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Abstract

We use molecular dynamics (MD) simulations to study surface-
directed spinodal decomposition (SDSD) in unstable binary (AB) fluid
mixtures at wetting surfaces. The thickness of the wetting layer R1

grows with time t as a power-law (R1 ∼ tθ). We find that hydrody-
namic effects result in a crossover of the growth exponent from θ ≃ 1/3
to θ ≃ 1. We also present results for the layer-wise correlation func-
tions and domain length scales.
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1 Introduction

There has been great interest in problems of phase ordering dynamics in
recent years. A prototypical problem in this area is the phase-separation
kinetics of a homogeneous binary (AB) mixture which has been rendered
thermodynamically unstable by a rapid quench below the miscibility curve.
If the quenched mixture is spontaneously unstable, the evolution kinetics
is usually referred to as spinodal decomposition (SD). During SD, there is
emergence and growth of A-rich and B-rich domains, characterized by a
single time-dependent length scale L(t). This has important consequences,
e.g., the correlation function of the order parameter field exhibits the scaling
form C(r, t) = f [r/L(t)], where f(x) is a scaling function. We now have a
good understanding of the kinetics of phase separation in the bulk, and there
are several good reviews of these problems [1, 2, 3, 4].

Next, let us consider the equilibrium behavior of an immiscible AB mix-
ture in contact with a surface S. Typically, the surface has a preferential
attraction for one of the components of the mixture, say A. Let γA and γB
be the surface tensions between the A-rich and B-rich phases and S, respec-
tively, and let σ be the surface tension between the A-rich and B-rich phases.
We focus on a semi-infinite geometry for simplicity. Then the contact angle
θ between the AB interface and the surface can be obtained from Young’s
equation [5]:

σ cosθ = γB − γA. (1)

When γB − γA > σ, the A-rich phase covers the surface in a completely wet

(CW) morphology. However, for γB − γA < σ, both phases are in contact
with the surface resulting in a partially wet (PW) equilibrium morphology.

We have a long-standing interest in the kinetics of binary mixtures at
surfaces. Consider a homogeneous AB mixture at high temperatures. This
mixture is kept in contact with a surface which prefers A. The system is
quenched deep below the miscibility curve at time t = 0. Then, the system
becomes unstable to phase separation and decomposes into A-rich and B-rich
domains. The surface is simultaneously wetted by A. The interplay of these
two dynamical processes, i.e., wetting and phase separation, is referred to
as surface-directed spinodal decomposition (SDSD) or surface-directed phase

separation [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. These
processes have important technological applications, including the fabrication
of nanoscale patterns and multi-layered structures.
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With some exceptions [24, 25], most available studies of SDSD do not take
into account hydrodynamic effects, i.e., the growth of bulk domains and the
wetting layer is governed by diffusion. However, many important experiments
in this area involve fluid or polymer mixtures, where fluid velocity fields
play a substantial role in determining physical properties. Hydrodynamic
effects alter the late-stage dynamics of phase separation in a drastic manner
– both without surfaces [1, 2, 26, 27, 28] and with surfaces [24, 25]. In this
paper, we have undertaken extensive molecular dynamics (MD) simulations
to investigate the effects of hydrodynamics on the late-stage dynamics of
SDSD. A preliminary account of our results was published as a recent letter
[29]. We observe a clear crossover from a diffusive regime to a hydrodynamic
regime in the growth law for the wetting layer.

This paper is structured as follows: In Sec. 2, we describe the details of our
MD simulations. Section 3 presents a brief review of bulk phase-separation
kinetics and domain growth laws, and then discusses phase separation at sur-
faces. Detailed MD results are presented in Sec. 4. We end with a summary
and discussion of our results in Sec. 5.

2 Details of Simulations

We employ standard MD techniques for our simulations [30, 31]. The model
is similar to that used in our earlier studies of mixtures at surfaces [20, 32].
We consider a binary fluid mixture AB consisting of NA A-atoms and NB

B-atoms (with NA = NB), confined in a box of volume Lw ×Lw ×D. While
periodic boundary conditions are maintained in the x- and y-directions, walls
or surfaces are introduced in the z-direction at z = 0 and z = D. The
interaction between two atoms of species i and j separated by a distance r
is given by the Lennard-Jones (LJ) potential:

uij(r) = 4ǫij

[

(σ

r

)12

−
(σ

r

)6
]

; i, j = A,B. (2)

Here, the LJ energy parameters are set as ǫAA = ǫBB = 2ǫAB = ǫ. The details
of equilibrium phase behavior for this potential are well studied [33, 34, 35].
If we express all lengths in terms of the LJ diameter σ, masses in units of m
(mA = mB = m), and energies in terms of ǫ, the natural time unit is

t0 =

√

mσ2

48ǫ
. (3)
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Setting σ = 1, m = 1, and ǫ = 1 gives t0 = 1/
√
48. The potential in

Eq. (2) is cut-off at rc = 2.5 σ to enhance computational speed. To remove
the discontinuities in the potential and force at r = rc, we invoke the shifted

potential and shifted-force potential corrections to the potential in Eq. (2)
[30].

For the potential between the walls and the fluid particles, we consider
an integrated LJ potential (α = A,B):

uw(z) =
2πnσ3

3

[

2ǫr
15

(σ

z′

)9

− δαǫa

(σ

z′

)3
]

. (4)

Here, n is the reference density of the bulk fluid, and ǫr and ǫa are the
energy scales for the repulsive and attractive parts of the interaction. We set
δA = 1 and δB = 0 for the wall at z = 0. Thus, A particles are attracted
at large distances and repelled at short distances, whereas B particles feel
only repulsion. For the wall at z = D, we choose δA = 0 and δB = 0,
so that there is only a repulsion for both A and B particles. Furthermore,
we have z′ = z + σ/2 for the wall at z = 0, and z′ = D + σ/2 − z for
the wall at z = D. We notice that this simplified potential incorporates the
effect of a semi-infinite geometry (the generalization to any other geometry is
straightforward). However, it does not take into account the surface structure
in the xy-plane.

The fluid has N = NA + NB particles, and the fluid density is n =
N/(L2

wD) = 1. In our simulations, we chose Lw = 48 and D = 48 (N =
110592 particles). For the range of times studied here (t ≤ 2800), test runs
with other values of Lw showed that Lw = 48 is large enough to ensure that
the laterally inhomogeneous domains that form during coarsening are not
affected by finite-size effects. The statistical quantities presented here were
obtained as averages over 50 independent runs. We performed simulations on
the fluid for the surface potential [Eq. (4)] with ǫa = 0.1, 0.6, while ǫr = 0.5.
We find that ǫa = 0.1 corresponds to a PW morphology, while ǫa = 0.6
yields a CW morphology [36]. The quench temperature is T = 1.0 ≃ 0.7Tc
(bulk Tc ≃ 1.423) [34, 35], and is maintained by the Nosé-Hoover thermostat
which preserves hydrodynamics [28, 37]. The homogeneous initial state of the
fluid mixture is prepared from a short run at high T (≫ Tc), with periodic
boundary conditions imposed in all directions. Finally, Newton’s equations
of motion are integrated numerically using the Verlet velocity algorithm [37],
with a time-step ∆t = 0.07 in LJ units.
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We undertook extensive MD simulations to study the time-dependent
morphology which arises during surface-directed phase separation. We char-
acterized the morphology via layer-wise correlation functions, structure fac-
tors, and length-scales. We also computed laterally-averaged order parameter
profiles and their various properties, e.g., surface value of the order param-
eter, zero-crossings, etc. Before presenting these quantities, it is useful to
summarize theoretical results in this context.

3 Theoretical Background

3.1 Kinetics of Phase Separation in the Bulk

The coarsening domains have a characteristic length scale L(t), which grows
with time. For pure and isotropic systems, L(t) ∼ tθ, where the growth
exponent θ depends on the conservation laws, the nature of defects which
drive the evolution, and the relevance of hydrodynamic flow fields.

First, we discuss the domain growth laws which arise in bulk phase-
separating systems [38, 39, 40, 41, 42, 43]. For diffusive dynamics, the order
parameter satisfies the Cahn-Hilliard (CH) equation. In dimensionless vari-
ables, this has the form [1]

∂

∂t
ψ(~r, t) = ∇2

(

−ψ + ψ3 − 1

2
∇2ψ

)

, (5)

where the order parameter ψ(~r, t) is proportional to the AB density difference
at space-point ~r and time t. Lifshitz and Slyozov (LS) [38] considered the
diffusion-driven growth of a droplet of the minority phase in a supersaturated
background of the majority phase. The LS mechanism leads to the growth
law L(t) ∼ t1/3 in d ≥ 2. Huse [43] argued that this law is also valid for
spinodal decomposition in mixtures with approximately equal fractions of
the two components. Typically, for a domain of size L, the chemical potential
on its surface is µ ∼ σ/L, where σ is the surface tension. Then the current is

D|~∇µ| ∼ Dσ/L2, where D is the diffusion constant. Therefore, the domain
size grows as dL/dt ∼ Dσ/L2, or L(t) ∼ (Dσt)1/3.

Next, we consider the segregation of binary fluids, where the hydrody-
namic flow field provides an additional mechanism for transport of material
[1, 2, 3, 4]. Hydrodynamic effects can be incorporated in the CH model by
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including a velocity field which satisfies the Navier-Stokes equation – the re-
sultant coupled equations are termed as Model H [44]. The growth dynamics
is diffusion-limited at early times, as in the case of binary alloys. However,
one finds a crossover to a hydrodynamic growth regime, where convection
assists in the rapid transportation of material along the domain boundaries
[39, 40]. The growth laws for different regimes are summarized as follows [1]:

L(t) ∼ (Dσt)1/3, L≪ (Dη)1/2, (diffusive regime)

∼ σt

η
, (Dη)1/2 ≪ L≪ η2

ρσ
, (viscous hydrodynamic regime)

∼
(

σt2

ρ

)1/3

,
η2

ρσ
≪ L, (inertial hydrodynamic regime). (6)

In Eq. (6), η and ρ denote the viscosity and density of the fluid, respectively.

3.2 Kinetics of Phase Separation at Wetting Surfaces

Next, we briefly discuss phase-separation kinetics at wetting surfaces [18, 23].
For the diffusive case, the order parameter satisfies the CH equation in the
bulk:

∂

∂t
ψ(~ρ, z, t) = ∇2

[

−ψ + ψ3 − 1

2
∇2ψ + V (z)

]

, z > 0. (7)

In Eq. (7), we have designated ~r ≡ (~ρ, z), where ~ρ and z denote coordinates
parallel and perpendicular to the surface (located at z = 0), respectively. The
surface potential V (z) is chosen such that the surface preferentially attracts
A.

Equation (7) must be supplemented by two boundary conditions at z = 0
[11, 18], as it is a fourth-order partial differential equation. Now, since the
surface value of the order parameter is not conserved, we assume a noncon-
served relaxational kinetics for this quantity:

∂

∂t
ψ(~ρ, 0, t) = h1 + gψ(~ρ, 0, t) + γ

∂

∂z
ψ(~ρ, z, t)

∣

∣

∣

∣

z=0

+ γ̃∇2

‖ψ(~ρ, 0, t). (8)

In Eq. (8), h1 = −V (0), and g, γ, γ̃ are phenomenological parameters; and∇2

‖

denotes the in-plane Laplacian. Next, we implement a zero-current bound-
ary condition at the surface, which enforces the conservation of the order
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parameter:

0 =
∂

∂z

[

− ψ + ψ3 − 1

2
∇2ψ + V (z)

]
∣

∣

∣

∣

∣

z=0

. (9)

Equations (7)-(9) describe the kinetics of SDSD with diffusive dynamics.
This is appropriate for phase separation in solid mixtures, or the early stages
of segregation in polymer blends. However, most experiments involve fluid
mixtures, where hydrodynamics plays an important role in the intermediate
and late stages of phase separation. At a phenomenological level, hydro-
dynamic effects can be incorporated via the Navier-Stokes equation for the
velocity field [44]. This must be supplemented by appropriate boundary con-
ditions at the surfaces [25]. Alternatively, we can consider molecular models
of fluid mixtures at a surface, in which the fluid velocity field is naturally
included. We adopt the latter strategy in this paper and study SDSD in fluid
mixtures via MD simulations.

Let us briefly discuss the growth laws which arise in SDSD. At early
times, the wetting-layer growth is driven by the diffusion of A particles from
bulk domains of size L ∼ (σt)1/3 (with µ ∼ σ/L) to the flat surface layer of
size ≃ ∞ (with µ ≃ 0). Therefore, neglecting the contribution due to the
surface potential at very early times [17], we obtain

dR1

dt
∼ σ

Lh
∼ σ

LR1

. (10)

In Eq. (10), h ∼ R1 is the thickness of the depletion layer. The LS growth law

for the wetting-layer thickness [R1 ∼ (σt)1/3] can be readily obtained from
Eq. (10). At later times, R1 shows a rapid growth due to the establishment
of contact between the bulk tubes and the wetting layer. Then, the wetting
component is pumped hydrodynamically to the surface. The subsequent
growth dynamics is similar to that in segregation of fluids. We expect R1(t) ∼
t in the viscous hydrodynamic regime, followed by a crossover to R1(t) ∼ t2/3

in the inertial hydrodynamic regime.

4 Detailed Numerical Results

In this section, we present results from our MD simulations. The details of
these have been described in Sec. 2. First, we focus on domain morphologies
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and laterally-averaged profiles for the CW case. In Fig. 1, we show evolu-
tion snapshots and their yz-cross-sections for SDSD in a binary (AB) fluid
mixture at different times. The surface field strengths are ǫr = 0.5, ǫa = 0.6
in Eq. (4), which correspond to a CW morphology in equilibrium. An A-
rich layer develops at the surface (z = 0), resulting in SDSD waves which
propagate into the bulk. Consequently, the surface exhibits a multi-layered
morphology, i.e., wetting layer followed by depletion layer, etc. The snap-
shots (and their cross-sections in the lower frames) clearly show that only
A-particles are at the surface, as expected for a CW morphology.

In Fig. 2, we show cross-sections in the xy-plane for the evolution snap-
shots in Fig. 1. The surface layer (shown in the top frames at t = 700, 2800)
has almost no B-particles. In the middle frames, we notice that there is
a surplus of B atoms due to the migration of A to the surface. (This is
confirmed by the laterally-averaged profiles, shown in Fig. 3.) The bottom
frames show the usual segregation morphologies in the bulk – they corre-
spond to the region z ∈ [24, 25.5], which is unaffected by the SDSD waves at
these simulation times (see Fig. 3).

Depth-profiling techniques in experiments do not have much lateral res-
olution, and yield only laterally-averaged order parameter profiles ψav(z, t)
vs. z [10]. The numerical counterpart of these profiles is obtained by aver-
aging ψ(~ρ, z, t) along the x, y directions, and then further averaging over 50
independent runs. The order parameter is defined from the local densities
nA, nB as

ψ(~r, t) =
nA − nB

nA + nB
. (11)

In Fig. 3, we show the depth profiles for the evolution depicted in Fig. 1.
Figure 3 clarifies the nature of the multi-layered morphology seen in SDSD.
In the bulk, the SDSD wave-vectors are randomly oriented, which results in
ψav(z, t) ≃ 0 due to the averaging procedure. However, the averaged profiles
show a systematic oscillatory behavior at the surface.

Let us next examine the velocity field at the surface and in the bulk.
In Fig. 4, we show the (vx, vy)-field in the xy-planes used in Fig. 2. The
snapshots shown in Fig. 4 are obtained by coarse-graining the velocities in
overlapping boxes of size (4.5σ)3. These boxes are centred on cubes of size
(1.5σ)3, and we show the (vx, vy)-field for these cubes. We make the following
observations concerning Fig. 4:
1) The velocity field is characterized by vortices and anti-vortices, but these
do not show much coarsening with time – compare the snapshots at time

8



t = 700, 2800 for different values of z. This has also been observed in MD
studies of bulk spinodal decomposition by Ahmad et al. [28].
2) There are no significant morphological differences between the velocity
fields at the surface (top frames of Fig. 4) and in the bulk (bottom frames
of Fig. 4). This is confirmed by comparing the corresponding correlation
functions – for brevity, we do not present these here.

It is relevant to ask whether the depth profiles of the velocity field show
any systematic behavior (as in Fig. 3). In Fig. 5, we plot vz,av(z, t) vs. z
for t = 140, 700, 2800. The procedure for calculating the laterally-averaged
velocity field is as follows: in each layer of thickness 1.5σ (along the z direc-
tion), we sum up the z-component of the velocities for all particles. Clearly,
the depth profiles of the velocity field do not show any major systematic
features.

Next, we turn our attention on the morphologies and profiles for the
PW case. The evolution snapshots and their yz-cross-sections for the PW
morphology are shown in Fig. 6. In this case, we set ǫr = 0.5, ǫa = 0.1
in Eq. (4). As in the CW case, we again observe usual phase-separation
morphologies in the bulk. However, in this case, both A and B particles are
present at the surface.

Figure 7 shows the cross-sections in the xy-plane, corresponding to the
evolution in Fig. 6. At early times (t = 700, top frame), approximately equal
numbers of A and B particles are present at the surface. However, there is
a surplus of A atoms at late times (t = 2800, top frame), as expected in the
PW morphology. In the middle frames, we see more B particles, as A atoms
have migrated to the surface. The laterally-averaged profiles in Fig. 8 show
that z ∈ [3, 4.5] (corresponding to the middle frames in Fig. 7) lies in the
depletion layer for both t = 700, 2800. The bottom frames in Fig. 7 show the
segregation kinetics in the bulk.

We plot ψav(z, t) vs. z in Fig. 8, corresponding to the PW evolution in
Fig. 6. A behavior similar to the CW morphology (cf. Fig. 3) is seen in
this case too. However, notice that the degree of surface enrichment (and
depletion adjacent to the surface) is much less in Fig. 8.

We have also studied the morphology of the velocity field in the PW case.
The features are analogous to those in Figs. 4 and 5 for the CW case, and
we do not show these results here.

Next, let us examine some quantitative properties of the depth profiles in
Figs. 3 and 8. Figure 9 shows the time-dependence of the surface value of the
order parameter for the CW and PW cases. We plot ψav(0,∞)−ψav(0, t) vs.
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t−1, demonstrating that ψav(0, t) saturates linearly to its asymptotic value
ψav(0,∞) for the CW case (with ǫa = 0.6):

ψav(0, t) ≃ ψav(0,∞)− A

t
+ . . . , (12)

where A is a constant. Notice that the asymptotic value ψav(0,∞) is esti-
mated by extrapolation of the data for ψav(0, t) vs. t. The corresponding
behavior for the PW case (with ǫa = 0.1) is not so clear. However, our results
suggest that the PW case also saturates linearly at long times.

The evolution of the SDSD profiles in Figs. 3 and 8 is characterized by
the zero-crossings of ψav(z, t). The quantity R1(t) denotes the first zero, and
measures the wetting-layer thickness. Figure 10 plots R1(t) vs. t for the CW
and PW cases shown in Figs. 3 and 8. This plot shows a power-law behavior
for the growth dynamics, R1(t) ∼ tθ, but there is a distinct crossover in the
growth exponent. For t ≤ tc ≃ 2000, we have θ ≃ 1/3, in conformity with the
LS mechanism for diffusive growth. However, for t ≥ tc, we observe a much
more rapid growth with θ ≃ 1, corresponding to the viscous hydrodynamic
regime. We make the following observations regarding Fig. 10:
1) The crossover time is consistent with the observation of a 1/3 → 1
crossover (at tc ≃ 2000) in bulk MD simulations by Ahmad et al. [28].
These authors used a similar model, but without surface interactions.
2) The crossover in the CW case is much sharper than in the PW case. In the
CW case, bulk tubes establish contact with a flat wetting layer, and rapidly
drain into it. In the PW case, the surface morphology consists of semi-
droplets, and the pressure differences from the bulk tubes are less marked.
3) We can go up to t ≃ 3000 for these system sizes (Lw = 48, D = 48).
Beyond this time, the system encounters finite-size effects due to the lat-
eral domain size becoming an appreciable fraction of the system size Lw.
Presently, our computational constraints do not allow us to access the iner-
tial hydrodynamic regime (with θ = 2/3) via MD simulations [28]. However,
our results for the wetting-layer dynamics show the viscous hydrodynamic
regime, though in a limited time-window.

Before concluding this section, we discuss some other quantitative features
of the domain morphologies. We present results for the CW case only –
the PW results are analogous. First, we focus on the layer-wise correlation
function, which characterizes the domain morphology. This is defined as
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follows [12]

C‖(~ρ, z, t) = L−2

w

∫

d~σ [〈ψ(~σ, z, t)ψ(~σ + ~ρ, z, t)〉 − 〈ψ(~σ, z, t)〉〈ψ(~σ + ~ρ, z, t)〉] ,
(13)

where the angular brackets denote statistical averaging over independent
runs. We denote C‖(~ρ, z, t) as C(~ρ, t) in the following discussion for conve-
nience. Since the system is isotropic in the x, y directions, C is independent
of the direction of ~ρ. We can define the z-dependent lateral length scale
L‖(z, t) ≡ L(z, t) from the half-decay of C(ρ, t) [12]:

C(ρ = L, t) =
1

2
C(0, t). (14)

To obtain the correlation function, etc., a coarse-graining procedure [45] is
employed, which is the numerical counterpart of the renormalization group
(RG) technique. We divide our system into small boxes of size σ2 × 1.5σ.
We count the total number of A and B particles in each box and its nearest
neighbors. If there are more particles of A than B in the box and its neigh-
bors, we assign a “spin” value S = +1 to that box. On the other hand, the
box is given a spin value S = −1 when there are more B particles than A.
Furthermore, we assign +1 or −1 to a box randomly, when equal numbers
of A and B particles are present.

The results of this coarse-graining procedure are shown in Fig. 11. In the
frames on the left, we reproduce the xy-cross-sections of the SDSD snapshots
at t = 2800 in Fig. 2. The frames on the right show the corresponding
coarse-grained pictures. Figure 11 clearly demonstrates the elimination of
fluctuations in our coarse-grained snapshots, while preserving the important
morphological features.

In Fig. 12, we plot the normalized correlation function C(ρ, t)/C(0, t)
(computed from the coarse-grained spin variable) vs. ρ/L(z, t) for three
different layers, as indicated in the figure. The surface layer [z ∈ (0, 1.5)]
has few inhomogeneities, and shows a corresponding lack of structure in the
correlation function. [Notice that a state with Si = +1 ∀i has C(ρ) = 0 from
our definition in Eq. (13).] The layer at z ∈ (3, 4.5) lies in the depletion region
for t = 700, 2800, as is seen from the laterally-averaged profiles in Fig. 3. The
corresponding correlation functions (middle frame of Fig. 12) show scaling
behavior. The bottom frame in Fig. 12 corresponds to a bi-continuous bulk
morphology – see bottom frames of Fig. 11.
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Finally, we focus on the time-dependence of the lateral domain size L(z, t).
In Fig. 13, we plot L(z, t) vs. t for three different layers, excluding the surface
layer. (As is evident from the top frames of Fig. 11, there is no characteristic
“domain scale” associated with the surface layer.) We find that L(z, t) grows
as a power-law with time (L ∼ tθ), but there is a crossover in the growth
exponent. The early-time dynamics (t ≤ tc) is consistent with the expected
diffusive LS growth law with θ ≃ 1/3 [1, 2, 3, 4]. However, there is a much
more rapid growth at late times (t ≥ tc) with θ ≃ 1. Notice that the crossover
time (tc ≃ 2000) is consistent with the crossover time for the growth dynamics
of the wetting layer.

5 Summary and Discussion

Let us conclude this paper with a brief summary and discussion of our re-
sults. We have studied surface-directed spinodal decomposition (SDSD) in an
unstable homogeneous binary (AB) mixture at a wetting surface (S). De-
pending on the relative values of the surface tensions between A,B and S,
the equilibrium morphology can be either completely wet (CW) or partially
wet (PW). Most experiments on SDSD have been performed on polymer
blends, fluid mixtures, etc., where hydrodynamic effects play an important
role in the intermediate and late stages of phase separation. However, there
have been very few numerical investigations of SDSD with hydrodynamics.

We undertook comprehensive molecular dynamics (MD) simulations to
study the kinetics of SDSD in this paper. The MD simulations are performed
with a Nosé-Hoover thermostat, which naturally incorporates hydrodynamic
effects. In both CW and PW cases, the surface becomes the origin of SDSD
waves, which propagate into the bulk. The typical SDSD profile consists of a
multi-layered morphology, i.e., a wetting layer followed by a depletion layer,
etc. We are interested in understanding the role of hydrodynamics in driving
the growth of the bulk domain size and the wetting layer. At early times,
the wetting layer grows diffusively with time (R1 ∼ t1/3). However, there is
a crossover to a convective regime, and the late-stage dynamics is R1 ∼ t.
There is also a corresponding crossover in the growth dynamics of the bulk
domain size L(t). Due to computational limitations, our MD simulations are
as yet unable to access the inertial hydrodynamic regime (with L,R1 ∼ t2/3)
in either the bulk or the wetting-layer kinetics.

Our findings have significant implications for experiments on SDSD, as
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many of these are performed on fluid mixtures. We hope that these results
will provoke fresh experimental interest in this problem, and our theoretical
results will be subjected to an experimental confirmation.
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t = 140 t = 700 t = 2800

z

y

Figure 1: Evolution snapshots (upper frames) for surface-directed spinodal
decomposition (SDSD) in a binary (AB) Lennard-Jones mixture, which is
confined in a box of size L2

w ×D, with Lw = 48, D = 48. An impenetrable
surface (located at z = 0) attracts the A-particles (marked gray). The surface
field strength is given by ǫa = 0.6 and ǫr = 0.5 in Eq. (4), which corresponds
to a completely wet (CW) morphology in equilibrium. The temperature is
T = 1.0 ≃ 0.7 Tc (bulk Tc = 1.423). The other simulation details are provided
in the text. The B-particles are marked black. The lower frames show the
yz-cross-sections of the upper frames at x = 0.
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Figure 2: Cross-section slices of size L2

w × 1.5σ for the evolution shown in
Fig. 1 at t = 700, 2800 MD units. The slices show all A atoms (marked in
gray) and all B atoms (marked in black) lying in the interval z ∈ (0, 1.5)
(top frames), z ∈ (3, 4.5) (middle frames), z ∈ (24, 25.5) (bottom frames).
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Figure 3: Laterally-averaged order parameter profiles for the evolution shown
in Fig. 1 at t = 140, 700, 2800 MD units. The continuous lines through the
data points are guides to the eye.
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Figure 4: Analogous to Fig. 2, but for the velocity field (vx, vy) in the xy-
plane. The velocities are coarse-grained as described in the text.
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Figure 5: Laterally-averaged vz-profiles for the evolution shown in Fig. 1 at
t = 140, 700, 2800 MD units.
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Figure 6: Analogous to Fig. 1, but for the case with ǫa = 0.1 and ǫr =
0.5. These parameters correspond to a partially wet (PW) morphology in
equilibrium.
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Figure 7: Analogous to Fig. 2, but for the evolution shown in Fig. 6.
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Figure 8: Analogous to Fig. 3, but corresponding to the evolution shown in
Fig. 6.
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Figure 9: Time-dependence of the surface value of the order parameter for
the CW and PW profiles in Figs. 3 and 8, respectively. We plot ψav(0,∞)−
ψav(0, t) vs. t

−1.
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Figure 10: Time-dependence of the wetting-layer thickness R1(t) of the CW
and PW profiles on a log-log scale. The straight lines have slopes 1/3 and 1,
corresponding to the diffusive regime and the viscous hydrodynamic regime,
respectively.
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Figure 11: Cross-sections of the SDSD snapshots (frames on left) at t = 2800
shown in Fig. 2. The cross-sections show all A atoms (marked gray) and
all B atoms (marked black) lying in the interval z ∈ (0, 1.5) (top frame),
z ∈ (3, 4.5) (middle frame), z ∈ (24, 25.5) (bottom frame). The frames on
the right show coarse-grained versions of the MD snapshots. The coarse-
graining procedure is described in the text.
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Figure 12: Scaling plot of the layer-wise correlation functions for the CW
evolution depicted in Fig. 1. We plot C(ρ, t)/C(0, t) vs. ρ/L(z, t) for t =
700, 2800 with (a) z ∈ (0, 1.5); (b) z ∈ (3, 4.5); (c) z ∈ (24, 25.5).
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Figure 13: Time-dependence of the layer-wise length scale for the evolution
depicted in Fig. 1. We plot L(z, t) vs. t on a log-log scale for various val-
ues of z. The solid lines have slopes 1/3 (diffusive regime) and 1 (viscous
hydrodynamic regime).
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