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Abstract. We examine the long-term behaviour of non-integrable, energy-conserved,

1D systems of macroscopic grains interacting via a contact-only generalized Hertz

potential and held between stationary walls. We previously showed that in

homogeneous configurations of such systems, energy is equipartitioned at sufficiently

long times, thus these systems ultimately reach thermal equilibrium. Here we

expand on our previous work to show that heterogeneous configurations of grains also

reach thermal equilibrium at sufficiently long times, as indicated by the calculated

heat capacity. We investigate the transition to equilibrium in detail and introduce

correlation functions that indicate the onset of the transition.
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1. Introduction

In previous works [1, 2], we showed that 1D homogeneous systems of discrete

macroscopic grains interacting via a power-law contact potential and held between

fixed walls thermalizes an initial solitary wave (SW), ultimately transitioning to an

equilibrium phase. The properties of this phase are well-predicted by treating the chain

at long times as a 1D gas of interacting spheres in a microcanonical (NV E) ensemble [3].

In the present manuscript, we look more closely at the transition to equilibrium by using

statistical tests to show that the long-term dynamics is ergodic, examine the behaviour

of various correlation functions close to the onset of the transition, and extend the

analysis to heterogeneous systems.

The discrete, non-integrable systems under consideration have been the focus of

a number of recent investigations [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. Such systems are of broad interest

primarily because of their usefulness for a variety of physical applications, ranging from

shock mitigation [23, 28, 27, 32, 33, 41] to energy localization [54, 34, 47, 53]. Their

usefulness for these applications stems from their ability to support the propagation of

non-dispersive travelling disturbances such as SWs, which are a notable feature of many

power-law interacting systems [52, 29, 55].

A propagating SW is initiated in an uncompressed chain by a simple edge impulse.

However unlike solitons in continuum systems, SWs in these discrete systems suffer from

weak interactions with each other [31, 17, 21] and with system boundaries [25, 29, 30, 31]

since grains are capable of breaking contact. These interactions lead to SW-breakdown

processes, the creation of secondary solitary waves (SSWs) [17, 21, 31], and subsequent

energy exchanges [38, 48] in SW-SW collisions.

Long after singular perturbations to the chain, the system reaches an equilibrium-

like, ergodic phase [25, 29, 30, 38, 48, 51, 39] marked by a large number of SSWs

that are equally likely to be moving in either direction, called quasi-equilibrium (QEQ).

This phase exhibits unusually large [25, 29, 30, 38, 48, 51, 39] and occasionally persistent

(rogue) [56] fluctuations in system kinetic energy, which impedes energy equipartitioning

among all grains in the system, making it distinct from true equilibrium. To the time

scales previously considered in dynamical studies, QEQ was observed to be a general

feature of systems with no sound propagation [25, 29, 48]. Until very recently, the

question of whether QEQ is the final phase for such systems was a long-open problem.

However, it has now been well-established [57, 1, 2] that such systems with power-

law interactions can indeed achieve thermal equilibrium after sufficiently long times,

and that the time scale to equilibrium increases with the degree of nonlinearity in the

interaction potential.

In homogeneous Hertzian chains, equilibrium was proved primarily by demonstrat-

ing energy equipartitioning among the independent degrees of freedom in the system.

This was accomplished by illustrating that the calculated finite heat capacity of the sys-
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tem agreed with the value predicted by Tolman’s generalized equipartition theorem [58].

Beyond this, it was shown that kinetic energy fluctuations relax to finite values in fi-

nite interacting systems. Such values are influenced by the heat capacity in a NV E

ensemble [59, 60] and are governed by the exponent on the interaction potential.

Hence, in finite systems in equilibrium, each grain does not have exactly the same

kinetic energy at any instant in time. Rather, each grain’s kinetic energy fluctuates

according to the same probability density function (PDF). In our previous work [1] we

derived approximations to the analytic form of the velocity and kinetic energy PDFs,

different from hard spheres, and which incorporate the finite interaction potential, and

these were found to agree well with results of particle dynamics simulations. In the

current manuscript, we expand on our previous work to include heterogeneous systems,

such as diatomic, where band gaps in the dispersion curve form, and tapered and

random-mass chains, where many inertial mismatches leads to energy dispersion.

The remainder of the paper is organized as follows. In Sec. 2 we introduce the

model for the Hertzian chains and review the approximate PDFs for grain velocity and

grain and system kinetic energies. We also introduce the correlation functions used to

monitor the onset of the transition to equilibrium. Then we give the details of the

simulation parameters in Sec. 3. In Sec. 4, we present the results, and finish with some

concluding remarks in Sec. 5.

2. Model and Theory

The specific systems under consideration are heterogeneous 1D chains ofN grains, where

each grain is characterized by mass mi and radius Ri. Adjacent grains interact via a

Hertz-like contact-only potential [61]. The Hamiltonian describing the system is:

H = K + U =
1

2

N
∑

i=1

miv
2
i +

N−1
∑

i=1

ai,i+1∆
n
i,i+1, (1)

where vi is the velocity of grain i and ∆i,i+1 ≡ Ri + Ri+1 − (xi+1 − xi) ≥ 0 is the

overlap between neighbouring grains, located at position xi. If ∆i,i+1 < 0, there is no

interaction. In the above expression, the exponent n is shape-dependent (n = 2.5 for

spheres), and ai,i+1 contains the material properties of the grains and the grain radii [62].

The grain interactions with the fixed walls adds two terms to the Hamiltonian [52].

In typical numerical simulations, the system is perturbed by giving an end grain

an initial velocity directed into the chain at time t = 0. This initiates the formation of

a propagating SW, which eventually breaks down into a sea of secondary solitary waves

(SSWs) after numerous collisions with boundaries. This breakdown process, which

happens sufficiently long after the initial perturbation to the system, is facilitated by

the formation of transient inter-grain gaps and can be modelled as a transition from a

non-ergodic (SW) phase to an ergodic (equilibrium) phase. Since this late-time phase

is characterized by a large number of SSWs traversing the system in either direction,

energy is, on average, shared equally among all the grains. For systems with zero energy
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dissipation, a NV E ensemble is hence established. This means that the long-term

dynamics of Hertzian chains is best described by the statistics of a 1D gas of interacting

spheres in thermodynamic equilibrium.

2.1. NV E distribution functions

It has been previously established that the PDF of particle velocity of a d-dimensional,

finite sized NV E ensemble is not a Maxwell-Boltzmann distribution [3, 63]. Rather,

the probability distribution across the phase space occupied by an NV E ensemble is:

ΩE =
δ (E −H)

Ω
, (2)

where δ(x) is the dirac delta function, and the normalization integral is found from the

hypersurface defined by the shell with total energy H = E in a 2dN -dimensional phase

space,

Ω =

∫

δ (E −H)
N
∏

i=1

d
∏

ǫ=1

dxi,ǫdpi,ǫ. (3)

The integral in equation (3) is taken over all grain momenta p and all grain positions x.

For indistinguishable particles, multiplication of the integral by the pre-factor 1/(N !hdN)

gives the classical density of states. Integration over the grain momenta is accomplished

by scaling the momenta as p̃i,ǫ = pi,ǫ/
√
2mi, and then introducing the spherical change of

variable P̃ 2 =
∑N

i=1

∑d
ǫ=1 p̃

2
i,ǫ. Subsequent evaluation of the scaled momentum integrals

gives the surface area of a dN -dimensional hypersphere of radius (E − U)1/2, leaving

the remaining integral over the grain positions:

Ω =
(2π)dN/2

Γ(dN/2)

(

N
∏

i=1

m
d/2
i

)

×
∫

(E − U)dN/2−1 Θ(E − U)
N
∏

i=1

d
∏

ǫ=1

dxi,ǫ,

where Γ(x) = (x− 1)! is the Gamma function and Θ(x) is the Heaviside step function.

An exact analytic solution for the Hamiltonian in equation (1) for a finite system

with U 6= 0 may be exceedingly difficult to derive. Thus, in our previous work [1], we

approximated the integral over grain positions by using the virial theorem to replace

(E − U) with (E − 〈U〉v) = 〈K〉v, where 〈. . .〉v denotes the expected virial value, i.e.

〈K〉v = n
n+2

E, with K the total system kinetic energy. Thus the constant 〈K〉v can

come out of the integral in equation (2.1), and the integral proceeds as previously

described [3, 63, 64].

This substitution restricts the maximum momentum for each individual grain i

to a unique value based on its individual inertial mass, |pi|max = (2mi〈K〉v)1/2. Now

the boundary of the momentum axes in phase space is set by the constant 〈K〉v, and
our analysis assumes that all states within this boundary are equally likely. However,

in reality, the value of 〈K〉v is of course, an average of the ensemble, and there

are certainly grains with kinetic energy that, at times, are slightly greater than this

value. Nevertheless, such fluctuations decrease with increasing N , guaranteeing that

the number of phase space states beyond this limit is quite small, and we showed
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previously [1] that the virial theorem value turns out to be a very good approximation

for N & 10.

The resulting PDF of per-grain velocities vi in 1D is then obtained by

marginalization of the joint PDF, equation (2), giving [3]

PDF(vi) = B (α, β, ṽi) / (2〈vi〉v) ,

=
1

2〈vi〉v

(

Γ(α + β)

Γ(α)Γ(β)
(ṽi)

α−1 (1− ṽi)
β−1

)

, (4)

where

ṽi =
1

2

(

1 +
vi

〈vi〉v

)

, (5)

with 〈vi〉2v = 2〈K〉v/mi, and α = β = (N − 1)/2. In the above expression, B(α, β, ṽi)

is the beta distribution, and Γ is the gamma function. Since ṽi must lie in the interval

[0, 1], it follows that vi ∈ [−〈vi〉v, 〈vi〉v]. Consequently, grains with different masses are

characterized by different velocity distributions. Specifically, each velocity distribution

is centred around vi = 0, but the width (variance) depends on the grain mass.

In the limit N ≫ 1, equation (4) becomes the familiar Maxwell-Boltzmann 1D

normal distribution,

PDF(vi) = N (µ, σ2
i ; vi) =

1

σi

√
2π

e−(vi−µ)2/2σ2

i (6)

with mean µ = 0 and variance σ2
i = 2〈K〉v/(Nmi). Here, N (µ, σ2

i ) is the normal, or

Gaussian, distribution.

While the variance of the distribution of grain velocities depends on grain mass,

the distribution of kinetic energy per-grain Ki is identical for each grain, regardless of

its mass. The PDF of Ki is obtained by making the replacement vi =
√

2Ki/mi in

PDF(vi) and further employing the relation PDF(Ki)dKi = 2PDF(vi)(dKi/dvi)
−1dKi,

which gives the resulting beta distribution [3, 64]

PDF (Ki) = B
(

α, β; K̃
)

/〈K〉v, (7)

where K̃ = Ki/〈K〉v, α = 1/2, and β = (N−1)/2. For N ≫ 1, this becomes the familiar

Maxwell-Boltzmann distribution for kinetic energy, a gamma distribution G(α, β,Ki):

PDF (Ki) = G(α, β,Ki) =
βα

Γ(α)
Kα−1

i e−βKi , (8)

where α = 1/2 and β = N/(2〈K〉v). Both distributions predict an average kinetic

energy per grain of Ki = 〈K〉v/N , and a variance that is independent of grain mass.

In our previous work, we derived an approximation to the distribution of system

kinetic energy K =
∑N

i=1 Ki from statistical theory by treating Ki as independent and

identically distributed (i.i.d.) variates drawn from the distribution of equation (8).

Using this method, the result is PDF (K) = G(N/2, N/(2〈K〉v);K), which has the

correct mean; however, the variance predicted by this distribution does not agree with
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the variance predicted by the finite system heat capacity. After trial-and-error, a better

approximation was found to incorporate the exponent of the potential energy n,

PDF (K) = G

(

n+ 2

2

N

2
,
n+ 2

2

N

2〈K〉v
;K

)

. (9)

This distribution not only gives an excellent match to the distribution calculated from

molecular dynamics (MD) simulation [1], but it also has the correct variance as predicted

by the equilibrium specific heat capacity in the NV E ensemble.

2.2. Specific heat

An equilibrium value for the specific heat for Hertzian chains in the thermodynamic limit

was derived previously [1, 2] from an application of Tolman’s generalized equipartition

theorem [58] to the Hamiltonian, equation (1). The result is

CEq
V =

(

n+ 2

2n

)

kB, (10)

which evidently depends only upon the exponent in the potential, i.e. there is no

dependence on grain (or wall) material, grain size, or temperature. equation (10) gives

the expected value of the specific heat in a NV E in the limit N ≫ 1 when energy is

equipartitioned among the degrees of freedom.

This equilibrium specific heat also gives a prediction for the equilibrium fluctuations

in total system kinetic energy, through the relation first derived by Lebowitz et al., which

relates the two quantities in one-dimensional systems as [59, 60]

〈δK2〉
〈K〉2 =

2

N

(

1− 1

2CV

)

, (11)

where CV is in units of kB. When combined with equation (10), it follows that the

expected variance in system kinetic energy is

〈δK2〉 = 2

N

(

2

n+ 2

)

〈K〉2, (12)

from which the factor of (n + 2)/2 < 1 appears, which has already been included

empirically as part of the distribution variance of equation (9). From equation (12), it

is clear that, in the equilibrium phase, 〈δK2〉/〈K〉2 is absent of material dependence.

This has been observed previously in MD simulations [52, 1, 2].

Inverting equation (11) provides one way to calculate the specific heat per grain from

an MD simulation. Alternatively, one can use the exact formula for the microcanonical

specific heat obtained by taking an energy derivative of the so-called microcanonical

temperature, which in 1D gives [60]

CV =
kB
N

(

1− (N − 4)〈1/K2〉
(N − 2)〈1/K〉2

)

−1

. (13)

In Sec. 4, we use both equations (11) and (13) to calculate the specific heat from MD

data for comparison with the predicted equation (10).
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2.3. Correlation functions

The approximate form for the distribution of system kinetic energy was derived under

the assumption of statistical independence between physical quantities, such as grain

velocities. Here we introduce three grain correlation functions which we will later use

with MD data to justify this assumption.

We begin by looking for correlations in the time domain, and define the velocity

auto-correlation function as:

C(t) =
N
∑

i=1

Ci(t) =
N
∑

i=1

〈vi(0)vi(t)〉, (14)

where the angular brackets denote a convolution integral:

Ci(t) = (vi(τ) ∗ vi(−τ)) (t)

=

∫ T

0

vi(t+ τ)vi(τ)dτ, (15)

with T the length of the sampling interval. In practice, the integral in equation (15)

is typically computed using the convolution theorem, which gives (vi(τ) ∗ vi(−τ)) (t) =

F−1 (F(vi) · CC[F(vi)]), with F the fourier transform and F−1 its inverse, and CC[. . .]

denoting the complex conjugate. This function is used to indicate correlations in the

time domain since any periodicity or history dependence in the grain velocity data will

appear in the correlation function.

Similarly, we introduce a correlation function to quantify the amount of correlated

motion in the spatial domain, i.e. between neighbouring grains. The neighbour

momentum correlation function is defined by

pc(t) =
N−1
∑

i=1

pi(t)pi+1(t), (16)

and the sign of the neighbour correlation function,

sgn (pc(t)) =
1

N − 1

N−1
∑

i=1

sgn (pi(t)) sgn (pi+1(t)) , (17)

where pi = mivi denotes the momentum of grain i. Both these correlation functions

give an estimate of the amount of correlated motion between neighbouring grains,

which could result from SW propagation. (Note that we have chosen to monitor

the correlations among grain momenta rather than grain velocities since we will be

investigating heterogeneous chains comprised of grains with different masses.)

In the non-ergodic SW phase, one expects there to be a large amount of correlated

motion among the moving grains as the SW spanning several grains sweeps across the

chain. In contrast, in the symmetric equilibrium phase, one expects there to be as

many correlated as anti-correlated motions among neighbouring pairs of grains. Hence,

we expect pc(t) to be non-zero early on, and drop to fluctuations about zero later

on, indicating the onset of the equilibrium phase. Likewise, by only using the sign of
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the momentum in equation (17), the actual number fraction of interfaces exhibiting

correlated motion can be quantified, regardless of the amplitude of the momentum.

Since the grain momenta are not constant, and are rather described by a static

probability distribution function in the equilibrium phase, it follows that pc(t) has an

associated probability distribution function. When the grain momenta pi, pi+1 follow

a normal distribution, which is the case for N ≫ 1, the exact analytic form for

the distribution of neighbour correlations can be derived from statistical theory for

homogeneous (i.e. single grain species) or diatomic (i.e. two species) chains, see the

Appendix, with the result

PDF(pc) =
|q| r−1

2 K r−1

2

(|q|)
σp1σp22

r−1

2

√
πΓ

(

r
2

)
, (18)

where q = pc/(σp1σp2) (with σpi the standard deviation of the PDF of momentum for

grain species i), Ks(q) is a modified Bessel function of the second kind of order s, and

r = N − 1. Homogeneous chains correspond to σ2
p1

= σ2
p2

= 2m〈K〉v/N , while diatomic

chains have σ2
p1

= 2m1〈K〉v/N 6= σ2
p2

= 2m2〈K〉v/N . Interestingly, equation (18) gets

wider with larger N when N ≫ 1.

As a final measure of the correlations in Hertzian chains, we introduce the

configurational temperature Tc, which for 1D systems is defined by [65]

1

kBTc

=

〈

−∑N
i=1

∂Fi

∂xi

〉

〈∑N
i=1 F

2
i 〉

, (19)

where kB is Boltzmann’s constant, and Fi is the net force acting on particle i.

The angular brackets denote an ensemble average, or equivalently, a time average in

ergodic systems. This definition of temperature utilizes the configurational information

contained within the particle interactions, rather than the kinetic information, to

determine the temperature of the system. In equilibrium for sufficiently dense systems,

Tc should equal the standard kinetic energy temperature [65].

We hypothesize that, neglecting the averaging in equation (19) and monitoring

the time dependence of the resulting rational quantity, the configurational temperature

can act as a measure of the correlations and indicator to the onset of the transition

to equilibrium in Hertzian chains. Particularly, early on in the erratic SW phase,

the configurational temperature will exhibit large fluctuations, and will later relax to

smaller fluctuations about a constant value as the system approaches the equilibrium

phase. This relaxation should correspond to the onset of the transition to equilibrium

in Hertzian chains.

3. Methods

To examine the very long-time dynamics of Hertzian chains and closely inspect the

transition to equilibrium, we ran MD simulations of various 1D configurations of N

grains held between fixed walls and described by the Hamiltonian in equation (1). These
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configurations include homogeneous (monatomic), diatomic, tapered, random radius,

and random mass chains.

In the monatomic chains, the grains are made of steel and 6 mm in radius,

corresponding to a mass of 7075.4 mg. In diatomic chains, one of the species is comprised

of steel grains 6 mm in radius, and the second grain species is comprised of grains whose

Young’s modulus and Poisson’s ratio are equivalent to those of steel, but whose density

has been altered to achieve the desired mass ratio. In the tapered chains, all grains are

made of steel, and the largest grain is 6 mm in radius. A tapering percent (which controls

the ratio of the radii of neighbouring grains) between 1-5% is considered. Finally, in

random radius and random mass chains, the Young’s modulus and Poisson’s ratio of

all grains are equivalent to those of steel. For the random radius chains, the masses of

all grains are kept constant at 7075.4 mg, while the radii are set by choosing random

numbers between a fixed interval of 0.5-8 mm. Similarly, in the random mass chains, the

grain radius is kept constant at 6 mm, while the masses are set with a random number

generator within the range of 35-7075.4 mg.

Fixed walls comprised of steel are implemented in all systems, which adds two terms

to the Hamiltonian as described in [52, 1, 2]. We do not apply any pre-compression,

or squeezing of the chains, but rather each grain is initially just touching its neighbour

between walls which are a distance of
∑N

i=1 2Ri apart.

We consider values of the potential exponent n from 2 (harmonic) to 4, and system

sizes from N = 20 to 100. A standard velocity Verlet algorithm is used to integrate

the equations of motion with a 10 ps timestep, and no dissipation is included. The

grains are set into motion with an asymmetric edge perturbation (initial velocity given

to the first grain only, directed into the chain), causing a single initial SW to propagate

through the system. The initial SW breaks down in collisions with boundaries and in

the formation of gaps, creating numerous secondary solitary waves (SSWs). After a

period of time, the number of SSWs increases to a point where the system enters into

quasi-equilibrium [25, 29, 30, 48, 51]. We allow the system to evolve for a substantial

amount of time past this phase change. The system energy is constant to 10 significant

digits for the entire simulation.

The time scale to QEQ onset is determined by the potential exponent n [39], so we

used the method described in reference [2] to get an estimate for the optimal velocity

perturbation for reaching equilibrium as quickly as possible. In most cases, it was

necessary to collect at least one second of real time data, and even longer for larger values

of n. Data of grain position and velocity are recorded to file every 10-100 µs, though we

re-sample the data at time intervals beyond the dampening of velocity autocorrelation;

typical sampling intervals were of the order of a few hundred µs. We call the last 20%

of each simulation the equilibrium interval, and all further analysis is carried out with

data from this interval. Here the deviation from the expected virial 〈K〉v = n/(n+2)E

was < 1% for all systems.
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4. Results and Discussion

We begin by exploring several possible prerequisites to establishing equilibrium. There

is no a priori reason to assume the presence of ergodicity, or the absence of correlation

or bias in systems with interaction potential energy exponent n > 2, where energy can

be transmitted via SWs whose width span several grains. In noisy data, such as the

recorded velocity of a single grain, we must illustrate the validity of these common

assumptions.

Ergodicity is defined as the equivalence of ensemble and time averages of physical

observables. It is thought that the QEQ phase in Hertzian systems is ergodic. One

therefore might expect that the equilibrium phase is also ergodic, and we indeed establish

this by a more rigorous statistical test than has been applied before.

In homogeneous chains, under the null hypothesis, the time-domain velocity

evolution of a single grain, and the velocities of the ensemble (i.e. all grains in the

chain) at a given timepoint, should come from the same distribution. Furthermore,

that distribution is nearly normally distributed. Thus to rigorously show ergodicity in

homogeneous chains, we run repeated two-sample Kolmogorov-Smirnov tests (KS), and

Welch’s t-tests (WT), with both the single grain and ensemble time-point chosen at

random. We plot a histogram of the distribution of 2500 p-values, shown in figures 1(i-

a)-(iv-a) for four representative homogeneous systems. Under the null hypothesis of

both tests, i.e. the system is ergodic, the p-values are uniformly distributed, which

is the expected case if the underlying distribution is approximately normal [66]. The

average densities for both tests, calculated as the weighted means of the distributions

presented in figures 1(i-a)-(iv-a), are very close to one, as expected. There may be a

minute upwards trend in the KS test, which might be indicative of slight skew in the

underlying distribution. These effects are likely a result of the grain interactions with

the confining walls.

In comparison, in heterogeneous chains where the grains do not all have the same

masses, the velocity distributions of each grain are not equivalent. Hence the velocities

of the ensemble of grains (i.e. all grains in the chain) do not come from the same

distribution as the time-domain velocity of any single grain. In other words, there is

no equivalent grain which samples the same phase space as the ensemble comprised

of all grains in the heterogeneous chain. While the velocity of each individual grain

will be ergodic, as verified by statistical test in homogeneous chains, one cannot apply a

statistical test simultaneously to all grains in the heterogenous chain to verify ergodicity.

Since we aim to establish the absence of bias and correlations in the equilibrium

phase in Hertzian chains, prior to further analysis below, we now remove bias in the

time domain by computing the velocity autocorrelation function, equation (14), for

each system. Since the grain velocities depend on grain mass, see equations (4)–(6), in

heterogeneous systems it is more appropriate to consider the autocorrelation function

of individual grains, equation (15), rather than the sum over all grains. We present

this correlation function for grain 1 (which is typically the largest and slowest moving
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Figure 1. (Color online) (a) Distribution of p-values for the two-sample KS- and WT-

tests used to establish ergodicity in homogeneous Hertzian chains. Solid lines indicate

the expected average value of the density, and dashed lines indicate the larger of the

standard deviation, σKS/WT , of either test. The average densities of both tests are

included in the top right corner of each plot. (i) n = 2.0, N = 100; σKS = 0.167,

σWT = 0.145; (ii) n = 2.5, N = 38; σKS = 0.134, σWT = 0.138; (iii) n = 3.0, N = 30;

σKS = 0.143, σWT = 0.104; (iv) n = 4.0, N = 10; σKS = 0.164, σWT = 0.095. (b)

Velocity autocorrelation function, equation (15), for grain 1 computed over the entire

equilibrium interval for various heterogeneous Hertzian chains. Data is re-sampled at

time intervals where C1(t)/C1(0) = 0 to ensure independence in the time domain. (i)

n = 2.5, N = 38 homogeneous chain; (ii) n = 2.5, N = 38 diatomic chain with mass

ratio m1/m2 = 2; (iii) n = 4, N = 20 tapered chain with tapering percent of 2.5%;

(iv) n = 3, N = 20 random-mass chain. Curves are not smooth in the last two plots

because data was recorded to file at larger time intervals for these systems.

grain) for four representative systems in figures 1(i-b)-(iv-b). We subsequently re-sample

MD data for all systems at time intervals where velocity autocorrelation has vanished;

typically of the order of a few hundred µs.

While correlations in the time domain have been accounted for, we also test for

correlated motion between neighbouring grains. Such correlations can be measured by

monitoring various quantities, including the maximum absolute momentum of any grain

in the chain, |pmax|, as a function of time. This quantity is computed from t = 0 for four

representative systems in figures 2(i-a)-(iv-a). In homogeneous (monoatomic) chains,

figure 2(i-a), |pmax| initially oscillates about a maximal value as the initial SW travels

through the granular chain. The SW may make several passes through the chain before

breaking down. Periodically, when the initial SW reaches a boundary and most of the
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system’s energy converts to stored potential energy in the walls, |pmax| drops to a small

value, before reflecting and resuming its course. Some time after the initial velocity

perturbation, |pmax| relaxes to noisy oscillations about a much smaller value, denoting

the onset of the QEQ phase.

In diatomic chains, figure 2(ii-a), this relaxation happens much sooner due to

the inertial mismatches between neighbouring grains. The SW breaks down much

quicker since energy is both reflected and transmitted in successive collisions between

neighbouring grains in such systems. In tapered chains, figure 2(iii-a), the progressive

decrease in the radius and mass of the grains also causes the amplitude of the SW to

decay more quickly than an equivalent homogeneous chain. This is reflected in the

behaviour of |pmax|, though it should be noted that in figure 2(iii-a), the time scale is

longer since n = 4 for this system, and the time scale to equilibrium increases with n.

Finally, in random mass chains, figure 2(iv-a), |pmax| drops to noisy oscillations about

a small value almost immediately, which insinuates that random mass chains do not

support SW propagation.

Interestingly, in random radius chains in which the grain masses are the same, the

behaviour of |pmax| is closer to the behaviour exhibited by homogeneous chains. In

particular, the relaxation is apparent since it happens over a longer timescale, implying

that the random radius chains do support SW propagation. Similarly, in diatomic chains

in which the grain masses are the same but the two grain species differ in their radii, the

behaviour of |pmax| is nearly identical to that observed in the equivalent homogeneous

chain. This indicates that it is the differences in grain inertia, and not the grain shape,

that play a major role in the SW breakdown processes in these systems.

To further monitor the grain correlations, we also calculate the neighbour

momentum correlation function, equation (16), from t = 0 for all of our systems, and

results are shown for the four representative systems in figures 2(i-b)-(iv-b). It is clear

from these figures that the relaxation of pc identically mirrors that of |pmax|, and that

pc drops to oscillations about zero as the system enters into QEQ, as expected. We

also present the results for the sign of the neighbour correlation function, equation (17),

computed from t = 0 in figures 2(i-c)-(iv-c) for the same systems. Interestingly, sgn(pc)

has already dropped to zero roughly by the time that pc and |pmax| are beginning to

relax.

As evident from all the plots in figure 2, grain-grain correlations die out early in

the simulation, indicating the onset of the equilibrium phase. We see that sgn (pc)

fluctuates between extremes of about ±0.5, values that represent the difference in

the number of interfaces between neighbouring grains whose motion are correlated

(grains moving parallel) versus anti-correlated (grains moving anti-parallel). From these

maxima, as much as 75% of interfaces at times are either correlated or anti-correlated.

The appearance of a large number of anti-correlated interfaces start very early in the

simulation, and may trigger the onset of the equilibrium phase.

We conclude from the presence of equal amounts of correlated and anti-correlated

grain motion that SSWs do not add correlated bias to the motions of neighbouring grains
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Figure 2. (Color online) Grain-grain correlation functions for the four representative

systems of figure 1(b). Plots labelled (i) correspond to the n = 2.5, N = 38

homogeneous chain, (ii) corresponds to the n = 2.5, N = 38 diatomic chain, (iii)

to the n = 4, N = 20 tapered chain, and (iv) to the n = 3, N = 20 random mass

chain. (a) labels the maximum absolute momentum of any grain in the chain as

a function of time, (b) the neighbour momentum correlation as a function of time,

equation (16), and (c) the sign of the neighbour momentum correlation as a function

of time, equation (17). All quantities are computed from t = 0.

in the equilibrium phase. These results also confirm that the single-grain quantities can

be treated as i.i.d. random variables drawn from the distributions of equations (4) or

(6) for grain velocity, and equations (7) or (8) for grain kinetic energy.

As a final probe of the correlations among grains, we compute the configurational

temperature, equation (19), for all of the systems. To monitor the convergence of Tc

over time, we drop the time averaging, and the results of the instantaneous ensemble

temperature are shown for the four representative systems in figure 3. For the systems

which support SW propagation, Tc has an exponential decay to fluctuations about
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Figure 3. (Color online) Configurational temperature, equation (19) (with averaging

neglected), for the four representative systems in figures 1(b) and 2. For plots (i)-(iii),

the curves fit to an exponential function which decays to a nonzero constant value.

This long-term constant value is denoted as Tc,∞ and is presented on each plot (for

the random mass chain in (iv), Tc,∞ was obtained from a constant fit to the data). We

also present the values of the kinetic temperature TK corresponding to kinetic energy

〈K〉v, as well as the microcanonical temperature TR introduced by Rugh [60] (see text

for more details). Note that Tc,∞, TK , and TR are presented in units of kB . (Plots

(i)-(iii) are zoomed in to clearly show the size of the long-term fluctuations.)

a constant value. Moreover, the behaviour of Tc computed in this way mimics the

behaviour of |pmax| and pc. In particular, Tc starts to settle to fluctuations about the

long-term constant value at roughly the same time that |pmax| and pc have decayed,

indicating the onset of equilibrium. Thus Tc computed in this way also provides a

reliable way to measure the SW breakdown rate in Hertzian chains.

We see from figure 3 that the long-term constant value of the configurational

temperature, Tc,∞, agrees with the kinetic temperature defined by kBTK = 2〈K〉v/N , as

well as the microcanonical temperature defined by [60] 1/(kBTR) = ((N − 2)/2)〈1/K〉,
within the error bars. The agreement is better when N is large, see figures 3(i) and (ii).

For smaller values of N , figures 3(iii) and (iv), the agreement is less since Tc and TK are

only accurate to O(1/N). The drastic increase in the size of the error for the systems in

figures 3(iii) and (iv) is a consequence of both the small system size and the large initial

perturbation (a larger initial perturbation was given to these systems since n is larger).
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Now that we have demonstrated the absence of correlations in the long-term

phase of Hertzian chains, we show that this phase is indeed an equilibrium phase. To

accomplish this, we check the distributions of grain velocities and kinetic energy, as well

as the equipartitioning of energy among all grains via the specific heat. First we test

the grain distribution functions presented in Sec. 2.1, and show the agreement between

the expected PDFs (equations (4), (6)–(9)) and MD data for three representative

heterogeneous systems in figure 4. In each system, the per-grain velocity data agrees

with the beta distribution, equation (4), which is nearly identical to the normal

distribution, equation (6), for large N , see figures 4(i-a)-(iii-a).
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Figure 4. (Color online) Distribution of grain velocity, grain kinetic energy, and

system kinetic energy for the three heterogeneous systems in figures 1(b), 2, and 3.

Results of MD simulations are shown as filled circles. In columns (a) and (b), solid

lines are predicted distributions (equations (4), (6), (7), and (8)), and dashed/dotted

lines are the corresponding distributions with parameters slightly changed to illustrate

the sensitivity of equations (4) and (7). In column (c), solid curve is the theoretical

prediction equation (9), and dashed line is the corresponding hard-sphere distribution.

The grain kinetic energy distributions are presented in figures 3(i-b)-(iii-b),

illustrating agreement between MD results and equation (7) for large N . The difference

between equations (7) and (8) looks fairly pronounced in the log scale with smaller

N , where the beta distribution generally has a cutoff before the tail of the MD data.

The area under the MD histogram past the beta-distribution cutoff at 〈K〉v illustrates

the earlier point of the small number of states beyond the limits of phase space used to

derive equation (7). However, this area is exaggerated in the log scale plots; it was found

previously [1] that for homogeneous systems withN = 10, P (Ki > 〈K〉v) . 0.05%, while

for larger N it’s even less.
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The sensitivity of equations (4) and (7) to n and N are also shown in figures 4(i-

a)–(iii-a) and (i-b)–(iii-b), by plotting curves of incorrect values of n+1 or 1.1N . They

do not agree as well with the data, and illustrate that the predicted distributions are

indeed the best fit to the data.

figures 4(i-c)–(iii-c) contain the distributions of system kinetic energy from MD

simulations, along with the corresponding equation (9), for the three representative

heterogeneous systems. The agreement between MD data and the expected result is

very good for N = 38, see figure 4(i-c); however there is a slight skew in equation (9)

when N = 20, figures 4(ii-c) and (iii-c), which was also observed in homogeneous

systems [1]. For comparison, we also present the distribution without the variance

correction, G(N/2, N/(2〈K〉v);K), which we call the hard-sphere limit, and clearly does

not agree with any MD data of interacting grains.

Table 1. Specific heat capacity calculated from MD simulation data for various

heterogeneous chains using equation (13) and (the inverted) equation (11), and the

expected equilibrium value in the thermodynamic limit, equation (10).

n N CEq

V /kB (10) CV /kB (11) CV /kB (13)

Diatomic chains

2.5 38 0.900 0.887 0.870

2.5 100 0.900 0.910 0.896

3 20 0.833 0.797 0.846

3 50 0.833 0.834 0.843

4 20 0.750 0.751 0.753

4 100 0.750 0.748 0.731

Tapered chains

2.5 20 0.900 0.908 0.863

2.5 50 0.900 0.914 0.909

3 50 0.833 0.831 0.809

4 20 0.750 0.749 0.747

Random mass chains

2.5 20 0.900 0.909 0.908

2.5 38 0.900 0.898 0.901

3 20 0.833 0.811 0.828

3.25 15 0.808 0.803 0.806

3.5 25 0.786 0.797 0.787

Lastly, we compute the specific heats of MD simulation data using both

equations (11) and (13) to address the issue of equipartitioning of energy in these

systems. These calculated results are directly compared with CEq
V predicted by

equation (10) in Table 1 for various heterogeneous chains. It is evident that for larger

N , the values calculated by equations (11) and (13) agree very well with the theory.

Moreover, even for small (N . 20) systems, the deviation from theory is no more than

∼ 5%, and improve with additional data points in the averaging.

The fact that the calculated specific heat agrees with the value predicted by
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the generalized equipartition theorem for N ≫ 1 provides evidence that energy is

indeed equipartitioned in the heterogeneous Hertz chain at long enough times. This

establishes that the very long-time dynamics of 1D heterogeneous granular chains with

zero dissipation is a true equilibrium phase [48].

While we have presented results for heterogeneous chains given asymmetric

perturbations, it should be noted that these results are unchanged when the systems

are given symmetric edge perturbations. The exception to this is when the symmetric

edge perturbations induce a mirror reflection symmetry about the centre of the chain,

such as in a homogeneous chain or an odd-N diatomic chain. This symmetry results

in a loss of degrees of freedom in the system, as discussed in Refs. [1] and [2], and the

microcanonical specific heat and the PDF of system kinetic energy must be modified

to account for this. In this case, it is important to stress that energy is equipartitioned

among the independent degrees of freedom in the system at long times. In systems

in which there is no mirror reflection symmetry, the number of independent degrees of

freedom and the number of grains are equivalent, thus such a distinction is not required.

5. Conclusions

We have illustrated that the long-term dynamics of 1D granular systems between fixed

walls and with zero dissipation is a true equilibrium phase [48]. In particular, we first

used statistical tests to rigorously establish that the long-term dynamics is ergodic.

Then we monitored correlations among grains via the neighbour momentum correlation

functions and the configurational temperature. We showed that that correlations among

grains vanish early on, indicating the onset of the transition to equilibrium.

Moreover, we expanded on our previous work [1, 2] to include heterogeneous

chains, and showed that grains of different masses are characterized by different velocity

distributions. We also showed that the approximate distribution functions for grain

velocity, grain kinetic energy, and system kinetic energy that were derived previously

for interacting particles in a microcanonical ensemble [1, 2] agree well with MD data for

various heterogeneous systems, including diatomic, tapered, and random mass chains.

Lastly, we illustrated that energy is equipartitioned at long times in these systems

by showing agreement between calculated specific heat capacities from MD data and

expected equilibrium values.

Most interestingly, we provided evidence that, apart from the degree of nonlinearity

in the system, the configuration of masses influences the timescale of the transition to

equilibrium. In particular, the transition can be accelerated by introducing inertial

mismatches between grains. This is best demonstrated by the random mass chains,

which do not support SW propagation and are therefore seen to start to equilibrate

much sooner than homogeneous chains with the same degree of nonlinearity in the

contact potential. This result may be useful for physical applications such as shock

disintegration.

It would be interesting to see how these ideas extend to systems with driving and
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dissipation.

Appendix

To obtain an analytic expression for PDF(pc), assuming the underlying distribution of

particle velocities is given by equation (6), it is easiest to proceed in two steps. First, we

determine the distribution function for the product of two neighbouring grain momenta.

Then we determine the distribution function for the sum of such products.

In the limit N ≫ 1, equation (4) (and equation (6)) predicts σ2
i ≡ var(vi) =

2〈K〉v/(Nmi), which immediately reveals that σ2
pi

≡ var(pi) = 2mi〈K〉v/N . We

assume the grain momenta can be treated as i.i.d random variates drawn on a normal

distribution with zero mean and variance σ2
pi
, i.e. pi = X ∼ N (0, σ2

p1
) and pi+1 = Y ∼

N (0, σ2
p2
). These represent the momenta of the even and odd numbered grains. We are

then first interested in the distribution of the product Z ≡ XY .

To compute the distribution of Z, we consider the characteristic function of

the distribution of X (or equivalently of Y ). For a scalar random variable X, the

characteristic function ϕX(t) is defined as the expected value of exp(itX):

ϕX(t) = E
(

eitX
)

≡
∫

∞

−∞

eitxfX(x)dx, (A.1)

where i =
√
−1, t ∈ R, and fX(x) is the probability density function. From

equation (A.1), it is evident that ϕX(t) is simply the inverse Fourier transform of fX(x),

where fX(x) = N (0, σ2
p1
) in this case. The inverse Fourier transform of a Gaussian is a

well-known result, thus for the momentum distributions we have ϕX(t) = exp(−σ2
p1
t2/2).

Using the law of total expectation [67], it follows that E(X) = E(E(X|Y )), where

E(X|Y ) denotes the conditional expectation value, i.e. the expected value of X given

that Y = y. Now E
(

eitXY
∣

∣Y = y) is simply exp(−σ2
p1
t2Y 2/2), and from the law of total

expectation it follows that the characteristic function of Z, ϕZ(t) ≡ ϕXY (t) = E
(

eitXY
)

,

is given by:

ϕZ(t) = E
(

E
(

eitXY |Y = y
))

= E
(

exp(−σ2
p1
t2Y 2/2)

)

=
1√

2πσp2

∫

∞

−∞

e−(σp1
ty)2/2e−y2/(2σ2

p2
)dy

=
1

√

1 + σ2
p1
σ2
p2
t2
. (A.2)

We obtain PDF(Z) by inverting its characteristic function, which is equivalent to taking

the Fourier transform of ϕZ(t):

PDF(Z) =
1

2π

∫

∞

−∞

e−iztϕZ(t)dt,

=
1

πσp1σp2

K0

( |z|
σp1σp2

)

, (A.3)
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where K0(z) is the modified Bessel function of second kind and order zero, and

equation (A.2) was used in obtaining the final expression. equation (A.3) is the well-

known product normal distribution.

The neighbour momentum correlation function in equation (16) involves the sum of

terms like Z, so we now let Q =
∑r

j=1 Zj be the sum of N = r+1 independent variates

Zj drawn from PDF(Z). By definition, the characteristic function of Q is

ϕQ(t) = E
(

eitQ
)

= E

(

eit
∑r

j=1
Zj

)

=

∫

Rr

(

r
∏

j=1

eitzj
)

fZ1,...,Zr
(z1, . . . , zr)dz

r, (A.4)

where fZ1,...,Zr
(z1, . . . , zr) is the joint probability density function of all Zj, i.e. P (Z1 =

z1, . . . , Zr = zr), and dzr denotes the product dz1 . . . dzr. The integral is taken over

the r-dimensional real space R
r. The statistical independence of Zj implies that

fZ1,...,Zr
(z1, . . . , zr) = Πr

j=1fZj
(zj), thus from equation (A.4),

ϕQ(t) =

∫

Rr

(

r
∏

j=1

eitzjfZj
(zj)

)

dzr

=
(

∫

∞

−∞

eitzfZ(z)dz
)r

=
(

1 + σ2
p1
σ2
p2
t2
)

−
r
2 , (A.5)

where equation (A.2) was used in obtaining the last expression. Finally, the distribution

function for Q, i.e. PDF(pc), is obtained from a Fourier transform of this last equation.
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Figure A1. (Color online) Distribution of the neighbour momentum correlation pc
within the equilibrium phase. Circles correspond to MD data, and solid line to the

predicted curve, equation (18). (i) corresponds to a homogeneous n = 2.5, N = 38

system, and (ii) to a diatomic n = 2.5, N = 38 system.

We show agreement between the predicted PDF(pc) and MD data for a

homogeneous chain (σ2
p1

= σ2
p2

= 2m〈K〉v/N) in figure A1(i) and for a diatomic chain

(σ2
p1

= 2m1〈K〉v/N 6= σ2
p2

= 2m2〈K〉v/N) in figure A1(ii). Symmetric and centred at

zero, it is clear that the data agrees very well with equation (18).
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[38] Ávalos E, Doney R and Sen S 2007 Chinese Journal of Physics 45 666–674



The equilibrium phase in heterogeneous Hertzian chains 21

[39] Sen S, Hong J, Bang J, Avalos E and Doney R 2008 Physics Reports 462 21–66

[40] Herbold E, Kim J, Nesterenko V, Wang S and Daraio C 2009 Acta Mechanica 205 85–103 ISSN

0001-5970 URL http://dx.doi.org/10.1007/s00707-009-0163-6

[41] Doney R, Agui J and Sen S 2009 Journal of Applied Physics 106 064905

[42] Job S, Santibanez F, Tapia F and Melo F 2009 Physical Review E 80 025602

[43] Theocharis G, Kavousanakis M, Kevrekidis P G, Daraio C, Porter M A and Kevrekidis I G 2009

Physical Review E 80 066601

[44] Boechler N, Theocharis G, Job S, Kevrekidis P, Porter M and Daraio C 2010 Physical Review

Letters 104(24) 244302

[45] Theocharis G, Boechler N, Kevrekidis P G, Job S, Porter M A and Daraio C 2010 Physical Review

E 82 055604

[46] Santibanez F, Munoz R, Caussarieu A, Job S and Melo F 2011 Physical Review E 84(2) 026604

[47] Breindel A, Sun D and Sen S 2011 Applied Physics Letters 99 063510
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