
Target-Independent Domain Adaptation for WBC Classification using

Generative Latent Search

Prashant Pandey, Prathosh AP, Vinay Kyatham, Deepak Mishra and Tathagato Rai Dastidar

Abstract—Automating the classification of camera-obtained
microscopic images of White Blood Cells (WBCs) and related
cell subtypes has assumed importance since it aids the laborious
manual process of review and diagnosis. Several State-Of-The-
Art (SOTA) methods developed using Deep Convolutional Neural
Networks suffer from the problem of domain shift - severe
performance degradation when they are tested on data (target)
obtained in a setting different from that of the training (source).
The change in the target data might be caused by factors
such as differences in camera/microscope types, lenses, lighting-
conditions etc. This problem can potentially be solved using Unsu-
pervised Domain Adaptation (UDA) techniques albeit standard
algorithms presuppose the existence of a sufficient amount of
unlabelled target data which is not always the case with medical
images. In this paper, we propose a method for UDA that is
devoid of the need for target data. Given a test image from the
target data, we obtain its ‘closest-clone’ from the source data that
is used as a proxy in the classifier. We prove the existence of such
a clone given that infinite number of data points can be sampled
from the source distribution. We propose a method in which a
latent-variable generative model based on variational inference is
used to simultaneously sample and find the ‘closest-clone’ from
the source distribution through an optimization procedure in
the latent space. We demonstrate the efficacy of the proposed
method over several SOTA UDA methods for WBC classification
on datasets captured using different imaging modalities under
multiple settings.

Index Terms—WBC, Microscopic imaging, Unsupervised do-
main adaptation, Generative models, VAE.

I. INTRODUCTION

A. Background

M ICROSCOPIC review of Peripheral Blood Smear

(PBS) slides by clinical pathologists is considered as

the gold standard for detection of various disorders [1]. This

requires manual counting and classification of various types of

cells, including White Blood Cells (WBCs or leukocytes) and

analysing their morphological characteristics in PBS slides.

The presence, absence, or relative counts of these cells help

in the diagnosis of several types of diseases, including different
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forms of blood cancer, anaemia, and presence of parasites

like in malaria. This process of manual review is both la-

borious and error prone. In addition, due to variations in

stain, smearing process, the differentiation between various

subclasses of cells is often blurry. It takes significant expertise

and experience to correctly classify all types of cells. Lack of

qualified medical professionals, especially in non-urban areas

of developing countries, accentuates the problem. Furthermore,

the misdiagnosis, often caused by lack of adequate time to

examine a slide thoroughly, can even lead to fatalities. Thus,

automating and standardising this process is a pressing need.

Several attempts have been made to automate some of these

manual processes using methods ranging from classical com-

puter vision [2–4] to image cytometry [5, 6]. While classical

vision techniques suffer from issues like poor-generalization,

image cytometry is limited by its operational speed and

inability to engineer complex features [7]. An alternative is

to harness the power of Deep Convolutional Neural Networks

(CNNs) in addressing some of these issues [8]. In SC-

CNN [9], a weighted sum of multiple classifiers is used to

predict the class label of cell nuclei detected with a Spatially

Constrained CNN. In [10], a Conditional Generative Adver-

sarial Network (cGAN) [11] is used for nuclei segmentation,

a fundamental task for cell classification. MGCNN [12] is

a White Blood Cells classification framework that combines

modulated Gabor wavelet [13] and deep CNN kernels. A few

commercial products too have been built utilizing some of

these techniques. CellaVision [14], Shonit [15], etc., automate

the counting and classification of leukocytes and other blood

cells. These systems consist of an automated microscope

equipped with a digital camera, which captures the images of

a biological sample on a glass slide. A software based analysis

system, built using CNN models, is then used to localise and

classify different types of cells in the sample.

B. Motivation and Problem setting

Even though the aforementioned models and systems are

effective in their own ways, they suffer from certain issues that

may limit their utility. For instance, Deep CNN models used

for microscopic image classification are typically trained using

proprietary datasets. These datasets tend to be homogeneous

in terms of the capture device – microscopes, lens and cameras

used. This homogeneity and limited number of images in the

training dataset cause the models trained on them to over-fit

on specific characteristics of the image capturing device. As a

result, when images captured with a different device or camera
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are presented to these models, they often wrongly classify new

images, even though the trained human observers will have no

difficulty in classification (images shown in Figure 3). Hence,

as the image capturing device changes, these models fail to

adapt to the new input data distribution. This is known as

the domain shift problem. Domain shift also occurs when the

underlying imaging modality itself changes. For instance, a

deep learning model trained on Flow Cytometry images [6]

will not readily generalize for microscopic PBS images even

though both capture WBCs. The problem of domain shift

exists not only for medical images, but for any deep learning

system trained with single image source [16].

A natural solution to this problem is to (re)-train the model

with large amount of data obtained from the new device.

However, generating sufficient quantity of annotated medical

data is a time consuming and costly process. In addition,

bottlenecks such as regulatory clearances, cause a large de-

velopment cycle and delay in building such systems. We

consider one such problem in this paper, where performance

of CNNs trained on a dataset from a single source camera for

automatic classification of images of WBCs taken from PBS,

degrade when tested on unseen target dataset collected from

different cameras. This falls within the ambit of a well-known

computer vision problem known as Unsupervised Domain

Adaptation (UDA). However, almost all the SOTA methods

on UDA [16–18] need access to the unlabelled target data

during the time of training. While it may be feasible to obtain

unlabelled target data, retraining of the UDA model for every

newly emerging target domain might be infeasible, post their

deployment in the field. Therefore, an unsupervised domain

adaptation method that can operate without target data is

desirable [19]. Motivated by these observations, in this paper

we propose a UDA technique for WBC classification with

following core contributions:

1) We propose a UDA technique that does not require

access to the target data during the time of training.

2) We cast the problem of UDA as finding the ‘closest-

clone’ in the source domain for a given target image that

is used as a proxy for the target image in the classifier

trained on the source data.

3) We theoretically prove the existence of the ‘closest-

clone’ given that infinite data points can be sampled

from the source distribution.

4) We propose an optimization method over the latent space

of variational inference based Deep generative model, to

find the aforementioned clone through implicit sampling.

5) We demonstrate through extensive experimentation, the

efficacy of the proposed method over several state-

of-the-art UDA techniques for WBC classification on

several datasets obtained using different imaging modal-

ities with multiple domain shifts. We also validate our

algorithm on the standard datasets used for UDA.

II. RELATED WORK

Unsupervised Domain Adaptation (UDA) refers to the de-

sign of techniques aimed at improving the performance of

machine learning tasks such as classification and segmentation

when the classifier is trained using labels only from a source

domain and tested on data from related but a shifted target

domain. In this section, we present a review of the state-of-

the-art UDA techniques based on their principle of operation

and their use in the medical imaging community.

1) Adversarial-learning: These methods [16–18] learn

domain-invariant representations using the principles of ad-

versarial learning. ADDA [16] employs a source network,

pre-trained with labeled source data. Adversarial adaptation

is performed by learning a target network such that a domain

discriminator fails to predict the domain labels of the source

and target features. During inference, the target images are

mapped to the shared feature space by using the target network

which are predicted by the source classifier. Generate To

Adapt (GTA) [18] learns domain invariant embeddings using

a joint generative-discriminative set-up. During training, a

feature extraction network outputs embeddings that are used

by label prediction network for classification with a Generative

Adversarial Network (GAN) framework to generate realistic

source images. DIRT-T [20] employs a Virtual Adversarial

Domain Adaptation (VADA) model that pushes the decision

boundaries away from regions of high data density by pe-

nalizing violation of the cluster assumption in the target do-

main. Transferable Adversarial Training (TAT) [21] generates

transferable examples to fill in the gap between the source

and target domains without distorting feature distributions.

Domain Agnostic Learning (DAL) [22] uses Deep Adversarial

Disentangled Auto-Encoders (DADA) to disentangle domain-

invariant features in the latent space by minimizing the mutual

information between domain-invariant and domain-specific

features. The principles of adversarial feature learning has

been used in [23, 24] to transform real images to a synthetic-

like representation using unlabeled synthetic endoscopy im-

ages and achieve stain independence. In [25], a siamese

architecture with adversarial training is used to improve the

classification performance of target prostate histopathology

whole-slide images. Zhang et al. [26] used adversarial learning

for a noise adaptation task that allows a trained model to work

effectively for medical images with different noise patterns.

2) Target Reconstruction: These approaches for UDA re-

constructs source or target samples as an auxiliary task that

simultaneously focuses on creating a shared representation

between the two domains while keeping the individual char-

acteristics of each domain intact. CyCADA [27] adapts be-

tween domains by aligning both generative and latent space

representations, with cycle and semantic consistency loss.

PixelDA [28] learns transformation in the pixel space from one

domain to the other using task-specific and content–similarity

losses. SBADA-GAN [29] maps source samples into the target

domain and vice versa by imposing a class consistency loss to

improve the quality of reconstructed images. I2I Adapt [30]

is a framework that learns from the source domain and

adapt to the target domain by extraction of domain agnostic

features, domain specific reconstruction with cycle consistency

losses. Tulder et al. [31] proposed a representation learning

method that transforms data from different sources to a shared

feature representation using per-feature normalization, a cross-

modality based objective function. Goetz et al. [32] used
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domain adaptation to correct the sampling bias introduced with

sparsely labeled MR images for tissue classification.

3) Divergence Minimization: In these methods, source and

target distributions are aligned by minimizing a divergence

measure between the two distributions. Joint Adaptation Net-

works (JAN) [33] learns a transfer network by aligning the

joint distributions of multiple domain-specific layers across do-

mains based on a Joint Maximum Mean Discrepancy (JMMD)

criterion. Maximum Classifier Discrepancy (MCD) [34] aligns

distributions of source and target by utilizing the task-specific

decision boundaries. Task-specific classifiers are trained to

detect the target samples that are far from the support of the

source. Contrastive Adaptation Network (CAN) [35] estimates

the underlying label hypothesis of target samples through

clustering and adapts the feature representations according to

the Contrastive Domain Discrepancy (CDD) metric. Pacheco

et al. [36] addressed the discrepancies related to the stem

cell differentiation process by minimizing a Maximum Mean

Discrepancy (MMD) based loss function in a Recurrent Neural

Network (RNN) classifier.

4) Domain Randomization: Domain Randomization [37]

(DR) is another class of methods related to UDA that are

used to improve the generalization of classifiers. The idea

is to reduce the domain shift by randomizing properties in

the training environment (like source domain). Every data

point in the source domain is perturbed randomly during

training while assigning the same ground truth to the perturbed

samples. In methods such as [38], cinematically rendered

source domain images are varied in color and texture. For

RGB images, such transformations can be obtained by varying

hue, saturation, contrast and brightness. In [39], source images

intensity is divided into multiple non-overlapping ranges. A

random perturbation is added to the start/end pixel values

by sampling from a Gaussian distribution. Finally, one of

the following randomisation is applied to each range, a)

shift the intensity values by adding a random value from

a uniform distribution or b) transform the intensity values

using cumulative distribution function of beta distribution or

c) simply invert the intensity range. [40] varies source images

background color, add uniform noise, change the illumination

and distort source images with different scaling factors.

III. PROPOSED METHOD

A. Motivation

All the UDA methods mentioned in the previous section

assumes that one has access to images from the target dis-

tribution. These images are either used to retrain the original

classifier in a domain-invariant way [16–18] or to align the

target distribution to the source distribution [27, 28, 33, 35].

Also, in most of the methods [16–18, 35], the original classifier

trained on the source data is altered, so that a new decision

boundary is learned using the images from the target data in an

unsupervised manner. However, in many practical situations,

such as the current one, there would neither be access to the

target data nor the scope to retrain the classifier. Further, a

new unseen target domain may arise in the field which was

not used during adaptation.

We propose to address these issues in this paper by first

assuming that the classifier learned on the source data (Oracle

classifier) will perform well as long as the data comes from the

source distribution. Subsequently, (i) we learn to sample from

the source distribution and (ii) given an image from the target

distribution, we find an image from the source distribution

that is arbitrarily close (‘closest-clone’) to the given target

image, under some distance metric. Finally, the target image

is replaced with its ‘closest-clone’ from the source distribution

before its class is inferred by the Oracle classifier.

B. Existence of closest source ‘clone’

To begin with, we prove that given an image from the

target distribution, there exists an arbitrarily close image in

the source distribution (named as ‘closest-clone’), provided

infinite data can be sampled from the source distribution [41].

Let Ps(x) and Pt(x) denote the source and the target

distributions, respectively. We assume that the the underlying

random variable on which Ps and Pt are defined, forms a

separable metric space {X,D} where D is some distance

metric. Let Sn = {x1,x2,x3, ....,xn} be i.i.d. points drawn

from Ps(x) and x̃T be any point drawn from Pt(x). The

following lemma asserts that as n → ∞, there exists a point

in Sn that it arbitrarily close to x̃T , with probability one.

Lemma 1. If x̃S ∈ Sn is the point such that D{x̃T , x̃S} <
D{x̃T ,x} ∀ x ∈ Sn, then as n→∞, x̃S converges to x̃T

with probability 1 (Refer supplementary material for proof).

Lemma 1 guarantees that given an image from the target

distribution, an image from the source distribution, that is

arbitrarily close to the given target image can be found out

given the following requirements are met:

• Given a few images from the source distribution Ps, one

can sample infinite images from it.

• Given infinite samples from Ps, it is possible to find the

‘closest-clone’ (under D) in Ps, to the target image x̃T .

To satisfy the above requirements, in subsequent sections, we

employ variational inference based sampling methods on the

source distribution with which one can implicitly sample and

find the ‘closest-clone’ simultaneously.

C. Variational inference for source sampling

In variational inference based generative models [42], it is

assumed that the data or the observed variable (in this case

images from Ps) is generated via a two step process: (i)

sample from the distribution Pθ(z) of an unobserved or latent

variable z, (ii) given a data point from the latent variable,

sample from the conditional distribution Pθ(x|z) to obtain the

data. Owing to the fact that the parameters of the true latent

prior Pθ(z) and data conditional Pθ(x|z) are unknown, and

the posterior Pθ(z|x) is intractable, a variational distribution,

Qφ(z|x) is used to approximate the true posterior. With this,

it can be shown that the log-likelihood of the observed data

will decompose into two terms (Eq. 1), an irreducible non-

negative KL-divergence between Pθ(z|x) and Qφ(z|x) and

the Evidence Lower Bound (ELBO) given by Eq. 2.
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Figure 1. The architecture for the Variational Auto-Encoder in the proposed method (TIGDA). Edges of the input microscopic image is concatenated with
the features from the decoder hθ . The encoder and decoder parameters φ, θ are optimized with reconstruction loss Lr , KL-divergence loss DKL and the
perceptual loss Lp. The perceptual model Pψ outputs lth layer features of VGG-16 (or ResNet-50) classifier trained on source data. A zero mean and unit
variance isotropic Gaussian prior is imposed over the latent space z.

lnPθ(x) = L(θ, φ) + DKL[Qφ(z|x)||Pθ(z|x)] (1)

Here, L(θ, φ) represents ELBO which is given by,

L(θ, φ) = EQφ(z|x)
[ln (Pθ(x|z))]− DKL[Qφ(z|x)||Pθ(z)]

(2)

In Eq. 1, the KL-term is irreducible and non-negative

and thus, L(θ, φ) serves as a lower bound on the data log-

likelihood which is optimized. In deep generative model

frameworks, Qφ(z|x) and Pθ(x|z) are parameterized using

probabilistic encoder gφ (that outputs the parameters µz and

σz of a distribution) and decoder hθ neural networks with

parameters φ and θ respectively, that maps the data space into

latent space and vice-versa. Additionally, Pθ(z) is taken to

be an arbitrary prior on z which is usually a 0 mean and

unit variance Gaussian distribution. The first term in Eq. 2 is

approximated using a norm-based divergence metric between

the input and the output of the decoder as below:

EQφ(z|x)[ln (Pθ(x|z))] ≈ Lr = ‖x− x̂‖22 (3)

Note that Eq. 3 can be seen as ‘reconstruction’ or ‘Auto-

Encoding’ of the data. Further, the second term in ELBO

employs a variational approximation to the true posterior

Pθ(z|x). Thus, the aforementioned method is famously re-

ferred to as the Variational Auto-Encoder (VAE) [42]. For the

current problem of interest, a VAE is trained using the images

from the source distribution Sn and once trained, the decoder

network serves as a sampler for the source distribution using

a two step process: (i) sample z ∼ N (0, I), (ii) sample x as

the output of the decoder hθ.

VAEs are know to produce blurred images in their conven-

tional formulation with norm-based losses. To address this,

we use the edge information (extracted using standard edge

detectors) of the input image by passing it to the decoder via

a skip connection, as shown in Figure 1. Rationale behind this

is that unlike features such as colour and contrast, edges are

in general invariant to the changes in camera characteristics.

Edge information reduces the blurring due to the decoder as

shown in Figure 9 and ablation studies in Table VI.

Further, we also incorporate the perceptual loss, which is

known to enhance the generation quality of VAEs, along with

the standard norm-based losses. Perceptual loss Lp between

two images x and x̂ is defined as the Euclidean distance

between the representations or the features obtained under a

pre-trained classifier model
(

Pψ
)

. Mathematically,

Lp = ‖Pψ(x)− Pψ(x̂)‖
2
2 (4)

The idea behind Lp is that the distance metrics in a represen-

tational space learned by a classifier model trained on large

scale data are better than on raw image space. This is shown

to enhance image quality in several applications [43]. Figure

1 depicts the network diagram of the VAE on the source data

with the proposed edge concatenation.

D. Finding ‘closest-clone’ through Latent Search

As mentioned in the previous sections, the objective is to

simultaneously sample and search for the ‘closest-clone’ in the

source distribution, given a sample from target distribution.

Suppose a VAE has been trained on the source distribution

Ps(x), the decoder hθ of which outputs a ‘de-novo’ image

from Ps(x) by taking a normally distributed latent variable as

input. That is,

∀ z ∼ N (0, I), x̂ = hθ(z) ∼ Ps(x̂) (5)

Our goal is to find the ‘closest-clone’ under some distance

metric D, for any given image from the target distribution.

Mathematically, given a x̃T ∼ Pt(x), find x̃S as follows:

x̃S = hθ(z̃S) :

{

D{x̃T , x̃S} < D{x, x̃T }

∀ x = hθ(z) ∼ Ps(x)

(6)
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Since D is computable and hθ is a neural network that

outputs a sample from Ps(x) as a function of the latent

variable z, finding x̃S (Eq. 7) can be cast an optimization

problem over z with minimization of D as the objective:

z̃S = argmin
z

D
(

x̃T , hθ(z)
)

(7)

x̃S = hθ(z̃S) (8)

The optimization problem is Eq. 7 can be solved using gradient

descent based techniques on the decoder network hθ∗
(

θ∗

are the parameters of the decoder network trained only on

the source images Sn
)

with respect to z. This implies that

given any input image, the optimization problem in Eq. 7 will

be solved to find its ‘closest-clone’ in the source distribution

which is used as a proxy in the original classifier trained only

on Sn. We call the iterative procedure of finding x̃S through

optimization using hθ∗ as the Latent Search (LS).

Finally, inspired by the observations made in [44, 45], we

propose to use Structural Similarity Index (SSIM) loss for

D to conduct the Latent Search. Unlike norm-based losses,

SSIM loss helps in preservation of structural information as

compared to discrete pixel level information. SSIM is defined

in [46] using the three aspects of similarities, luminance
(

l(x, x̂)
)

, contrast
(

c(x, x̂)
)

and structure
(

s(x, x̂)
)

that are

measured for a pair of images {x, x̂} as follows:

l(x, x̂) =
2µxµx̂ + C1

µ2
x
+ µ2

x̂
+ C1

(9)

c(x, x̂) =
2σxσx̂ + C2

σx

2 + σx̂

2 + C2
(10)

s(x, x̂) =
σxx̂ + C3

σxσx̂ + C3
(11)

where µ’s denote sample means and σ’s denote variances.

C1, C2 and C3 are constants as defined in [46]. With these,

SSIM and the corresponding loss function Lssim, for a pair

of images {x, x̂} are defined as:

SSIM(x, x̂) = l(x, x̂)α · c(x, x̂)β · s(x, x̂)γ (12)

where α > 0, β > 0 and γ > 0 are parameters used to adjust

the relative importance of the three components.

Lssim(x, x̂) = 1− SSIM(x, x̂) (13)

Since our method does not utilize target images and em-

ploys generative Latent Search, we call our method Target-

Independent Generative Domain Adaptation (TIGDA). The

target independence of our method refers to the fact that we

do not use target data during training, unlike SOTA UDA

methods. The inference for TIGDA is shown in Figure 2.

IV. IMPLEMENTATION DETAILS

A. Training of the VAE

The Encoder gφ and Decoder hθ network architectures

for the VAE are shown in Figure 1. We use Sobel Edge

operator for Edge concatenation. Edges of the input image are

concatenated with the output of tanh nonlinearity as shown in

3 12
8

128
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3 12
8

128

x̂

z = z+η∇zLssim(x̃T , x̂)

y

Edge Operator

E

z
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WBC
subtype

Figure 2. Latent Search procedure during inference with TIGDA. The latent
vector z is initialized with a random sample drawn from N (0, 1). Iterations
over the latent space z are performed to minimize the Structural Similarity
loss Lssim between the input target image x̃T and the predicted target
image x̂, which is the output of the trained decoder (blue dotted lines).
After convergence of Lssim loss, the optimal latent vector z̃S , generates
the ‘closest-clone’ x̃S which is used to predict the class of x̃T using the
classifier Cψ trained on source samples.

Figure 1. The VAE is trained using (i) the Mean squared error

reconstruction loss Lr between the real and VAE reconstructed

images and (ii) the perceptual loss Lp for which the features

are taken from the lth layer of the VGG-16 (10th layer) or

RestNet-50 (38th layer) classifier trained on source images for

WBC classification task. The hidden layers of Encoder and

Decoder networks use Leaky ReLU and tanh as activation

functions with the dimensionality of the latent space being

64. VAE is trained using a standard gradient descent procedure

with RMSprop optimizer.

B. Inference through Latent Search

Once the VAE is trained, given an image x̃T from the

target distribution, the Latent Search algorithm searches for

an optimal latent vector z̃S that generates its ‘closest-clone’

x̃S from PS . The search is performed by minimizing the

SSIM loss Lssim between the input target image x̃T and

VAE reconstructed target image. The latent vector is optimized

using a gradient-based optimization procedure, performed for

K (a hyper-parameter) iterations over the latent space of the

VAE for every target image. The gradient based optimization

is implemented with Nesterov Accelerated Gradient method

with a momentum of 0.5. Finally, the class for the input target

image is assigned the same as the one given by the source

classifier Cψ on x̃S . Cψ is a VGG-16 or RestNet-50 classifier

trained on source images. Note that our algorithm solves an

optimization problem before predicting class for every input

target image. However, since it involves only a forward-pass

through a trained neural network (decoder hθ∗ ), the time taken

is only of the order of few milliseconds on standard CPUs.

The complete algorithmic steps and the architectural details

for TIGDA are given in the supplementary material.

V. DATASET DETAILS

The datasets used in this study will be described in this

section. Peripheral blood smear (PBS) consists primarily of

three cell types – RBC (Red Blood Cell or erythrocyte), WBC
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Neutrophil Lymphocyte Monocyte Eosinophil Basophil IG Atypical NRBC GP PC Artefact

Camera A

Camera B

Camera C

Figure 3. Samples of White Blood Cells and related microscopic images (categorized into 11 classes) taken from three different cameras A, B and C.
(IG=Immature granulocytes, NRBC=Nucleated red blood cells, GP=Giant platelets, PC=Platelet clumps). It is to be noted that there are no visually distinctive
features across cameras but it is easy for a human-pathologist to correctly classify despite camera changes. On the other hand, deep learning models fail to
generalize across cameras.

Table I
NUMBER OF WHITE BLOOD CELLS AND RELATED MICROSCOPIC IMAGES FOR EACH SUBTYPE (CLASS) CAPTURED WITH THREE DIFFERENT CAMERAS A,

B AND C. (NE=NEUTROPHIL, LY=LYMPHOCYTE, MO=MONOCYTE, EO=EOSINOPHIL, BA=BASOPHIL, IG=IMMATURE GRANULOCYTES,
NRBC=NUCLEATED RED BLOOD CELLS, GP=GIANT PLATELETS, PC=PLATELET CLUMPS).

Camera NE LY MO EO BA IG Atypical NRBC GP PC Artefact Train/Test

A 3,885 1,507 2,224 2,076 65 863 984 651 486 138 2,550 10,849/4,580

B 2,045 1,840 612 373 67 1,073 2,257 97 918 796 1,437 7,997/3,518

C 85 43 144 85 12 323 861 321 303 11 16 1,548/656

(White Blood Cell or leukocyte) and platelet (or thrombo-

cyte). Each of these primary classes have subclasses. The

subclasses of WBCs are: neutrophil, lymphocyte, monocyte,

eosinophil, basophil, immature granulocytes and atypical/blast

cells. Apart from these, there are other types of cells and

artefacts which can have appearance similar to leukocytes.

These are – nucleated red blood cell (NRBC), large platelets,

platelet clumps, and stain artefacts [1]. In the current study,

we consider classification of 11 categories of which seven are

subtypes of WBCs and rest four are NRBC, large platelets,

platelet clumps, and stain artefacts (images shown in Figure 3).

Data used in our experiments comprises images from the PBS

slides processed after complete de-identification to remove

all the patient information, including age and gender. These

were collected from two large clinical laboratories in Ban-

galore, India. The internal ethics committee of the respective

laboratories approved the study. The samples were collected

retrospectively without prospective patient recruitment.

The hardware consists of the following components, (a)

Optical system: Consists of an optical tube (40X or 100X Plan

Achromat objective and 10X eyepiece) and Abbe Condenser

with white LED source, (b) Camera: The system is built such

that either a mobile phone or a USB camera can be fitted on

top of the eyepiece with a 3D printed attachment, aligning the

optical axis of the tube/eyepiece with the camera, (c) Hardware

control: A small PCB designed to receive USB commands

and drive motors and LED, (d) XYZ slide stage: The XYZ

platform is built using commercially available low-cost ball

screws and stepper motors, along with some machined parts

[47]. The images used in this work are captured through 3

different cameras – One cell phone make (iPhone 6s) and two

brands of USB camera (from e-con systems [48] and das-Cam

[49]). All cameras had resolution of at least 13MP with varying

hardware and optical designs that induce the domain shift. For

example, econ camera has an AR1335 CMOS image sensor

and lens with 1/3.2” optical format while das-Cam contains

an OV13850 CMOS sensor with a lens of 1/3.06” form factor.

Images are collected only from the ‘monolayer’ region

of the slides – where the red blood cells are just touching

each other. This is the area of the slide which is typically

used for manual analysis [1]. Slides prepared using varied

staining types were used. The images are of size approximately

13MP, with a spatial resolution of around 5.5 pixels per

micron. WBC and other similar looking cells (as described

above) are localised in these images using a U-Net [50] based

technique described in [15]. Each sample slides can potentially

yield hundreds of unique WBC candidates. For annotation,

we cropped 128 × 128 area around the WBCs identified by

the extraction model. These cells are then presented to three

different certified medical professionals for annotating into

different subtypes, using an in-house web based annotation

tool. There is usually a high degree (as high as 20%) of inter-

observer variability in the data annotation process. Therefore,

we use only those images where at least 2 out of 3 clinical

pathologists agree on the class while the rest of the images are

rejected. Table I describes the summary of the datasets named

as A, B and C corresponding to three cameras used.
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Table II
ACCURACY (MEAN ± STD%) VALUES FOR UDA TASKS ON WBC AND RELATED MICROSCOPIC IMAGES CAPTURED WITH THREE DIFFERENT CAMERAS

A, B AND C. X→Y INDICATES MODEL TRAINED ON IMAGES FROM SOURCE CAMERA X AND TESTED ON IMAGES FROM TARGET CAMERA Y. RESULTS

ARE REPORTED AS AN AVERAGE OVER FIVE INDEPENDENT RUNS USING VARIOUS STATE-OF-THE-ART UDA AND DOMAIN RANDOMIZATION METHODS.
NOTE THAT WHILE ALL UDA METHODS PERFORM BETTER THAN THE SOURCE ONLY MODEL, TIGDA OFFERS THE BEST PERFORMANCE DESPITE NOT

USING THE TARGET IMAGES.

ResNet-50 VGG-16

Models A→B A→C B→A B→C C→A C→B A→B A→C B→A B→C C→A C→B

Source Only 42.7±0.5 51.3±0.4 35.8±0.6 46.2±0.2 22.8±0.6 26.9±0.4 37.4±0.5 47.6±0.4 31.2±0.3 40.1±0.5 17.6±0.6 22.7±0.2

DR1 [38] 52.5±0.3 57.7±0.1 43.6±0.2 51.7±0.4 34.5±0.3 36.2±0.2 44.6±0.1 50.9±0.2 38.2±0.4 46.5±0.3 27.3±0.3 30.8±0.2

DR2 [39] 60.3±0.2 65.4±0.3 55.9±0.2 64.2±0.4 44.6±0.3 49.8±0.4 54.1±0.1 59.6±0.2 48.7±0.1 60.5±0.4 41.3±0.3 45.2±0.1

DR3 [40] 50.4±0.2 53.4±0.4 40.5±0.2 49.8±0.3 29.5±0.3 32.7±0.4 41.8±0.3 47.5±0.2 35.9±0.1 42.1±0.2 23.6±0.2 28.3±0.3

ADDA [16] 43.5±0.1 52.7±0.2 37.3±0.1 48.1±0.5 24.9±0.4 29.1±0.5 39.3±0.2 50.1±0.3 33.6±0.4 43.3±0.2 19.8±0.4 25.2±0.5

GTA [18] 56.2±0.4 66.3±0.5 48.1±0.2 56.7±0.6 35.5±0.4 37.8±0.1 52.6±0.7 62.1±0.3 41.9±0.6 50.7±0.3 30.1±0.1 33.7±0.6

TAT [21] 65.8±0.5 70.5±0.4 54.8±0.3 63.1±0.7 44.7±0.2 48.2±0.3 61.7±0.5 67.3±0.4 50.6±0.4 58.3±0.6 40.3±0.1 42.5±0.1

DIRT-T [20] 55.7±0.5 65.1±0.6 49.2±0.2 55.4±0.3 34.2±0.3 37.5±0.4 53.1±0.8 61.9±0.7 40.7±0.5 50.3±0.5 31.3±0.4 32.9±0.7

DAL [22] 64.7±0.2 69.4±0.3 56.3±0.2 62.7±0.4 43.5±0.1 47.5±0.5 60.8±0.2 66.5±0.5 51.8±0.4 59.1±0.3 39.7±0.1 41.1±0.2

CyCADA [27] 67.2±0.5 73.7±0.1 58.2±0.2 64.5±0.6 48.4±0.4 50.2±0.3 62.3±0.3 70.2±0.2 53.4±0.4 59.7±0.2 42.6±0.6 43.9±0.7

PixelDA [28] 65.9±0.2 71.8±0.7 59.1±0.8 66.2±0.5 47.8±0.4 50.6±0.5 61.5±0.3 68.4±0.4 54.6±0.7 58.8±0.6 41.3±0.6 42.5±0.4

SBADA-GAN [29] 66.3±0.2 70.5±0.2 60.3±0.3 65.6±0.4 46.4±0.7 51.1±0.1 62.7±0.6 67.9±0.8 53.8±0.7 58.7±0.2 42.7±0.4 44.6±0.7

I2IAdapt [30] 64.4±0.6 68.7±0.5 61.2±0.3 65.4±0.4 45.2±0.1 49.7±0.6 63.9±0.8 65.1±0.1 52.5±0.7 55.6±0.4 43.8±0.8 45.3±0.3

JAN [33] 49.6±0.2 58.2±0.5 43.3±0.2 54.7±0.4 30.2±0.7 35.4±0.8 43.5±0.6 54.2±0.4 39.1±0.3 47.5±0.3 26.3±0.4 31.4±0.6

MCD [34] 55.4±0.4 67.1±0.8 49.2±0.7 55.8±0.6 36.1±0.2 39.2±0.5 50.9±0.7 63.2±0.4 42.3±0.3 50.4±0.5 31.9±0.8 34.8±0.5

CAN [35] 67.8±0.4 71.3±0.5 63.4±0.5 65.4±0.3 47.3±0.2 51.2±0.4 61.9±0.8 68.1±0.3 54.6±0.6 59.3±0.4 40.9±0.2 45.7±0.8

TIGDA (Ours) 76.2±0.3 80.1±0.4 72.3±0.5 74.8±0.6 53.5±0.4 56.2±0.3 71.8±0.5 76.7±0.2 63.2±0.5 68.6±0.7 50.8±0.2 55.1±0.4

(a) ADDA (b) GTA (c) DIRT-T (d) TAT (e) DAL (f) TIGDA

Figure 4. t-SNE plots of features generated by ADDA [16], GTA [18], DIRT-T [20], TAT [21], DAL [22] and TIGDA on domain adaptation task A→C. We
used different markers and different colors to denote 11 categories. It is seen that TIGDA offers better clustering as compared to the rest.

VI. EXPERIMENTS AND RESULTS

A. Benchmarking Experiments

In the first set of experiments, we benchmark performance

of the baseline classifier with the following experiments:

(a) Train and test on the same dataset type (A/B/C), (b)

Train and test by combining images from all dataset types

(A+B+C), (c) Train on one dataset and test on the other (all six

combinations) with and without class balancing. The notation

X→Y symbolizes training on a dataset X and testing on Y.

Table III lists the results of experiment (a) which establishes

an upper bound on the performance and (b) where it is seen

that the performance degrades when all images from all three

datasets are combined. This is due to the existence of domain

shift between the datasets that makes learning difficult even

with supervision. Moreover, combining datasets is not possible

in the UDA setting where the labels are not known for the

target data. Results of experiment (c) are shown in Table IV

where it is seen that the accuracy severely degrades when

train and test sets are from different domains despite inducing

an artificial class balance. The goal of UDA techniques is to

improve the accuracies reported in Table IV.

B. Baseline Experiments

The first set of task is of classification across 11 classes with

classifiers trained on one (source) dataset and tested on another

Table III
BENCHMARKING A,B AND C DATASETS USING RESNET-50 CLASSIFIER

WITH DIFFERENT TRAIN AND TEST SETS. IT IS SEEN THAT COMBINING

ALL DATASETS MAKES LEARNING DIFFICULT BECAUSE OF DOMAIN SHIFT.

Measure A→A B→B C→C (A+B+C)→(A+B+C)

Train Acc. 98.6±0.1 99.3±0.2 100.0±0.0 98.7±0.2

Test Acc. 95.2±0.2 94.0±0.3 92.5±0.1 84.4±0.3

Table IV
ACCURACY ON RESNET-50 CLASSIFIERS FOR DIFFERENT ADAPTATION

TASKS. IN THE SECOND ROW, ALL THE THREE DATASETS ARE MADE TO

HAVE SAME SIZE BY RANDOMLY SUBSAMPLING THE DATASETS.

Measure A→B A→C B→A B→C C→A C→B

W/o Balance 42.7±0.5 51.3±0.4 35.8±0.6 46.2±0.2 22.8±0.6 26.9±0.4

With Balance 40.4±0.1 36.2±0.4 38.9±0.2 30.5±0.2 24.5±0.4 28.2±0.3

(target) dataset. We report average classification accuracies

with standard-deviation (averaged over five independent runs)

with two backbone architectures for the source classifier:

ResNet-50 and VGG-16. For all the UDA tasks, the VAE is

trained with the entire source data and tested on the entire

target data. Table II compares the performance of TIGDA with

12 SOTA UDA baselines, along with the accuracy without any

UDA (called Source Only). It is seen that although all the

UDA methods improve upon the Source Only performance,

TIGDA offers the best performance despite not using any
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Figure 5. A-Distance (lower is better) of JAN [33], MCD [34], CAN [35]
and TIGDA.

data from the target distribution. The confusion matrix for a

few methods is given in the Figure 2 of the Supplementary

material. We also compare with three Domain Randomization

(DR) techniques, DR1 [38], DR2 [39] and DR3 [40]. While

DR provides performance boost, they have poorer performance

as compared to TIGDA. This is because DR methods typically

work well when the unseen target is within the scope of the

class of random perturbations that are made on the source

which is not the case always. In TIGDA on the other hand,

every target image is made to resemble the source image

through implicit sampling. Since VAE learns to sample from

the entire source domain, the domain shift is implicitly reduced

during inference without explicitly assuming any form for the

shift. It is also observed that the performance of the classifier

when trained and tested on single source domain (around 92-

95% for all the datasets) do not degrade with TIGDA.

1) t-SNE: To further examine our hypothesis, in Figure 4

we depict the t-SNE [51] plots of features generated by ad-

versarial based UDA methods (ADDA [16], GTA [18], DIRT-

T [20], TAT [21] and DAL [22]) for the domain adaptation

task A→C. For TIGDA, we plot the embeddings of the latent

variable z̃S obtained through the LS on the target images. It

is seen that the representation generated by the LS of TIGDA

is more separated compared to those generated by adversarial

training based UDA methods. A similar observation is made

on the first two principal component plots of the latent

representations (Please refer to Figure 1 in supplementary

material).

2) A-Distance: To ascertain the closeness of the ‘closest-

clones’ obtained through the LS, to the source distribution,

we compute the A-distance [52], which is a measure of

similarity between two probability distributions. Similar fea-

ture distributions will have lower A-distance between them

as compared to dissimilar feature distributions. A-distance is

given by d̂A = 2(1 − 2ǫ) where ǫ is the generalization error

of a linear SVM classifier trained to discriminate between the

source and target domains. Figure 5 displays d̂A for the four

domain adaptation tasks with JAN [33] features, MCD [34]

features and CAN [35] features, respectively. In our case, d̂A is

measured between the latent vectors (produced by the Encoder

of the VAE) of the source images and the latent vectors of the

‘closest-clones’ for target images obtained from Latent Search.

We observe that d̂A is smallest in our case as compared to

other methods for all the tasks. This implies that the features

obtained using TIGDA are transferable between the source and

target domains, aiding better adaptation.

Camera B Camera A

PixelDA I2IAdapt CyCADA SBADA-GAN TIGDA

real image

Figure 6. Translation of images from one domain (Camera B) to other (Cam-
era A) using reconstruction based domain adaptation methods: PixelDA [28],
I2IAdapt [30], CyCADA [27], SBADA-GAN [29]. In TIGDA, we depict
the ‘closest-clones’ of Camera B (target) images in the Camera A (source)
domain. It is seen that TIGDA preserves the edges, perceptual quality and
structural details in the generated clones.

Target

Camera B

Camera C

Camera A

Source

Camera A

Camera B

Camera C

real target VAE
reconstruction

after 200 after 400 after 600

iterations over the latent space of source

closest-clones

Figure 7. Illustration of Latent Search in TIDGA. VAE reconstructs images
prior to LS. The closest-clones obtained after every 200 iterations are shown.
A transformation is observed from the target to the source domain as the LS
progresses.

3) Qualitative examination: To qualitatively examine the

performance of the reconstruction-based methods, we plot the

transformed target samples from (source) Camera B to (target)

Camera A for different methods as shown in Figure 6. It

is seen that I2IAdapt [30] and SBADA-GAN [29] are not

able to capture fine subtleties of partially visible White Blood

Cells in microscopic images that results in poor performance.

PixelDA [28] and CyCADA [27] result in blurry images

while TIGDA generated images are better where it is seen

that the subtleties like edge information are well-preserved.

In summary, we have demonstrated that TIGDA achieves

better performance over the SOTA adversarial, divergence and

reconstruction based UDA methods without any requirement

for target images.

4) One-shot learning: Even though TIGDA does not utilize

the target data during training, target image is used for LS

during inference. Therefore, we also compare TIGDA with

SOTA one-shot learning techniques in Table V. In one-shot

learning methods, a single target image is used during train-

ing for adaptation. It is seen that TIGDA outperforms such
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Table V
COMPARISON OF TIGDA WITH ONE-SHOT LEARNING METHODS.

Method A→B C→B

ProtoNet [53] 61.9±0.1 49.6±0.3

MatchingNet [53] 57.6±0.2 43.7±0.1

DAPN [54] 68.9±0.2 51.9±0.2

DN4 [55] 55.4±0.1 44.6±0.2

FADA [56] 60.6±0.3 45.9±0.3

TIGDA (Ours) 76.2±0.3 56.2±0.3

techniques. This is because, in one-shot learning methods, the

target image that is used for training is fixed which restricts

the learnability. However in TIGDA, no target image is used

during training but a fresh latent search is conducted on each

input target image during inference.

C. Ablation studies

To examine the contributions made by each of the pro-

posed components, we conduct several ablation experiments

on TIGDA in this section.

1) Effect of number of iterations on LS: The inference of

TIGDA involves a gradient-based optimization through the

decoder network hθ∗ to generate the ‘closest-clone’ for a given

target image. In Figure 7, we show the transformation of a few

target images after every 200 iterations. It can be seen that as

the number of iterations increase, the target images change

their characteristics to move towards the source distribution.

Quantitatively, we plot the accuracy as a function of number

(a) Inference on camera C micro-
scopic images when the model is
trained on camera A images.

(b) Inference on camera C micro-
scopic images when the model is
trained on camera B images.

Figure 8. Performance of gradient-based Latent Search during inference on
target microscopic images for two domain adaptation tasks using different
objective functions; MSE=Mean Squared Error, MAE=Mean Absolute Error,
SSIM=Structural Similarity Index. It is seen that the loss saturates around
500-600 iterations.

of iterations in Figure 8 where it is seen that it saturates

around 500-600 iterations. We thus used 600 iterations in all

the previous experiments in Table II.

2) Effect of the Edge concatenation: As described earlier,

the edge-map of the input image is concatenated with one of

the layers of decoder both while training and inference. Figure

9b shows the quality of image generated after Latent Search

when the model was trained without edge concatenation

(wEc). It can be observed that edge information of the nucleus

and surrounding cells is lost resulting in a blurry image.

Table VI
ABLATION OF DIFFERENT COMPONENTS OF TIGDA DURING TRAINING

AND INFERENCE; EDGE, PERCEPTUAL LOSS Lp AND LATENT SEARCH

(LS). ACCURACY (MEAN ± STD%) VALUES ARE REPORTED AS AN

AVERAGE OVER FIVE INDEPENDENT RUNS FOR TWO TASKS.

Edge Lp LS A→B B→C

35.8±0.2 39.5±0.1

X 39.7±0.4 42.2±0.3

X 38.9±0.5 43.4±0.3

X 50.2±0.3 52.8±0.2

X X 43.7±0.2 46.9±0.5

X X 57.6±0.4 60.3±0.2

X X 53.4±0.3 57.1±0.4

X X X 76.2±0.3 74.8±0.6

Further, the accuracy drops to 57.6% if edge concatenation is

removed from VAE for the task A→B as evident from Table

VI, whereas the accuracy for TIGDA is 76.2% for the same

task. Similarly, the accuracy drops to 60.3% for the task B→C

without edge concatenation while it is 74.8% for TIGDA.

(a) real target (b) wEc (c) wPl (d) wLS (e) TIGDA

Figure 9. Ablation of TIGDA for task C→A. (wEc=without Edge concate-
nation, wPl=without Perceptual loss, wLS=without Latent Search). The best
source-like features are observed in the image with all the components of
TIGDA.

3) Effect of Perceptual loss Lp: We have used a perceptual

model Pψ trained on source samples while training the VAE.

Perceptual loss minimizes the Euclidean distance between the

(perceptual) feature vectors of input and reconstructed source

images. It measures image similarities more robustly than per-

pixel losses (e.g., Mean squared error). It ensures that the VAE

reconstructed image is semantically similar to the input. We

can observe from Figure 9c that VAE reconstructed image

without perceptual loss (wPl) during training, has different

color and texture patterns from the real target image shown in

Figure 9a. The finer background details are missing in Figure

9c. Such images will result in a poor latent space and the

performance on target images will drop during inference. Table

VI shows that the accuracy drops to 53.4% for the task A→B

without perceptual loss while it is 76.2% for TIGDA that uses

perceptual loss during training. Similarly the accuracy drops

to 57.1% for the task B→C when perceptual loss was not

employed during training but the accuracy on the same task

is 74.8% with perceptual loss.

4) Effect of Latent Search and other Loss functions: To

validate the importance of the Latent Search procedure, in

Figure 9d we show the VAE reconstructed images without

Latent Search for the target image shown in Figure 9a. Figure

9e shows the generated image after Latent Search for the

task C→A. It is observed (empirically) that the ‘closest-clone’

obtained through TIGDA shown in Figure 9e is visually more

closer to the source domain as compared to VAE reconstructed
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image shown in Figure 9d. When no Latent Search is em-

ployed, the accuracy for the tasks A→B and B→C drops to

43.7% and 46.9% respectively as shown in Table VI. To affirm

the usefulness of the choice of SSIM as loss for the Latent

Search, we implemented Latent Search with three different

losses, Mean Squared Error (MSE), Mean Absolute Error

(MAE) and Structural Similarity Index (SSIM) loss and found

that SSIM loss is the best performing among the three. SSIM

loss compares pixels and their corresponding neighborhoods in

two images, preserving the luminance, contrast and structure

information. On the other hand, MSE or MAE measures only

the absolute pixel differences rather than the structural differ-

ences. Figure 8a and 8b depict the outcome of these ablation

studies where the superiority of the SSIM loss is seen over

MSE and MAE for the tasks A→C and B→C respectively.

Table VI summarizes all the ablation studies conducted on

two domain adaptation tasks with different combinations of

the components. It can be noted that the best performance

is observed by utilizing all the three components: Edge con-

catenation, perceptual loss and Latent Search procedure. Thus,

with all the aforementioned studies, we have demonstrated the

utility of all the individual components used in TIGDA for

UDA task on WBC classification.

5) Effect of other hyperparameters: In this section, we

study the effect of four hyperparameters: (a) the window size

for the SSIM loss used for Latent Search, (b) the position

of the Edge-operator in the decoder network, (c) use of

Skip connection as in [50] instead of edge concatenation, (d)

number of source samples required to generate high-fidelity

images using VAE. Figure 10(a) depicts the change in the

performance for A→B with varying window sizes of SSIM.

While the performance varies with different window sizes, the

best accuracy is observed with the default choice of 11 that is

used in all our experiments.

Next, in Figure 10(b), we vary the layer of the decoder to

concatenate edges. It is seen that the performance is best at

the penultimate layers since the edges are used only to reduce

the blurriness of the generated image that occurs near the last

few layers of the decoder. Providing the edge information at

initial layers of the decoder, regularizes more than required,

thus degrading the quality of the generated image.

To further quantify the effect of edge concatenation as

a regularizer, we replace it with another type of spatial

contiguity in the form of skip connections as in a segmentation

network such as UNet [50]. We have used five different types

of skip connections. Type-1 refers to no skip connection. Type-

2 connects FC1 layer (Refer to Supplementary material for the

names of the layers in the architecture) of the encoder with

FC2 layer of the decoder network. Type-3 connects all the

layers in the encoder with layers of corresponding dimensions

in the decoder (like a U-Net). Type-4 connects Conv1 layer

in the encoder with Conv9 layer of the decoder. Type-5

is combination of Type-2 and Type-4 skip connections. We

observe in Figure 10(c) that having skip connection is better

than not having it since it regularizes the network. Further,

Type-4, that connects the initial layers of the encoder with

final layers of the decoder, has the best performance. This can

be explained by the fact that initial layers of the CNNs are

known to extract edge-like features which is shown to enhance

the performance in the given task. Connecting more layers as

in Type-3 and Type-5 leads to over regularization and degrades

the performance. However, explicit edge concatenation still

provides the best performance.

In the final plot Figure 10(d), we report the Fréchet In-

ception Distance (FID) [57], that quantifies the quality of the

generated data (lower the better) for any generative model, as

a function of the number of source samples used to train the

VAE. It is seen that with the increase in number of images

for training VAE, the quality of generated images improve as

shown by the FID values. Therefore, with about 10K samples,

one can expect the VAE to sample high-fidelity source images.

VII. TIGDA BEYOND PBS

In this section, we examine the effectiveness of the proposed

method TIGDA on two datasets, Imaging Flow Cytometry [6]

and Office-31 [62], apart from PBS. In Cytometry dataset,

WBCs from whole blood samples were stained using a

ImageStream-X MK II imaging flow cytometer. A three chan-

nel image is extracted with two bright-field (at wavelengths

of 420 nm - 480 nm and 570 nm - 595 nm) and a dark-

field channel. Four classes of WBCs are employed in this

study: Eosinophil (1470 images), Neutrophil (4809 images),

Lymphocyte (4570 images) and Monocyte (1239 images). The

objective of this experiment is to examine if TIGDA can

perform domain adaptation when the source is Cytometry data

and the target is PBS and vice versa. Since Cytometry data

doesn’t have the notion of color, we take the grayscale version

of the PBS dataset with a 60 × 60 central crop (in all the

images) representing the nucleus. Figure 11 depicts a sample

image from each class of the Cytometry dataset and the PBS

dataset which apparently shows a significant domain shift.

Office-31 [62], a publicly available standard dataset for UDA

tasks (some sample images are given in the supplementary

material), contains images from 31 common object types taken

with three different imaging sources namely Dslr (D), Webcam

(W) and Amazon (A). The objective of UDA is to adapt

between these three domains.

Table VII lists the results of TIGDA along with some SOTA

UDA methods for domain adaptation tasks on both the Office-

31 and Cytometry datasets. It is seen that on Cytometry and

gray-PBS datasets, TIGDA performs the best by significantly

improving upon the Source Only model for gray-PBS→Cyto.

and Cyto.→gray-PBS tasks. Whereas, on the Office-31 dataset,

TIGDA’s average performance is comparable (less than a

percent) to the best SOTA method. All these experiments

firmly demonstrate the effectiveness of TIGDA in UDA despite

not using the target data during training.

VIII. CONCLUSION

In this work, we have considered the problem of domain

shift occurring with the CNN-based classifiers for WBC

classification. The performance of the existing deep learning

based techniques is known to degrade with the change in

camera characteristics. We cast the problem of performance

degradation of WBC classifiers with the change in camera as
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(a) Accu. vs. SSIM window sizes. (b) Accu. vs. Edge concat. position. (c) Accuracy vs Skip connections. (d) FID vs. no. of training images.

Figure 10. (a) Accuracy of TIGDA on task A→B by selecting different window sizes in SSIM during Latent Search (b) Performance of TIGDA when the
edges of input images are concatenated with different convolutional layers in decoder hθ (c) Performance of TIGDA when edge concatenation is replaced
with different types of skip connections between encoder gφ and decoder hθ layers. Window size of 11 gives the best performance. For the same task, edge
concatenation is better than skip connections. (d) FID of VAE generated images when TIGDA is trained on dataset A with different number of images ranging
from 2,000 (2K) to 10,000 (10K).

Table VII
ACCURACY (MEAN ± STD%) VALUES FOR UDA TASKS ON OFFICE-31 AND IMAGING FLOW CYTOMETRY (CYTO.) AND GRAYSCALE PERIPHERAL

BLOOD SMEAR (GRAY-PBS) WHITE BLOOD CELL DATASETS. RESULTS ARE REPORTED AS AN AVERAGE OVER FIVE INDEPENDENT RUNS USING

VARIOUS SOTA UDA METHODS USING RESNET-50 CLASSIFIER. NOTE THAT WHILE ALL UDA METHODS PERFORM BETTER THAN THE SOURCE ONLY

MODEL, TIGDA OFFERS SIGNIFICANT PERFORMANCE ENHANCEMENT DESPITE NOT USING THE TARGET IMAGES DURING TRAINING.

Office-31 WBC

Models A→W D→W W→D A→D D→A W→A Avg gray-PBS→Cyto. Cyto.→gray-PBS Avg

Source Only 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1 42.6±0.1 22.2±0.2 32.4

JAN [33] 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3 67.5±0.2 57.2±0.3 62.3

MADA [58] 90.0±0.2 97.4±0.1 99.6±0.1 87.8±0.2 70.3±0.4 66.3±0.1 85.2 73.3±0.2 61.8±0.3 67.5

SimNet [59] 88.6±0.5 98.2±0.2 99.7±0.2 85.3±0.3 73.4±0.8 71.8±0.6 86.2 76.4±0.2 66.8±0.2 71.6

GTA [18] 89.5±0.5 97.9±0.3 99.8±0.4 87.7±0.5 72.8±0.3 71.4±0.4 86.5 75.2±0.4 66.5±0.3 70.8

DAAA [60] 86.8±0.2 99.3±0.1 100.0±0.0 88.8±0.4 74.3±0.2 73.9±0.2 87.2 75.8±0.3 68.2±0.1 72.0

CDAN [61] 94.1±0.1 98.6±0.1 100.0±0.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7 78.6±0.2 67.1±0.1 72.8

CAN [35] 94.5±0.3 99.1±0.2 99.8±0.2 95.0±0.3 78.0±0.3 77.0±0.3 90.6 79.4±0.3 68.9±0.2 74.1

TIGDA (Ours) 93.2±0.2 99.4±0.4 99.8±0.1 93.6±0.3 76.7±0.2 75.7±0.3 89.7 80.3±0.4 71.4±0.3 75.8
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Figure 11. Imaging Flow Cytometry [6] and grayscale Peripheral Blood
Smear (gray-PBS) White Blood Cell datasets.

that of Unsupervised Domain Adaptation (UDA) and propose

a method that is devoid of need for access to the target

data during training. We have demonstrated the efficacy of

the proposed method for UDA with experiments on multiple

datasets acquired under different settings. A few possible

future directions can be: (i) extension of TIGDA for medical

data beyond WBC, (ii) combining multiple sources for UDA.
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X. PROOF FOR LEMMA 1

:

Lemma 2. If x̃S ∈ Sn is the point such that D{x̃T , x̃S} <
D{x̃T ,x} ∀ x ∈ Sn, then as n→∞, x̃S converges to x̃T

with probability 1.

Proof. Let Br(x̃T ) be a closed ball of radius r around x̃T

under the metric D. That is, Br(x̃T ) = {x : D{x̃T ,x} ≤ r}.
Since X is a separable metric space, ∀r > 0, Br(x̃T ) has

non-zero probability measure [40]. That is,

Pr
(

Br(x̃T )
)

,

∫

Br(x̃T )

Ps(x) dx > 0 (14)

For any δ > 0 , the probability that none of the points in Sn
are within the ball Bδ(x̃T ) of radius δ is given by:

Pr

[

min
i=1,2..,n

D{xi, x̃T } ≥ δ

]

=
[

1−Pr
(

Bδ(x̃T )
)]n

(15)

Therefore, the probability of x̃S ∈ Sn, lying within Bδ(x̃T )
is given by:

Pr

[

x̃S ∈ Bδ(x̃T )

]

= 1−
[

1−Pr
(

Bδ(x̃T )
)]n

(16)

= 1 as n→∞ (17)

Thus, given any δ > 0, with probability 1, ∃ x̃S ∈ Sn that is

within δ distance from x̃T as n→∞

XI. ALGORITHM FOR TIGDA

Algorithm 1 Target-Independent Generative Domain

Adaptation (TIGDA)

Training VAE on source data

Input: Source dataset Sn = {x1, ...,xn}, Number of

source images n, Encoder gφ, Decoder hθ, Trained Per-

ceptual Model Pψ , Learning rate η, Batchsize B. Output:

Optimal parameters φ∗, θ∗.

1: Initialize parameters φ, θ
2: repeat

3: sample batch {xi} from dataset Sn, for i = 1, ..., B

4: µ
(i)
z , σ

(i)
z ← gφ(xi)

5: sample zi ∼ N (µ
(i)
z , σ

(i)
z

2
)

6: x̂i ← hθ(zi)
7: Lr ←

∑B
i=1 ‖xi − x̂i‖

2
2

8: Lp ←
∑B
i=1 ‖Pψ(xi)− Pψ(x̂i)‖

2
2

9: Lg ← Lr+Lp+
∑B
i=1 DKL

[

N (µ
(i)
z , σ

(i)
z

2
) || N (0, 1)

]

10: Lh ← Lr + Lp
11: φ← φ+ η∇φLg
12: θ ← θ + η∇θLh
13: until convergence of φ, θ

Inference - Latent Search for target images

Input: Target image x̃T , Trained decoder hθ∗ , Learning

rate η. Output: ‘closest-clone’ x̃S for the target image

x̃T .

14: sample z from N (0, 1)
15: repeat

16: Lssim ← 1− SSIM(x̃T , hθ∗(z))
17: z← z+ η∇zLssim
18: until convergence of Lssim
19: z̃S ← z

20: x̃S ← hθ∗(z̃S)

14
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Table VIII
ENCODER ARCHITECTURE FOR THE VARIATIONAL AUTO-ENCODER (VAE) IN THE PROPOSED METHOD (TIGDA). CONVOLUTION KERNEL IS 3× 3 AND

FOR LEAKY RELU α = 0.2.

Layer (type) Output shape

encoder input (InputLayer) (128, 128, 3)

Conv1 (Convolution) (128, 128, 128)

leakyReLU1 (Activation) (128, 128, 128)

Conv2 (Convolution) (64, 64, 128)

leakyReLU2 (Activation) (64, 64, 128)

Conv3 (Convolution) (32, 32, 128)

leakyReLU3 (Activation) (32, 32, 128)

Conv4 (Convolution) (16, 16, 128)

leakyReLU4 (Activation) (16, 16, 128)

Conv5 (Convolution) (8, 8, 128)

leakyReLU5 (Activation) (8, 8, 128)

Conv6 (Convolution) (4, 4, 128)

leakyReLU6 (Activation) (4, 4, 128)

FC1 (Dense) (1024)

Z (Dense) (64)

Table IX
DECODER ARCHITECTURE FOR THE VAE IN TIGDA. CONVOLUTION KERNEL IS 3× 3 AND FOR LEAKY RELU α = 0.2.

Layer (type) Output shape

decoder input (InputLayer) (64)

FC2 (Dense) (1024)

leakyReLU7 (Activation) (1024)

FC3 (Dense) (2048)

leakyReLU8 (Activation) (2048)

Deconv1 (Deconvolution) (4, 4, 128)

leakyReLU9 (Activation) (4, 4, 128)

Deconv2 (Deconvolution) (8, 8, 128)

leakyReLU10 (Activation) (8, 8, 128)

Deconv3 (Deconvolution) (16, 16, 128)
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Figure 12. PCA plots of the first two principal component using features generated by ADDA, GTA, DIRT-T, TAT, DAL and TIGDA on task A→C.

(a) ADDA (b) GTA (c) DIRT-T

(d) TAT (e) DAL (f) TIGDA

Figure 13. Confusion Matrices for ADDA, GTA, DIRT-T, TAT, DAL and TIGDA on task A→C. Classes are Neutrophil (NE), Lymphocyte (LY), Monocyte
(MO), Eosinophil (EO), Basophil (BA), Immature granulocytes (IG), Atypical (AT), Nucleated red blood cells (NR), Giant platelets (GP), Platelet clumps
(PC), Artefact (AF).
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Figure 14. Samples from the Office-31 dataset from the three sources, Amazon, Dslr and Webcam.
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