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We illustrate using a quantum system the principle of a cryptographic switch, in which a third
party (Charlie) can control to a continuously varying degree the amount of information the receiver
(Bob) receives, after the sender (Alice) has sent her information. Suppose Charlie transmits a Bell
state to Alice and Bob. Alice uses dense coding to transmit two bits to Bob. Only if the 2-bit
information corresponding to choice of Bell state is made available by Charlie to Bob can the latter
recover Alice’s information. By varying the information he gives, Charlie can continuously vary the
information recovered by Bob. The performance of the protocol subjected to the squeezed gener-
alized amplitude damping channel is considered. We also present a number of practical situations
where a cryptographic switch would be of use.

PACS numbers: 03.67.Dd, 03.67.Hk, 03.65.Yz

I. INTRODUCTION

In 1984, Bennett and Brassard first introduced a protocol [1] for quantum key distribution (QKD). In QKD two
remote legitimate users (Alice and Bob) can establish an unconditionally secured key through the transmission of
qubits. Since the pioneering work of Bennett and Brassard several protocols for different cryptographic tasks have
been proposed. While most of the initial works on quantum cryptography [1–3] were concentrated around QKD,
eventually quantum-states were applied to other ‘post-coldwar’ cryptographic tasks. For example, in 1999, Hillery [4]
proposed a protocol for quantum secret sharing (QSS). In the same year, Shimizu and Imoto [5] proposed a protocol
direct secured quantum communication using entangled photon pairs. Protocols for deterministic secured quantum
communication (DSQC) were later proposed [6–8], in which the receiver can read out the secret message only after
the transmission of at least one bit of additional classical information for each qubit. A set of protocols exist which
does not require exchange of classical information. Such protocols are generally referred to as protocols for “quantum
secure direct communication” (QSDC) [9].
DSQC and QSDC protocols are reducible to secure QKD protocols in the sense that the former equipped with a

source of quantum randomness, yield the latter. A conventional QKD protocol generates the unconditionally secured
key by quantum means but then uses classical cryptographic resources to encode the message. No such classical means
are required in DSQC and QSDC. In recent past, these facts have encouraged several groups to study DSQC and
QSDC protocols in detail, see for example [9] (and references therein).

Since the works of Shimizu and Imoto [5], and Hillery et al. [4], several protocols of DSQC and QSS are pro-
posed. The unconditional security of the protocols is achieved by using different quantum resources. For example,
DSQC schemes are proposed, a) with and without maximally entangled state [10] (and references therein), b) using
teleportation [11], c) using entanglement swapping [12], d) using rearrangement of order of particles, etc. We are
specifically interested in the DSQC protocols based on rearrangement of orders of particles. To be precise here we
aim to provide a protocol of DSQC for a specific task/problem, which may be visualized as follows: Charlie, Alice
and Bob are three employees of a company. Charlie is the Director of the company and Alice is a custodian of all the
files of that company. Now Alice wishes to securely share some of the information with Bob, say a file, which may be
considered as a string of classical bits. For the present work, we have chosen it to be classical information, though it
can be easily generalized to quantum information. But to do so, Alice requires permission from Charlie, who, though
permitting Alice to do so, has imposed a restriction that Bob can read the file only when Charlie permits him to do
so. This is a problem of practical importance because Alice may transmit her quantum-encoded information to Bob
in advance (say, because the quantum channel is available only then), but Charlie may wish to give his permission at

ar
X

iv
:1

11
1.

48
34

v1
  [

qu
an

t-
ph

] 
 2

1 
N

ov
 2

01
1



2

a later time, determined by, say, certain administrative constraints.
Here we propose a protocol of DSQC to solve the above mentioned problem by using rearrangement of order of

particles [13, 14] and dense coding [15]. Since a secret is shared, the protocol may be considered as a protocol of secret
sharing. This can also be visualized as an application of controlled dense coding, in which the controller is Charlie,
who determines how much classical information is delivered to Bob after Alice sends him all her dense coding qubits.
Since the problem discussed here is of much practical importance, we made the protocol more realistic and relevant
by considering the channel to be noisy. By doing so we generalize the idea of secret sharing through noisy quantum
channel proposed in [16].
The remaining part of the paper is organized as follows: In the next section we have described a protocol that

realizes a cryptographic switch by using a pure entangled state (Bell state) in an ideal scenario. In this Section we put
some restriction on the channel between Alice and Bob. In Section III, the effect of noise on the protocol is discussed
with specific attention to the squeezed generalized amplitude damping channel. In Section IV we have modified the
protocol for a more general case where no restriction is imposed on the channel between Alice and Bob. Finally,
Section V is dedicated for conclusions and discussions.

II. CRYPTOGRAPHIC SWITCH WITH PURE STATE

Let us first propose a solution for the above mentioned problem in an ideal scenario: Here Alice is semi-honest and
Bob can receive qubits from Alice but cannot send a qubit to Alice (for example, because he lacks a requisite license).
Thus the channel between Alice and Bob is one-way (a restriction that we will relax in Section IV). To begin with, we
also assume that the channel is noiseless. By semi-honest, we mean that Alice strictly follows the protocol and does
not disclose the contents of the file to Bob before obtaining Charlie’s permission. In other words since Alice is honest
to the protocol, she does not create a quantum channel between herself and Bob to send the information through
that. But after obtaining her share of entanglement from Charlie she may try to help Bob to bypass the control of
Charlie and to obtain the information before Charlie permits Bob to do so. We do not require Bob to be semi-honest
as even a dishonest Bob cannot obtain any information as long as Alice respects the protocol. Here it would be apt to
note that in the context of secure multiparty communication, the semi-honest and the malicious models are generally
used as secutiy models. Here we are interested about the semi-honest model, in which semi-honest participants (Alice
in our case) are assumed to follow the protocol (and are thus honest) but want to learn any other’s secret (in our
case, Alice and Bob want to cooperate to learn, which Bell state is prepared by Charlie; thus they are curious). In a
semi-honest model, a protocol is considered secure against a collusion of participants (Alice and Bob in our case) if
by accumulating their data, these participants cannot gain more information than what they can from the input and
output of the protocol alone [17]. In contrast to this in a malicious model, participants can deviate from the orginial
protocol (say Alice and Bob can use LM05 protocol to share the information without any involvement of Charlie).
The protocols proposed here and similar protocols are not secured under a malicious model.
The use of the semi-honest model is well-jusitified in classical and quantum communication [18]. In particular,

semi-honest models are very often used in modern classical cryptography, specially in the context of data mining
[19]. In the recent past, the notion of a semi-honest user is also adopted in the field of multi-party secure quantum
communication and different secured quantum communication protocols have already been proposed [17, 18], where
one or more participants are considered as semi-honest. To begin with, we will first propose a protocol for designing
of cryptographic switch in an ideal scienario where the channel between Alice and Bob is noiseless and one-sided.
The one sidedness of the the channel will essentially exclude the possible act of collusion between Alice and Bob. In
Section IV, the restriction of one-sidedness of the channel will be removed and then the security against a collusion
of Alice and Bob would be obtained by rearrangement of order of particles. In this ideal situation our protocol works
as follows:

1. After receiving Alice’s request, Charlie prepares n Bell states (not all the same) and sends first qubits of all
the Bell states to Alice and the second qubits to Bob. But Charlie does not disclose which Bell state he has
prepared.

2. After receiving the qubits from Charlie, Alice understands that she has been permitted to send the information
to Bob.

3. Alice uses dense coding to encode two bits of classical information on each qubit and transmits her qubits to
Bob.

4. When Charlie plans to allow Bob to know the secret information communicated to him, he discloses the Bell
state which he had prepared.
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5. Since the initial Bell state is known, Bob now measures his qubits in Bell basis and obtains the information
encoded by Alice.

Bob can perform Step 5 (i.e., measurement in Bell basis) before Step 4 but he will not obtain any meaningful
information without the knowledge of the initial state. A Bell measurement can reveal the Bell state prepared by
Charlie if both the qubits are in possession of Alice or Bob. Now since we have assumed that the channel between
Alice and Bob is one-way, therefore, Bob cannot send his qubits to Alice for Bell measurement. Alice cannot send
her qubits to Bob as she is assumed to be a semi-honest party who strictly follows the protocol. Her semi-honesty is
motivated by the fact that, while she may wish to potentially cheat Charlie, she wants her communication to Bob to
be secure both in the sense of being protected from the rest of the world (in the usual QKD sense) as well as being
undetected by Charlie.
Here we are considering a three-party quantum secret sharing scenario, in which Charlie prepares a Bell state, of

which he transmits one half to Alice and the other half to Bob. From this viewpoint, the latter receives an ensemble
of Bell-states:

ρAB ≡
∑

j,k

aj,k|Bj,k〉〈Bj,k|, (1)

j denotes the parity bit and k the phase bit: |B0,0/1〉 ≡ 1
2 (|00〉 ± |11〉) and |B1,0/1〉 = 1

2 (|01〉 ± |10〉). Alice encodes
two bits on her qubit using the four Pauli operators of the superdense coding protocol [15], and sends the qubit to
Bob via a possibly insecure channel.
In the noiseless case, Bob measures the two qubits in his possession to obtain the state that corresponds to Alice’s

encoding. However, Bob can decode the full information only if Charlie shares the full classical key information c that
would make the initial entangled state pure. More generally (as detailed below), Bob recovers Alice’s transmitted
bits depending on the key information obtained from Charlie. Thus Charlie acts as a cryptographic switch who can
determine the level of information Alice sends to Bob after the full transmission of her qubit. In Ref. [16], a related
protocol is considered, in which Charlie prepares a GHZ state, from which he sends a qubit to Alice and one to Bob.
After Alice’s encoding and transmission to Bob, Charlie measures his qubit in the X basis, thereby collapsing the
Alice-Bob state to one of the two Bell states |B0,0〉 or |B0,1〉. Only when Charlie reveals his 1 bit of key information
does Alice’s dense coding protocol succeed.
Note that Alice’s and Charlie’s operations commute, so that we might as well consider that Charlie prepares one of

these two Bell states, transmitting them to Alice and Bob. Thus, our protocol generalizes that of Ref. [16], in which
all four Bell states, instead of the above two alone, are considered. The key information in our case is thus 2 bits. We
can thus consider a family of protocols in which the key information c varies continuously as 0 ≤ c ≤ cmax = 2. Our
protocol is characterized by c = cmax and that of Ref. [16] by c = 1.
Suppose Bob’s measurement yields the state |Φ+〉. If he comes to know that Charlie had transmitted the state |Φ−〉,

then he knows Alice must have encoded Z, since |Φ+〉 = (Z ⊗ I)|Φ−〉. More generally, this idea can be compactly
represented as:

Bj,k
Pab−→ Bj⊕a,k⊕b, (j, k, a, b = 0, 1) (2)

where the l.h.s is state Bj,k prepared by Charlie, which is transformed under Alice’s action Pab to the state received
by Bob, given in the r.h.s. The sign ⊕ denotes mod 2 addition, and Pab (a, b = 0, 1) represents, sequentially, the Pauli
I, Z, X and Y operators.

The problem can be treated as a communication situation in which Alice is signaling Bob by means of Bell states.
Then the maximum information Bob can extract from the pair of qubits is the Holevo quantity [20]. In our protocol,
where c = 2, Bob can extract Alice’s 2 bits of information.

We wish to parametrize the amount of key information Charlie reveals by means of a single variable ψ. To this
end, we assume that the ensemble Alice and Bob receive from Charlie, given by Eq. (1), is a Werner state of the kind

ρ
(0,0)
AB (ψ) = aΠ0,0 + b

∑

j,k 6=00

Πj,k, (3)

where Πj,k is projector to the Bell state Bj,k, a = 0.25+0.75 sin(ψ), b = 0.25(1− sin(ψ)) and b ≡ 1−a
3 . The amount of

information provided by Charlie is 2−H(a, b, b, b) bits, where H(· · · ) is Shannon entropy. If c = 2 (a = 1), then Bob
knows Charlie had sent out a |Φ+〉 state, and can work out Alice’s encoded information via Eq. (2). Similarly other
Werner states are possible. The maximum information Bob can extract from this ensemble is the Holevo quantity for
the ensemble (3). Fig. (1) shows how Bob’s information increases with key information in the noiseless case.
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FIG. 1: Information recovered by Bob, quantified by the Holevo quantity χ, as a function of the key information c communicated
by Charlie, in the noiseless case.

III. NOISE CONSIDERATIONS

In Ref. [16], the authors studied the effect of phase damping noise on the c = 1 bit protocol. Here we consider noise
to be a squeezed generalized amplitude damping channel [21] acting on Alice’s qubit transmission. More realistically,
we expect noise also to affect Charlie’s transmissions to Alice and Bob, but as these added complications offer no new
theoretical insight, we ignore them in this work. The action of a squeezed generalized amplitude damping channel is
given by the set of Kraus operators

E0 ≡ √
p1

[ √

1− α(t) 0

0
√

1− β(t)

]

; E1 ≡ √
p1

[

0
√

β(t)
√

α(t)e−iφ(t) 0

]

;

E2 ≡ √
p2

[
√

1− µ(t) 0

0
√

1− ν(t)

]

; E3 ≡ √
p2

[

0
√

ν(t)
√

µ(t)e−iθ(t) 0

]

.

(4)

The details of the various parameters appearing in the above equation can be obtained from [21]. In particular,
they depend upon the bath squeezing parameter r and temperature T . It is readily checked that Eq. (4) satisfies the
completeness condition

3
∑

j=0

E†
jEj = I, (5)

provided

p1 + p2 = 1. (6)

In Fig. (2), variation of Bob’s recovered information, quantified by the Holevo quantity χ, as a function of bath
squeezing r, and Charlie’s information c, is depicted. The Holevo quantity χ increases with c, but not as much as in
the noiseless case (Fig. (1)): due to the randomness introduced by the noise. Also, for a given information level c, χ
decreases with increase in squeezing r.

The relationship between the Holevo quantity and the parameterizing angle ψ (3) is shown in Fig. (3). For all cases
shown the Holevo quantity χ increases with the angle ψ, with ψ = π/2 corresponding to a pure Bell state. Increase
in angle ψ corresponds to increase in the purity of the ensemble (3) leading to an increase in χ. As expected, noise
causes a depletion in the Holevo quantity. The maximum difference in χ, between the noiseless and noisy case, is seen
to occur at ψ = π/2, that is, when the state is pure the depletion due to noise is maximum.

Fig. (4) shows the effect, on the Holevo quantity, of squeezing as a function of time, in particular, demonstrating
its favorable influence in certain regimes. As seen from the figure, for sufficiently early times, squeezing fights thermal
effects to cause an increase in the recovered information.
The significance of noise is that Alice and Bob may consume some of the Bell pairs to determine the noise level,

and decide whether it is too high to permit secure information transfer.
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FIG. 2: Information recovered by Bob, quantified by the Holevo quantity χ, as a function of the squeezing parameter r, coming
from the Squeezed Generalized Amplitude Damping Channel, and key information c communicated by Charlie. The time of
evolution t = 0.5, while temperature T = 0.1.
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FIG. 3: Information recovered by Bob, quantified by the Holevo quantity χ, as a function of the parameterizing angle ψ (3).
The thick bold line corresponds to the noiseless case, the thin bold line to the case of noise with zero bath squeezing r = 0,
while the large-dashed and small-dashed lines correspond to noise with squeezing r equal to -0.2 and 0.3, respectively. The
time of evolution t = 0.5, while the temperature T = 0.1.

IV. CRYPTOGRAPHIC SWITCH WITHOUT ANY RESTRICTION ON THE CHANNEL

Let us withdraw the restriction imposed on the channel from Bob to Alice. Now we may modify the proposed
protocol as follows to remain secured:

1. After receiving Alice’s request, Charlie prepares n Bell states (not all the same). He uses the Bell states to
prepare an ordered sequence with all the first qubits as, PA = [p1 (tA) , p2 (tA) , ..., pn (tA)], and another ordered
sequence PB = [p1(tB), p2(tB), ..., pn(tB)] with all the second qubits resulting in an ordered sequence where the
subscript 1, 2, ..., n denotes the order of a particle pair pi = {tiA, tiB}, which is in the Bell state.

2. Charlie scrambles the second qubits: that is, he disturbs the order of the qubits in PB to create a new sequence
P ′
B = [p′1(tB), p

′
2(tB), ..., p

′
n(tB)] and sends it to Bob. The actual order is known to Charlie only. This ordering

of information is part of the extended key of the modified protocol.

3. After receiving the qubits from Charlie, Alice understands that she has been permitted to send the information
to Bob. Since the sequence with Alice and Bob are different, even if Alice or Bob obtain the access of both
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FIG. 4: Information recovered by Bob, quantified by the Holevo quantity χ, as a function of the squeezed generalized amplitude
damping channel parameters r (squeezing) and t (time of evolution), assuming Charlie communicates one bit of information.
We note that, for sufficiently early times, squeezing fights thermal effects (here T = 0.1) to cause an increase in the recovered
information.

PA and P ′
B , they will not be able to find out the Bell states prepared by Charlie. Thus any kind of collusion

between Alice and Bob would fail.

4. Alice uses dense coding to encode two bits of classical information on each qubit and transmits her qubits to
Bob.

5. When Charlie plans to Allow Bob to know the secret information communicated to Bob by Alice, then Charlie
discloses the Bell states which he had prepared and the exact sequence.

6. Since the initial Bell states and exact sequence is known, Bob now measures his qubits in Bell basis and obtains
the information encoded by Alice.

V. DISCUSSION AND CONCLUSIONS

The proposed protocol allows to secretly share classical information in presence of a noisy quantum channel. In the
protocol Alice shares the secret classical information with Bob but a control is kept with Charlie. Thus the role of
Charlie may be viewed as that of a switch, which controls the channel between Alice and Bob. The protocol may also
be viewed as a protocol of controlled secret sharing or a protocol of controlled dense coding. In the sequences PA and
P ′
B Charlie can also insert some decoy photons and use them as check bits to ensure that there is no eavesdropping

during his communication with Alice and Bob.
In Section II we assumed the channel as one-way and in Section III we considered the effect of noise. The one-way

channel assumption is a reasonable assumption when the channel is noisy. This is so because the rate of success of an
effort in which they illegally try to ascertain the Bell state sent by Charlie, for example by Alice sending her qubit
to Bob first and Bob measuring the Bell state prepared by Charlie and re-sending the qubit to Alice for dense-coding
operation, will be very small. This is so because it would require particles of the Bell state to travel thrice through
the noisy channel. High noise level opens the danger of an eavesdropper that neither Alice nor Bob would desire.
This potentially provides an instance where noisy channel communication is useful.

The restriction on the channel is removed in Section IV and we have seen that our modified protocol works in a
very general scenario. Since it is easy to experimentally generate Bell states, the proposed cryptographic switch may
be realized experimentally and can be used for many practical problems of similar kind, say, in which the director of
an organization wishes to keep a control over the time and amount of information to be disclosed to an employee of
the company. The custodian of the files (Alice) must not be worse than semi-honest, as she could otherwise create
her own classical/quantum channel and communicate directly with Bob. But there is always a potential chance that
Charlie can detect such communication. Further, it is reasonable to assume that as a subordinate in an organization,
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she lacks the resources to create or purchase the entanglement required. Further, the protocol is also valid even when
Charlie is semi-honest, fully honest Charlie being one who does not get any part of the information sent by Alice to
Bob.
We have visualized the problem of cryptographic switch as a practical problem in a particular situation. Many

analogous examples exist, where similar situations arise. For example, one may think that the owner of a company
(Charlie) has asked his semi-honest assistant (Alice) to send details of all his shares to a stock exchange broker, Bob,
to sell it in the stock market. But Charlie wishes to keep an eye on stock fluctuations and to permit Bob to sell his
shares at some suitable time. These are only some specific examples, the idea of cryptographic switch is expected to
be useful in various analogous situations of practical relevance, the idea being that the main information is priorly
sent using a secure quantum channel, and ‘switched on’ by a small classical key, when convenient.
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