compare to the case of a plane phase front is likely to 

increase the ωeff of the beam. In contrast, according to 

Eqn. (3), the phase is more likely to be homogeneous for 

an input beam with large ω0 and closer to the case of a 

plane phase front. Hence, we observe a relatively 

different propagation dynamics of the beam as 

compared to figure 5a.  We have also verified that for an 

intermediate stage of the above two cases when we 

consider an input beam with ω0 (22 μm) which covers 

nearly 7 lattice sites follows the similar trend as shown 

in figures 5a & 5b. We may mention that the over-all 

trend of ωeff variations for the three different cases (as 

shown in figure 5) remains almost unchanged with 

increasing the number of averaging and the nature of 

variations of individual curves establishes the fact that 

transverse wave number plays a key role while studying 

the effect of phase-front curvature. Whereas, the tall 

errors bars present in the plot carries the signature of the 

beam dynamics of the particular operating regime before 

entering the localized regime. Thus figure 5 presents the 

influence of the input beam width while studying the 

effect of a finite phase-front curvature and reveals that 

sufficiently broad input beam can downplay the adverse 

effect of input phase front curvature.  
  

4.  Conclusion 
 

We have studied the significance of a finite initial phase 

front curvature of an optical beam in the context of 

transverse localization of light in a 1D coupled 

disordered waveguide lattice. The results of our 

extensive numerical simulations reveal that on an 

average, presence of an initial phase front curvature 

tends to degrade the effect of transverse localization. 

These results should be of interest in designing 

experiments related to study of transverse localization of 

light in a disordered medium. Also, an appropriate 

choice of the initial phase front can enable us to control 

the flow of light inside the disordered discrete photonics 

structures. Hence, we envision that initial phase front of 

a light beam introduces a new degree of freedom to 

manipulate the confinement of light in disordered optical 

systems.  
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