
ar
X

iv
:0

9
1
0
.4

8
1
8
v
2
  
[a

st
ro

-p
h
.H

E
] 

 2
 N

o
v
 2

0
0
9 Transition from radiatively inefficient to cooling dominated phase in

two temperature accretion discs around black holes

Monika Sinha, S. R. Rajesh and Banibrata Mukhopadhyay

Astronomy and Astrophysics Program, Department of Physics, Indian Institute of Science, Bangalore

560012, India; msinha@physics.iisc.ernet.in, rajesh@physics.iisc.ernet.in, bm@physics.iisc.ernet.in

Abstract We investigate the transition of a radiatively inefficient phase of a viscous two

temperature accreting flow to a cooling dominated phase and vice versa around black holes.

Based on a global sub-Keplerian accretion disc model in steady state, including explicit cool-

ing processes self-consistently, we show that general advective accretion flow passes through

various phases during its infall towards a black hole. Bremsstrahlung, synchrotron and in-

verse Comptonization of soft photons are considered as possible cooling mechanisms. Hence

the flow governs a much lower electron temperature ∼ 108 − 109.5K compared to the hot

protons of temperature ∼ 1010.2 − 1011.8K in the range of the accretion rate in Eddington

units 0.01<∼Ṁ<
∼100. Therefore, the solutions may potentially explain the hard X-rays and the

γ-rays emitted from AGNs and X-ray binaries. We finally compare the solutions for two dif-

ferent regimes of viscosity and conclude that a weakly viscous flow is expected to be cooling

dominated compared to its highly viscous counterpart which is radiatively inefficient. The

flow is successfully able to reproduce the observed luminosities of the under-fed AGNs and

quasars (e.g. Sgr A∗), ultra-luminous X-ray sources (e.g. SS433), as well as the highly lumi-

nous AGNs and ultra-luminous quasars (e.g. PKS 0743-67) at different combinations of the

mass accretion rate and ratio of specific heats.
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1 INTRODUCTION

The observed hard X-rays from, e.g., Cyg X-1 can not be explained (Lightman & Shapiro 1975) by the

model of cool Keplerian accretion disc (Pringle & Rees 1972; Shakura & Sunyaev 1973; Novikov & Thorne

1973). Indeed Eardley & Lightman (1975) found that a Keplerian disc is unstable due to thermal and viscous

effects with constant viscosity parameter α (Shakura & Sunyaev 1973) which was later shown by Eggum,

Coroniti & Katz (1985) by numerical simulations. Since then, the idea of two component accretion disc

started floating around. For example, Muchotrzeb & Paczyński (1982) introduced the idea of sub-Keplerian,

transonic accretion, which was later improved by other authors (Chakrabarti 1989, 1996; Mukhopadhyay

2003).

Shapiro, Lightman & Eardley (1976) introduced a two temperature Keplerian accretion disc at a low

mass accretion rate which is significantly hotter than the single temperature Keplerian disc of Shakura &

Sunyaev (1973). Various states of Cyg X-1 could be well explained by this model (e.g. Melia & Misra

1993). However, in this model, solutions appear thermally unstable. Narayan & Popham (1993) and subse-

quently Narayan & Yi (1995) introduced advection to stabilize the system. However, this model, with inef-

ficient cooling mechanisms, could explain only a particular class of hot systems. Moreover, the model kept

the electron heating decoupled from the disc hydrodynamics. On the other hand, Chakrabarti & Titarchuk
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(1995) and later Mandal & Chakrabarti (2005) modeled similar kind of flows emphasizing possible forma-

tion of shock and its consequences therein. However, they also did not consider the effect of electron heating

self-consistently into the hydrodynamic equation, and thus the hydrodynamic quantities remain decoupled

from the rate of electron heating.

In the present paper, we model a self-consistent accretion disc in two temperature transonic sub-

Keplerian regime. Considering all the hydrodynamic equations of the disc along with thermal components

we solve the coupled set of equations self-consistently. We investigate switching over the flow during infall,

from the radiatively inefficient nature, e.g. ADAF (Narayan & Yi 1994), to general advective paradigm and

then to cooling dominated phase and vice versa. In order to apply the model to explain observations, we

focus on the ultra-luminous X-ray (ULX) sources (e.g. SS433), under-luminous AGNs and quasars (e.g.

Sgr A∗) and ultra-luminous quasars and highly luminous AGNs (e.g. PKS 0743-67), while the first set of

objects is likely to be the “radiation trapped” accretion disc.

In the next section, we discuss the model equations governing the system and the procedure to solve

them. In §3 and §4, we describe the two temperature accretion disc around stellar mass and supermassive

black holes respectively. Section 5 compares the disc flow of low Shakura-Sunyaev (1973) α with that of

high α. Then we summarize the results in §6 with implications.

2 FORMALISM

We set five coupled differential equations to describe the laws of conservation in the sub-Keplerian ad-

vective accretion disc, which is presumably optically thin. All the variables are expressed throughout in

dimensionless units, unless stated otherwise. The radial velocity v and sound speed cs are expressed in

units of light speed c, the specific angular momentum λ in GM/c, where G is the Newton’s gravitational

constant and M is the mass of the black hole, expressed in units of solar mass M⊙, the radial coordinate x
in units of GM/c2, the density ρ and the total pressure P accordingly. The disc fluid, which behaves as an

(almost) noninteracting gas, consists of ions and electrons, apart from radiation.

2.1 Conservation laws

(a) Mass transfer:

1

x

∂

∂x
(xρv) = 0, and thus Ṁ = −4πxΣv, (1)

where the surface density

Σ = In ρeq h(x), In = (2nn!)2/(2n+ 1)! (Matsumoto et al. 1984), (2)

ρeq is density at the equatorial plane, half-thickness of the disc

h(x) = csx
1/2F−1/2, (3)

F is the magnitude of gravitational force.

(b) Radial momentum balance:

v
dv

dx
+

1

ρ

dP

dx
− λ2

x3
+ F = 0 (4)

when following Mukhopadhyay (2002) the gravitational force corresponding to the pseudo-Newtonian po-

tential

F =
(x2 − 2a

√
x+ a2)2

x3[
√
x(x− 2) + a]2

, (5)

where a is the Kerr parameter, which, for simplicity, is chosen to be zero (Schwarzschild black hole) for the

present purpose. Following Ghosh & Mukhopadhyay (2009), we also define

β =
gas pressure Pgas

total pressure P
=

6γ − 8

3(γ − 1)
(6)
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where γ is the ratio of specific heats given by 4/3 ≤ γ ≤ 5/3, Pgas = Pi (ion pressure) +
Pe (electron pressure), such that

P =
ρ

β c2

(

kTi

µimi
+

kTe

µemi

)

= ρc2s, (7)

where Ti, Te are respectively the ion and electron temperatures in Kelvin, mi is the mass of a proton in gm,

µi and µe respectively are the corresponding effective molecular weight, k the Boltzmann constant. Note

that for γ = 4/3, β = 0; pure radiation flow, and for γ = 5/3, β = 1; pure gas flow.

(c) Azimuthal momentum balance:

v
dλ

dx
=

1

Σx

d

dx

(

x2|Wxφ|
)

, (8)

where following Mukhopadhyay & Ghosh (2003) the shearing stress is given by

Wxφ = −α
(

In+1Peq + Inv
2ρeq

)

h(x), (9)

where α is the dimensionless viscosity parameter and Peq and ρeq are the pressure and density respectively

at the equatorial plane which will be assumed to be the same as general P and ρ respectively in obtaining

solutions.

(d) Energy production rate:

vh(x)

Γ3 − 1

(

dP

dx
− Γ1

P

ρ

dρ

dx

)

= Q+ − Qie, (10)

where following Mukhopadhyay & Ghosh (2003) the heat generated by viscous dissipation

Q+ = α(In+1P + Inv
2ρ)h(x)

dλ

dx
, (11)

when the Coulomb coupling, written in dimensionless form (Bisnovatyi-Kogan & Lovelace 2000) Qie is

given in the dimensionful unit as

qie =
8(2π)1/2e4nine

mime

(

Te

me
+

Ti

mi

)−3/2

ln(Λ) (Ti − Te) erg/cm3/sec, (12)

where ni and ne respectively denote number densities of ion and electron, e the electron charge, ln(Λ) the

Coulomb logarithm. We also define

Γ3 = 1 +
Γ1 − β

4 − 3β
, (13)

Γ1 = β +
(4 − 3β)2(γ − 1)

β + 12(γ − 1)(1 − β)
. (14)

(e) Energy radiation rate:

vh(x)

Γ3 − 1

(

dPe

dx
− Γ1

Pe

ρ

dρ

dx

)

= Qie − Q−, (15)

where the total heat radiated away (Q−) by the bremsstrahlung (qbr), synchrotron (qsyn) processes and

inverse Comptonization (qcomp) due to soft synchrotron photons is given in dimensionful form as (Narayan

& Yi 1995; Mandal & Chakrabarti 2005)

q− = qbr + qsyn + qcomp, (16)
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where

qbr = 1.4× 10−27 ne niT
1/2
e (1 + 4.4× 10−10Te) erg/cm3/sec,

qsyn =
2π

3c2
kTe

ν3a
R

erg/cm3/sec, R = xGM/c2,

qcomp = F qsyn, F = η1

(

1 −
(

xa

3θe

)η2
)

, η1 =
p(A− 1)

(1− pA)
, p = 1 − exp(−τes),

A = 1 + 4θe + 16θ2e, θe = kTe/mec
2, η2 = − 1 − ln(p)

ln(A)
, xa = hνa/mec

2, (17)

when τes is the scattering optical depth given by

τes = κesρ h (18)

where κes = 0.38 cm2/gm and νa is the synchrotron self-absorption cut off frequency. However, the total

optical depth should include the effects of absorption due to nonthermal processes. Therefore, effective

optical depth is given by

τeff ≃ √
τes τabs (19)

where approximately τabs ≃ 6× 1023 ρ2 T
−7/2
e h.

Now, combining all the equations we obtain

dv

dx
=

N(x, v, λ, cs, Te)

D(v, cs)
, (20)

where

N =
Γ1 + 1

Γ3 − 1
v2csJ − α2cs

x
H

(

In+1

In
c2s + v2

)

− α2 In+1

In
2HJ +

Γ1 − 1

Γ3 − 1
v2c3sG + αH

(

2λvcs
x2

)

+
4πQie

Ṁ
v2c2sx

3/2F−1/2,

(21)

D =
1 − Γ1

Γ3 − 1
c3sv + 2αcs

In+1

In
H

(

c2s
v

− v

)

+
Γ1 + 1

Γ3 − 1
v2c2s

(

v − c2s
v

)

+ α2vH

(

H

v

)

(22)

and

G =

(

3

2x
− 1

2F

dF

dx

)

, H =
(

In+1c
2
s + Inv

2
)

, J =

(

c2sG +
λ2

x3
− F

)

. (23)

Finally combining eqns. (4), (8) and (15) we obtain

dcs
dx

=

(

cs
v

− v

cs

)

dv

dx
+

J

cs
, (24)

dλ

dx
=

(

2αx

vcs

In+1

In

(

c3s
v

− vcs

)

+ αx

)

dv

dx
+

(

c2s − 2xαJ

cs
+ v

)

, (25)

dTe

dx
= (1− Γ1)Te

v

c2s

dv

dx
+ (1− Γ1)Te

(

J

c2s
+G

)

+
(Γ3 − 1)4π

Ṁ

csx
3/2

F 1/2

(

Qie −Q−
)

. (26)

Now following the procedure adopted in the previous works (e.g. Chakrabarti 1996, Mukhopadhyay 2003,

Mukhopadhyay & Ghosh 2003) we solve eqns. (20), (24), (25), (26) for v, cs, λ, Te.
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There is a possibility of convective instability in advective flows as the entropy increases inwards (e.g.

Narayan & Yi 1994, Chakrabarti 1996). This may help in explaining transport as well, as proposed by

Narayan & Yi (1994). When the square of effective frequency

ν2eff = ν2BV + ν2r < 0 (27)

dynamical convective instability arises, where νBV is the Brunt-Väisälä frequency and νr the radial

epicyclic frequency given by

ν2BV = −1

ρ

dP

dx

d

dx
ln

(

P 1/γ

ρ

)

, ν2r =
2λ

x3

dλ

dx
. (28)

2.2 Solution procedure

As previous works (e.g. Chakrabarti 1996, Mukhopadhyay 2003, Mukhopadhyay & Ghosh 2003), in order

to obtain the steady state solution we primarily need to find out the self-consistent value of the sonic/critical

radius xc and the corresponding specific angular momentum λc of the flow. For the present purpose of a

two temperature flow, at xc the electron temperature Tec also needs to be specified. Note that the set of

values xc, λc, Tec has to be adjusted appropriately to obtain self-consistent solution connecting the outer

boundary to the black hole event horizon through xc. Depending on the type of accreting system to model,

we then have to specify the related inputs: Ṁ , M and γ. Importantly, unlike former works (e.g. Chakrabarti

& Titarchuk 1995, Chakrabarti 1996, Mukhopadhyay & Ghosh 2003) here xc changes with the change of

Ṁ , which is very natural because the various cooling processes considered here explicitly depend on Ṁ .

Finally, we have to solve the Eqn. (20) from xc to the black hole event horizon, and then outwards upto

the transition radius xo where the disc deviates from the Keplerian to the sub-Keplerian regime such that

λ/λK = 1 (λK being the specific angular momentum of the Keplerian part of the disc).

3 DISC FLOWS AROUND STELLAR MASS BLACK HOLES

We concentrate on the super-Eddington accretor which presumably is the case of ultra-luminous X-ray

binaries. We mainly intend to understand the explicit dependence of the disc properties on the cooling

processes and then the variation of the cooling efficiency f with the disc radii. Note that f is defined to be

the ratio of the energy advected by the flow to the energy dissipated; f → 1 for the advection dominated

accretion flow (in short ADAF; Narayan & Yi 1994, 1995) and f < 1 for the general advective accretion

flow (in short GAAF; Chakrabarti 1996, Mukhopadhyay 2003, Mukhopadhyay & Ghosh 2003). Far away

from the black hole the disc becomes (or tends to become) of one temperature when the gravitational power

is weaker and hence the angular momentum profile remains Keplerian in the presence of efficient cooling.

Note that the “radiation trapped” accretion disc can be attributed to the radiatively driven outflow and

jet which is likely to occur when the accretion rate is super-Eddington (Lovelace, Romanova & Newman

1994, Begelman, King & Pringle 2006, Fabbiano 2004, Ghosh & Mukhopadhyay 2009), as seen in the

ULX sources such as SS433 (with luminosity ∼ 1040 erg/s or so; Fabrika 2004). In order to describe such

sources, we consider Ṁ = 10. Throughout we express Ṁ in units of Eddington limit. The set of input

parameters used for this case is given in Table 1. However, a detailed work of the two temperature viscous

accretion flows in the possible range of accretion rates: 0.01<∼Ṁ<
∼100, around rotating stellar mass black

holes is under preparation (Rajesh & Mukhopadhyay 2009)

A high mass accretion rate renders density to be very high which is very favourable for various cooling

mechanisms. Naturally this results in f being low which finally affects the two temperature nature. The

profile of velocity shown in Fig. 1a clearly indicates a centrifugal barrier at around x ∼ 30. However,

further out, at x ∼ 50, f increases (see Fig. 1c) as the energy radiated due to the bremsstrahlung process

is weaker than the energy transferred from protons to electrons through the Coulomb coupling (see Fig.

2). Subsequently, the synchrotron process becomes dominant (see Fig. 2), causing f → 0. However, the

presence of strong advection near the black hole does not allow the flow to radiate efficiently rendering

f → 1 again. This also leads to marginal convective instability only at x < 10, as is evident from Fig. 1d

(see, however, Narayan, Igumenshchev & Abramowicz 2000, Quataert & Gruzinov 2000).
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Figure 2 shows the variation of cooling processes and the corresponding temperature profiles with the

radial coordinate. At the transition radius the disc remains of one temperature (see Fig. 2). However, a strong

two temperature nature appears when the flow advances with a sub-Keplerian angular momentum. This is

because far away the electrons and ions are in thermal equilibrium, around the transition radius, particularly

at a high Ṁ . As matter infalls through the sub-Keplerian regime, the ions become hotter rendering the ion-

electron Coulomb collisions weaker. However, the electrons cool down via processes like bremsstrahlung,

synchrotron emissions etc. keeping their temperature roughly constant upto very inner disc. As a result,

while far away from the black hole the flow is in the cooling dominated phase, it transits (or tends to transit)

to a radiatively inefficient phase, e.g. ADAF, close to the black hole.

4 DISC FLOWS AROUND SUPERMASSIVE BLACK HOLES

Here we concentrate on two extreme regimes: (1) sub-Eddington limit of accretion with Ṁ = 0.01, which

is presumably the case of under-luminous AGNs, (2) super-Eddington accretion with Ṁ = 10, which

presumably mimics ultra-luminous quasars and highly luminous AGNs. However, a detailed work of two

temperature viscous accretion flows in the possible range of accretion rates: 0.00001<∼Ṁ<
∼100, around

rotating supermassive black holes is under preparation (Rajesh & Mukhopadhyay 2009)

4.1 Sub-Eddington accretors

The under-luminous AGNs and quasars (e.g. Sgr A∗) could be described by the advection dominated model,

where the flow is likely to be substantially sub-critical/sub-Eddington with a very low luminosity (<∼10
35

erg/s). Therefore the present case of Ṁ<
∼0.01 could be an appropriate model for describing under-luminous

sources. The parameters for the model case described here are given in Table 1.

Naturally the density of the disc around a supermassive black hole is much lower compared to that

around a stellar mass black hole. Therefore, the cooling processes, particularly the bremsstrahlung radiation

which is only density dependent, become inefficient leading to a high f . However, Fig. 3a shows that the

velocity profile is similar to that around a stellar mass black hole. From Fig. 3c we see that f → 1 in most

of the sub-Keplerian regime. Close to the black hole there is a possible convective instability as shown in

Fig. 3d. This is due to a strong advection of matter.

Figure 4 shows the variation of cooling processes and the corresponding temperature profiles with

the radial coordinate. A low Ṁ corresponds to a radiatively inefficient hot two temperature Keplerian-

sub-Keplerian transition region. However, a point to be noted is that unlike stellar mass black holes, only

the bremsstrahlung radiation is effective in cooling the flow around a supermassive black hole. This is

due to a low magnetic field in the disc around a supermassive black hole rendering synchrotron radiation

insignificant.

4.2 Super-Eddington accretors

The highly luminous AGNs and ultra-luminous quasars with radio jet (e.g. PKS 0743-67; Punsly & Tingay

2005), possibly in ULIRGs (Genzel et al. 1998) and narrow-line Seyfert 1 galaxies (e.g. Mineshige et al.

2000), are likely to be ultra-luminous accretors with a high kinetic luminosity (∼ 1046 − 1049 erg/s).

Therefore, the parameter set given in the last row of Table 1 could be appropriate to describe such sources.

The basic flow properties (shown in Figs. 5 and 6) are pretty similar to those around stellar mass black

holes, except that in the present case the centrifugal barrier smears out, as evident from Fig. 5a. This is due

to high black hole mass causing the density of the flow to be low, resulting in a fast infall. This also leads

to, unlike that of a stellar mass black hole, an inefficient synchrotron radiation even at the inner edge of the

disc. Similar to the stellar mass black hole, the flow transits from a cooling dominated phase to a radiatively

inefficient phase during infalling towards the black hole.

5 COMPARISON BETWEEN FLOWS WITH DIFFERENT α

So far we have discussed models with a typical Shakura-Sunyaev viscosity parameter α = 0.01. Now we

plan to explore a lower α to understand any significant change in the flow properties.
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The rate of energy-momentum transfer between any two successive layers of the fluid element naturally

decreases for a lower value of α, which increases the residence time of the flow in the sub-Keplerian disc.

Moreover, due to inefficiency of the outward transport of angular momentum, a low α can not keep the flow

Keplerian below a certain radius, resulting in a larger Keplerian-sub-Keplerian transition radius. Now, as we

know, a high residence time of the flow in the disc corresponds to a high probability of cooling. Therefore,

the flow with a lower α is expected to be cooler with a small f . In order to compare, we consider the sub-

Eddington accretion with Ṁ = 0.01 around a supermassive black hole of mass M = 107, e.g. Sgr A∗, with

α = 0.0001, 0.01.

Figure 7 shows that the velocity profile does not change very significantly for α = 0.0001 compared

to that of α = 0.01. However, importantly, the flow is in the cooling dominated single temperature phase at

around the transition radius. As it advances fast in the sub-Keplerian part, the efficiency of cooling decreases

due to a decrease in the residence time of the flow in the disc rendering a transition to the radiatively

inefficient phase, e.g. ADAF, with f → 1. Subsequently, at x ≤ 17, f goes down again rapidly and reaches

zero at x ∼ 10 (see Fig. 7c). Hence, the transition from the radiatively inefficient ADAF phase to GAAF

phase is very sharp. As a consequence the flow remains stable even upto the horizon (see Fig. 7b). As the

Keplerian-sub-Keplerian transition region for a low α is far away from the black hole, compared to that of

a large α, the gravitational effect is weaker there in the former case. Consequently, Te and Tp merge before

the flow reaches the transition region, unlike in the case of a large α (= 0.01) flow.

6 DISCUSSION AND SUMMARY

We have investigated the two temperature accretion flow around black holes with the self-consistent so-

lutions of the complete set of hydrodynamic equations, appropriate for modeling disc flows, along with

cooling processes. We have considered three important cooling processes: bremsstrahlung, synchrotron and

inverse-Comptonization due to synchrotron photons. Synchrotron emission is significant when the magnetic

field is high, which is particularly the case for a stellar mass black hole.

After solving the complete set of disc equations, we have seen, in several cases, that there is a transition

in the flow from ADAF phase to GAAF phase and vice versa. This is easily understood from the cooling

efficiency factor f , calculated for each model. Note that we do not impose any restriction to the flow

parameters, unlike the previous authors (Narayan & Yi 1994, 1995). While the previous authors especially

restricted with flows having f = 1, here we do not impose any such restriction to start with and let the

parameter f be determined self-consistently as the system evolves. Therefore, our model is very general

whose special case may be understood as an ADAF at a particular region of the disc.

We have especially explored optically thin flows incorporating various nonthermal cooling processes.

Figure 8 shows the variation of the effective optical depth with disk radii for various cases discussed here.

Note that the maximum possible optical depth to be ∼ 10−6, supporting our choice of optically thin flows

strictly.

The present model can also explain the under-luminous to ultra-luminous sources, stellar mass to su-

permassive black holes. The luminosity of the under-luminous source Sgr A∗ can be explained by a model

with Ṁ<
∼0.0001 and M = 106 − 107. On the other hand Ṁ ∼ 100 around a similar black hole can explain

the highly luminous AGNs like PKS 0743-67. The observed luminosity of ULX sources can also be well

fitted with this kind of high accretion rate, for the stellar mass black hole. The computed luminosity is given

in Table 2.

In general, a low mass accretion rate corresponds to a low density, which may lead to weak emission

processes with higher f . Hence, for a sub-Eddington flow, f is close to unity, giving radiatively inefficient

ADAF, while a super-Eddington flow may lead ultimately to a GAAF phase with f < 1. However, with a

lower value of α the residence time of matter in the disc increases, which further makes the disc act as a

more efficient radiator.

In most of the cases, the ion and electron temperatures merge or tend to merge at around the transi-

tion radius. This is because the electrons and ions are in thermal equilibrium and thus virial around the

transition radius, particularly at a high Ṁ . As the sub-Keplerian flow advances, the ions become hotter, ren-

dering the ion-electron Coulomb collisions weaker. The electrons, however, cool down via processes like
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bremsstrahlung, synchrotron emissions etc., keeping their temperature roughly constant upto very inner part

of the disc. This strictly reveals the two temperature nature throughout.

Next, one should try to predict spectra emitted from the accretion flow in the cases of different param-

eters based on the present solutions. Naturally, unlike the optically thick Shakura-Sunyaev (1973) disk, the

spectra corresponding to GAAF should be dominated by non-thermal processes. This will provide important

insights into the geometry and physics of emitting regions.
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Fig. 1 Variation of dimensionless (a) radial velocity, (b) density, (c) cooling factor, (d) square

of convective frequency, as functions of radial coordinate for Ṁ = 10. Other parameters are

α = 0.01, M = 10, γ = 1.345; see Table 1 for details.

Table 1: Parameters for α = 0.01, a = 0, when the subscript ‘c’ indicates the quantity at the sonic radius

and Tec is expressed in units of mic
2/k

M Ṁ γ xc λc Tec

10 10 1.345 5.5 3.2 0.000181565

107 0.01 1.5 5.5 3.2 0.0001

107 10 1.345 5.5 3.2 0.000427

Table 2: Luminosity in erg/sec

M Ṁ γ L

107 0.0001 1.6 1034

107 100 1.34 1047

10 100 1.34 1040



10 Sinha, Rajesh & Mukhopadhyay

10-24

10-28

10-32

10-36

 10  100

Q
ie

,Q
br

,Q
sy

n,
Q

co
m

p

x

a

100

10

1

0.1
 10  100

T
9

x

b

Fig. 2 Variation of (a) dimensionless energy of Coulomb coupling (solid line), bremsstrahlung

(dotted line), synchrotron (dash-dotted line), inverse Comptonization due to synchrotron photon

(dashed line) processes in logarithmic scale, (b) corresponding ion (solid) and electron (dotted)

temperatures in units of 109K, as functions of radial coordinate for Ṁ = 10. Other parameters

are α = 0.01, M = 10, γ = 1.345; see Table 1 for details.
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Fig. 3 Variation of dimensionless (a) radial velocity, (b) density, (c) cooling factor, (d) square

of convective frequency, as functions of radial coordinate for Ṁ = 0.01. Other parameters are

α = 0.01, M = 107, γ = 1.5; see Table 1 for details.
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Fig. 4 Variation of (a) dimensionless energy of Coulomb coupling (solid line), bremsstrahlung

(dotted line), synchrotron (dash-dotted line), inverse Comptonization due to synchrotron photon

(dashed line) processes in logarithmic scale, (b) corresponding ion (solid) and electron (dotted)

temperatures in units of 109K, as functions of radial coordinate for Ṁ = 0.01. Other parameters

are α = 0.01, M = 107, γ = 1.5; see Table 1 for details.
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Fig. 5 Variation of dimensionless (a) radial velocity, (b) density, (c) cooling factor, (d) square

of convective frequency, as functions of radial coordinate for Ṁ = 10. Other parameters are

α = 0.01, M = 107, γ = 1.345; see Table 1 for details.
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Fig. 6 Variation of (a) dimensionless energy of Coulomb coupling (solid line), bremsstrahlung

(dotted line), synchrotron (dash-dotted line), inverse Comptonization due to synchrotron photon

(dashed line) processes in logarithmic scale, (b) corresponding ion (solid) and electron (dotted)

temperatures in units of 109K, as functions of radial coordinate for Ṁ = 10. Other parameters

are α = 0.01, M = 107, γ = 1.345; see Table 1 for details.
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Fig. 7 Comparison between solutions for high and low α: Variation of dimensionless (a) veloc-

ity, (b) square of convective frequency, (c) cooling factor, (d) ion (upper set of lines) and electron

(lower set of lines) temperatures, a functions of radial coordinate, when solid lines correspond

to α = 0.01 and dashed lines correspond to α = 0.0001. Other parameters are Ṁ = 0.01,

M = 107, γ = 1.5, a = 0.
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cases given in Table 1. Solid and dotted curves correspond to stellar and supermassive black

holes with super-Eddington accretion rate and dashed curve corresponds to supermassive black

hole with sub-Eddington accretion rate. See Table 1 for details.
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