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Abstract—Identifying kinship relations has garnered interest
due to several applications such as organizing and tagging the
enormous amount of videos being uploaded on the Internet.
Existing research in kinship verification primarily focuses on
kinship prediction with image pairs. In this research, we propose
a new deep learning framework for kinship verification in
unconstrained videos using a novel Supervised Mixed Norm
regularization Autoencoder (SMNAE). This new autoencoder for-
mulation introduces class-specific sparsity in the weight matrix.
The proposed three-stage SMNAE based kinship verification
framework utilizes the learned spatio-temporal representation
in the video frames for verifying kinship in a pair of videos. A
new kinship video (KIVI) database of more than 500 individuals
with variations due to illumination, pose, occlusion, ethnicity,
and expression is collected for this research. It comprises a
total of 355 true kin video pairs with over 250,000 still frames.
The effectiveness of the proposed framework is demonstrated on
the KIVI database and six existing kinship databases. On the
KIVI database, SMNAE yields video-based kinship verification
accuracy of 83.18% which is at least 3.2% better than existing
algorithms. The algorithm is also evaluated on six publicly
available kinship databases and compared with best reported
results. It is observed that the proposed SMNAE consistently
yields best results on all the databases.

I. INTRODUCTION

Kinship verification using facial images is the process of

analyzing facial features to determine if two individuals are

biologically related. Recently, kinship verification has received

increasing attention from computer vision research commu-

nity due to its applications ranging from identifying family

relationships to indexing images. However, automatic kinship

verification in videos is a relatively unexplored research area

and can be highly valuable in diverse settings such as se-

curity, surveillance, and immigration control. For instance,

during the investigation of surveillance footage in the Boston

Marathon bombing, two male suspects were determined as

the bombers. Later, it was established that the two males

were brothers which led to their identification. An automatic

kinship verification system that determines kin in a video

could have expedited this investigation. Another application of

kinship verification using videos is for border control where

surveillance videos can be applied to validate the relation
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Fig. 1: Progression of research in automatic kinship verifica-

tion: (a) Cornell KinFace [1] database (2010), (b) Family 101

database [8] (2013), and (c) proposed KIVI database (2018).

between an adult and the child, thereby preventing illegal child

trafficking. Additionally, video-based kinship verification can

validate or disprove kinship claims of refugees and asylum

seekers. Currently, as part of its reunification program, the U.S.

State Department conducts DNA testing to allow people who

have relatives in the U.S. to enter as refugees [32]. Rapid-DNA

is being used for this purpose; however, an automatic kinship

verification algorithm can produce cost-effective results in

real-time. In these instances, automatic kinship verification can

be beneficial in screening possible fraudulent cases in a non-

intrusive manner.

Kinship information can also be used for managing mul-

timedia on social media websites such as Facebook and

Youtube. According to Wagner [33], in 2016, 500 million

people watched Facebook videos every day. In many cases,

family members have different Youtube channels where they

upload daily videos. Kinship information can be applied for

automatically tagging such videos and identifying the kin

present in them. Kinship context in videos can also be used for

automatic indexing and organization of videos, making them

easily searchable.

A. Related Work

Table I and Fig. 1 showcase the research progression in

the area of kinship verification. The problem of kinship
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TABLE I: Kinship verification algorithms and databases published in the literature.

Input Authors (Year) Kinship Verification Algorithm Database

Image

Fang et al. [1] (2010) Gabor-based gradient orientation pyramid CornellKin

Siyu et al. [2] (2011) Transfer learning UB KinFace

Zhou et al. [3] (2011) Spatial pyramid based learning Private database

Shao et al. [4] (2011) Gabor filters with metric learning UB KinFace

Zhou et al. [5] (2012) Gabor-based gradient orientation pyramid Private database

Xia et al. [6] (2012) Transfer subspace learning based algorithm UB KinFace Ver2.0 and FamilyFace

Kohli et al. [7] (2012) Self-similarity representation of Weber faces UB KinFace and IIITD Kinship

Fang et al. [8] (2013) Reconstruction using parts from a set of families Family101

Lu et al. [9] (2014) Multi-view NRML KinFaceW-I and KinFaceW-II

Hu et al. [10] (2014) Large margin multi metric learning KinFaceW-I and KinFaceW-II

Yan et al.[11] (2014) Discriminative multimetric learning
KinFaceW-I, KinFaceW-II, CornellKin, and
UB KinFace

Dehghan et al. [12] (2014) Discrimination via gated autoencoders KinFaceW-I and KinFaceW-II

Guo et al. [13] (2014) Graph-based approach Sibling-Face and Group-Face

Yan et al. [14] (2015) Prototype discriminative feature learning
KinFaceW-I, KinFaceW-II, CornellKin, and
UB KinFace

Liu et al. [15] (2015) Inheritable Fisher vector feature based kinship KinFaceW-I and KinFaceW-II

Alirezazadeh et al. [16] (2015) Genetic algorithm for feature selection KinFaceW-I and KinFaceW-II

Qin et al. [17] (2015)
Relative symmetric bilinear model and spatially
voted feature selection method

TSKinFace, Family101, KinFaceW-I, and
KinFaceW-II

Zhou et al. [18] (2016) Ensemble similarity learning KinFaceW-I and KinFaceW-II

Robinson et al. [19] (2016) Fine-tuning VGG network Families in the Wild

Xu and Shang [20] (2016) Joint learning of multiple bilinear similarity models KinFaceW-I and KinFaceW-II

Wu et al. [21] (2016) Utilized color-texture features TSKinFace, KinFaceW-I, and KinFaceW-II

Yan [22] (2016) Neighborhood repulsed correlation metric learning TSKinFace, KinFaceW-I, and KinFaceW-II

Lopez et al. [23] (2016) Chromaticity and color features KinFaceW-I and KinFaceW-II

Xu and Shang [20] (2016) Used structured similarity fusion KinFaceW-I and KinFaceW-II

Li et al. [24] (2016) Siamese convolutional neural net KinFaceW-I and KinFaceW-II

Wang et al. [25] (2017) Denoising auto-encoder based metric learning Families In the Wild (FIW)

Lu et al. [26] (2017) Discriminative deep multi-metric learning KinFaceW-I and KinFaceW-II

Liu et al. [27] (2017) Status-aware projection learning KinFaceW-I and KinFaceW-II

Kohli et al. [28] (2017) Kinship verification via representation learning
WVU, CornellKin, UB KinFace, KinFaceW-I,
and KinFaceW-II

Mahpod et al. [29] (2018) Multi-view hybrid distance learning CornellKin, KinFaceW-I and KinFaceW-II

Video

Dibeklioglu et al. [30] (2013) Spatio-temporal features utilizing facial dynamics UvA-NEMO Smile

Dibeklioglu [31] (2017) Visual transformation aided contrastive learning UvA-NEMO, KinFaceW-I, and KinFaceW-II

Proposed (2018)
Framework utilizing Supervised Mixed Norm
Autoencoder

KIVI, UvA-NEMO, WVU, KinFaceW-I,
KinFaceW-II, CornellKin, and UB KinFace

verification using facial images was first proposed by Fang et

al. [1]. Since its origin, different frameworks and techniques

have been applied for solving this problem which can be

classified into two categories: approaches using handcrafted

features and approaches based on learning features. Various

handcrafted features have been incorporated to model kinship

features and similarities in faces. Fang et al. [1] employed

low-level features such as eye color, skin color, and eye-to-

nose distance for kinship verification. Zhou et al. [3] proposed

a new spatial pyramid learning-based descriptor to encode

kinship facial features. Zhou et al. [5] introduced Gabor-based

gradient orientation pyramid representation method to learn

kinship information in uncontrolled conditions. Kohli et al. [7]

computed self-similarity descriptor to propose self-similarity

representation of Weber face algorithm to classify a given

pair of images as kin or non-kin. Liu et al. [15] computed

inheritable Fisher vector feature by applying the inheritable

transformation on the Fisher vector for each image and per-

formed kinship verification. Wu et al. [21] demonstrated the

efficacy of joint color-texture features from the luminance and

chrominance channels of color images in kinship verification.

Researchers have also proposed methods for learning kin-

ship cues based on transfer learning, dictionary learning, met-

ric learning, and deep learning for addressing this challenging

problem. Shao et al. [4] learned a subspace where the simi-

larity between child-old parent and child-young parent pairs

was maximized to separate them in the subspace. Siyu et al.

[2] proposed a transfer subspace learning approach using the

young parent set as the intermediate domain whose distribution

is close to child and old parent distributions. Fang et al. [8]

utilized the knowledge that an offspring shares genetic material

with parents and reconstructed the probe face from a sparse set

of samples among the candidate families. Dehgan et al. [12]

proposed a framework for kinship verification which combined

various features and metrics computed via gated autoencoders

with a discriminative neural network layer. Kohli et al. [28]

introduced a novel approach for feature representation which

encoded kinship information present in images using filtered

contractive deep belief network.

In 2013, Dibeklioglu et al. [30] introduced the problem of

kinship verification in videos. They computed spatio-temporal

facial-dynamics features of high quality videos to model

kinship characteristics between two individuals. They used

UvA-NEMO Smile database for experimental purposes where

smile based dynamic spatio-temporal features and complete

local binary patterns on three orthogonal planes [34] were

extracted and used for kinship verification. This database was

initially developed for expression variations and was captured
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TABLE II: Summary of kinship databases in the literature.

Dataset
No. of

Subjects

No. of

Samples
Relations

Image

CornellKin [1] 300 300 4

UB KinFace [2] 400 600 4

KFW-I [9] 1,066 1,066 4

KFW-II [9] 2,000 2,000 4

WVUKin [28] 226 904 7

Family101 [8] 607 14,816 4

TSKinFace [17] 2,589 2,000 4

FIW [19] 10,700 31,000 11

Video
UvA-Nemo [30] 152 514 7

Proposed KIVI 503 503 7

in controlled settings. Recently, Dibeklioglu [31] introduced

visual transformation between the facial appearance of kin for

the task of video-based kinship verification.

An important factor in stimulating research in kinship

verification is availability of databases. As shown in Table

II, there are several image-based databases with Family in the

Wild (FIW) [19] being the largest. Except FIW and WVUkin

[28], other databases focus on 4 key relationships. On the

other hand, there is only one existing kinship video database,

UvA-Nemo [30], which has over 500 videos encompassing

152 individuals and 7 kin-types.

B. Research Contributions

It is interesting to observe that majority of the research

on kinship classification has focused on small-scale image

databases. However, their applicability also lies in large-scale

real-world unconstrained scenarios. It is our assertion that

existing algorithms may not be able to scale well to uncon-

strained scenarios due to challenges such as variations in pose,

illumination, and expression. As these covariates are inherently

present in videos, they are a natural extension of the image-

based kinship verification problem. Videos provide larger

sources of information (as shown in Fig. 1) and the spatio-

temporal information across different frames can be utilized

for learning more complex representations as compared to still

images. In this research, we utilize a deep learning framework

to learn the spatio-temporal kinship information in videos. We

also introduce a new unconstrained video-based kinship face

database. The key contributions of this paper are:

1) A novel Supervised Mixed Norm AutoEncoder (SM-

NAE) using ℓ2,p norm and class-based reconstruction

penalty is proposed to learn kinship-specific representa-

tion.

2) A deep learning framework is proposed for kinship ver-

ification in unconstrained videos. The proposed multi-

stage framework utilizes the spatio-temporal information

present in the video frames to verify kinship.

3) A new kinship video (KIVI) face database of 503 indi-

viduals with wild variations due to pose, illumination,

occlusion, ethnicity, and expression is introduced. The

database consists of 252,804 frames corresponding to

seven kin-relations.

II. PROPOSED KINSHIP VERIFICATION IN

UNCONSTRAINED VIDEOS USING SMNAE

In this section, we elaborate the proposed deep learning

framework for kinship verification using unconstrained videos.

This framework utilizes a novel formulation of autoencoder us-

ing l2,p norm and class-based reconstruction error to promote

class-based sparsity in the learned weight matrix. The details

of the proposed SMNAE and kinship verification framework

are described in the following subsections.

A. Supervised Mixed Norm Autoencoder (SMNAE)

An autoencoder consists of an encoder that maps the input

data (X) to the latent space and a decoder that maps the

learned representation to its reconstruction by minimizing the

following loss function:

argmin
W,W′

‖ X− φ(W′φ(WX)) ‖2F +λR (1)

where, W is the weight matrix to be learned, φ is the activation

function, λ is the regularization constant of the regularizer R,

and ‖ · ‖2F denotes the Frobenius norm. Introducing sparsity

constraint on the autoencoders forces autoencoders to learn

underlying patterns by utilizing only a few hidden nodes. A

variety of regularization schemes such as ℓ1-norm or ℓ2- norm

can be employed on the weights of the autoencoder to promote

sparsity. Sparse autoencoders [35] have been proposed which

utilize KL divergence to ensure that the average activation of

the nodes stays below the pre-defined sparsity parameter.

Recently, new formulations of supervised autoencoders have

been introduced that learn representative features for each class

separately. They utilize the class labels to enforce class-wise

constraints on the weights of the autoencoders, thus, enforcing

discrimination. For learning similarity between faces, Gao

et al. [36] introduced supervised autoencoders using label

information. Similarly, Majumdar et al. [37] proposed class-

wise sparsity by applying ℓ2,1 norm on the weight matrix

of the autoencoders. However, it has been established that

utilizing ℓp norm with 0 < p < 1 can find sparser solutions

as compared to using l1 norm [38], [39]. Therefore, ℓ2,p norm

with 0 < p < 1 may enforce better sparsity on the weights than

ℓ2,1 norm. Yan et al. [40] demonstrated the effectiveness of

ℓ2,p norm for learning local structures of the data distribution

for clustering. In this research, we utilize ℓ2,p mixed norm

for introducing class-wise sparsity on the weights to extort

class-specific representative features.

The loss function JL2P for this autoencoder (referred to as

L2,p autoencoder) is defined as:

JL2P = argmin
W,W′

‖ X− φ(W′φ(WX)) ‖2F

+ λ

C
∑

c=1

‖ WXc ‖2,p

(2)

where, 0 < p < 1, Xc denotes the input data belonging to

class c, and C is the number of classes of the input data. For
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Input pair of videos 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑗𝑗

Input Video 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖

Input Video 𝑉𝑉𝑉𝑉𝑉𝑉𝑗𝑗
Pivot 

• Division of video into vidlets

• Vidlet creation with two neighbors 

before and after the pivot frame

Feature Learning 

using proposed 

three-stage 

SMNAE based 

Kinship 

Verification 

framework

Kinship Score 

of Vidlet Pair

Fusion of 

Vidlet
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Final Kin vs. 
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of Input 

Video Pair 
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Fig. 2: Proposed kinship verification framework: two input videos are divided into non-overlapping vidlets and for every vidlet,

SMNAE features are extracted. The final video classification is performed by fusion of all the vidlet pair scores.

a weight vector W, ℓ2,p norm is computed by taking ℓp norm

across the samples in rows of W, wi.

‖ W ‖2,p=

(

d
∑

i=1

‖ wi ‖p

)1/p

(3)

Additionally, we introduce a class-based reconstruction

penalty on the autoencoder to encode discriminatory infor-

mation between classes. The motivation of using this pairwise

constraint is to add more discriminating power to the autoen-

coder. Therefore, we combine ℓ2,p norm and pairwise class-

based sparsity penalty to propose a new Supervised Mixed

Norm Autoencoder.

Given an input X, containing N pairs of samples for

a binary classification problem, the loss function for the

proposed SMNAE, JSMNAE is described below:

JSMNAE = argmin
W,W′

‖ X− φ(W′
H) ‖2F +

λ

C
∑

c=1

‖ WXc ‖2,p + β(Tr(HT
HL))

(4)

where, λ and β are the regularization constants of respective

cost functions, Tr denotes the trace of the matrix, Laplacian

matrix L is constructed as L = D − M, D is the diagonal

matrix formed as D = diag(d1, d2, . . . , dN ), di =
∑C

j=1 Mi,j ,

H = φ(WX), and M is a matrix such that

Mi,j =











+1, if xi and xj belong to same class

−1, if xi and xj belong to different classes

0, otherwise

The loss function in Eq. 4 can be rewritten as:

JSMNAE = J1 + λJ2 + βJ3 (5)

where, J1 is the first part denoting the traditional autoencoder

loss function, J2 is the middle term belonging to the ℓ2,p
norm, and J3 is the last term denoting the pairwise class-based

discrimination term. Here, J1 and J3 are convex and smooth,

whereas J2 is non-convex. This equation can be converted to:

argmin
W

JSMNAE(W) = f(W;X) + λ

C
∑

c=1

‖ WXc ‖2,p

(6)

where, f(W;X) is a convex function consisting of J1 and J3
and whose gradient is Lipschitz continuous. The proximal gra-

dient algorithm [41], [42] is applied to solve the optimization

problem shown in Eq. 6. Beginning with an initial value of

W0, W is updated iteratively using W1,W2, . . . ,Wt. Thus,

the proximal operator equation becomes the following and can

then be solved using the Newton’s method [43]:

Wt+1 = argmin
W

1

2η
‖ W−A ‖2F +λ

C
∑

c=1

‖ WXc ‖2,p (7)

where, A = Wt − η∇f(Wt) represents the update for Wt.

Considering linearity, ∇f(Wt) can be represented as

∇f(Wt) =
∂J1

∂Wt

+
∂J3

∂Wt

= −2X[X−W
′
WX] + 2XβWXL

(8)

In this paper, we utilize this proposed formulation of

SMNAE to develop a framework for unconstrained video-

based kinship verification. The ℓ2,p norm on the weights of

the autoencoders introduces sparsity for kin and non-kin class

individually where the value of p can be tuned to obtain the

optimum amount of sparsity in the features. The pairwise

constraint terms enforce better discrimination between the kin

and non-kin class representations.

B. SMNAE for Kinship Verification in Unconstrained Videos

Using SMNAE as the integral representation learning unit,

we propose a framework for verifying kinship relation in

a pair of videos as shown in Fig. 2. Each video in the

input pair of videos is decomposed into vidlets. A vidlet is

defined as a non-overlapping contiguous group of frames with

z number of neighboring frames before and after the pivot

frame. The center frame of the vidlet is the pivot frame and
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𝐻𝐻2
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𝐻𝐻4
𝐻𝐻5

𝑋𝑋2
𝑋𝑋3
𝑋𝑋4
𝑋𝑋5

𝜒𝜒2
𝜒𝜒3
𝜒𝜒4

ℋ2
ℋ3
ℋ4

First Stage Second Stage Third Stage

Stacked SMNAE

𝒱𝒱 Λ

Sample Vidlet

Stacked SMNAE

Stacked SMNAE

Stacked SMNAE

Stacked SMNAE

Stacked SMNAE

Stacked SMNAE

Stacked SMNAE

Stacked SMNAE

Stacked SMNAE

Fig. 3: Proposed three-stage kinship verification in unconstrained videos framework by utilizing SMNAE. In the first stage, a

pair of videos is split into vidlets which are provided as input to stacked SMNAE. The spatial representations learned from

the first stage are concatenated in a pairwise fashion and provided to the second stage stacked SMNAE. The third stage learns

the kinship-specific representation of the vidlets using stacked SMNAE to encode the spatio-temporal information which is

employed as the input to SVM for kin vs non-kin video classification.

the variations across the small temporal neighborhood of the

pivot frame are learned. In addition, the kinship-specific spatial

information in every frame is encoded. A pair of vidlets is

passed as input to the proposed SMNAE based framework.

The framework classifies the vidlet pair as kin or non-kin.

This process is repeated for every vidlet pair. Fusion of these

vidlet scores is performed using sum rule fusion to produce

the final classification of the input pair of videos.

Fig. 3 illustrates the detailed architecture of vidlet feature

learning and classification in the proposed kinship verification

framework. The training of the proposed three-stage SMNAE

framework is performed in a modular fashion where the first

stage learns the spatial kinship representation of images in

each frame. The second stage training learns the pairwise

spatio-temporal kinship representation of frames in a vidlet,

while the third stage training learns the cumulative vidlet kin-

ship representation, aggregating both the spatial and temporal

features. Let V idi and V idj be the videos of subjects i and

j respectively. The individual frames of the videos of subject

i are denoted as V idi = [Fr1i , . . . , F rni ]. The input to the

proposed framework is a pair of vidlets from both the videos.

The three stages of the proposed framework are discussed in

detail below.

1) First Stage - Learning Spatial Kinship Represen-

tations: In the first stage of the proposed frame-

work, compact kinship-specific representations are learned

from frame-level spatial information. The input pair of

videos is treated as a stream of vidlets. Each vidlet

comprises frames [Fr
(piv−z)
i , . . . , F r

piv
i , . . . , F r

(piv+z)
i ] and

[Fr
(piv−z)
j , . . . , F r

piv
j , . . . , F r

(piv+z)
j ], where Fr

piv
i is the

pivot frame. The corresponding frames of the pair of vidlets

are concatenated and presented as input to stacked SMNAE

to learn the spatial representation of kinship in the images. In

this first stage,

• Input: X = [Frki , F rkj ] ∀ k in {1, . . . , (2 ∗ z + 1)}, and

the regularization parameters λ and β.

• Output: Learned weight matrix W and H = φ(WX)
• Loss function (JF ):

JF = argmin
W,W′

‖ X− φ(W′
H) ‖2F +

λ

C
∑

c=1

‖ WXc ‖2,p + β(Tr(HT
HL))

(9)

For all three stages, D = diag(d1, d2, . . . , dN ), di =
∑N

j=1 Mi,j , L = D−M, and M is created such that

Mi,j =











+1, if Vidi and Vidj belong to kin

−1, if Vidi and Vidj belong to non-kin

0, otherwise

2) Second Stage - Learning Pairwise Spatio-temporal Kin-

ship Representations in Temporal Neighborhood: To account

for spatial changes across a small temporal neighborhood, a

second stacked SMNAE is trained, greedily layer by layer. The

second stage SMNAE is trained to learn and encode variations

between a pivot frame and its neighboring frames. These

encodings facilitate learning a robust representation between

kin pairs across variations due to occlusion, illumination, pose,

and expression changes.

The output of first stage is the learned representation of the

pair of (2 ∗ z + 1) frames of the vidlet and is denoted by

Hk, ∀ k in {1, . . . , (2 ∗ z+1)}. In this stage, the pivot index

(piv) is chosen and 2∗z pairwise combinations (X ) are formed

between the representations of the pivot and neighboring input

frames learned from the first stage. In the second stage of the

proposed kinship verification framework:

• Input: X o = [HpivHo] such that o ∈ {(piv − z), (piv +
z)}∧ o 6= piv where Hk = φ(WX

k) ∀ k in {1, . . . , (2 ∗
z + 1)} and the regularization parameters α and γ.

• Output: Learned weight matrix W and H = φ(WX )
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• Loss function (JS):

JS = argmin
W,W′

‖ X − φ(W ′H) ‖2F +

α

C
∑

c=1

‖ WXc ‖2,p + γ(Tr(HTHL))
(10)

3) Third Stage - Learning Kinship-Specific Vidlet Repre-

sentations: After learning the pairwise spatio-temporal rep-

resentation of the frames in a vidlet in the second stage, the

third stage of the proposed SMNAE based framework encodes

the cumulative vidlet kinship representation. It aggregates the

spatial and temporal representations to form the final compact

representation for the vidlet. This learned representation for a

subject is hierarchical in nature, including representation of a

single frame, pair of frames, and group of frames.

For the final stage of the proposed kinship verification:

• Input: V = [H1, . . . ,H(2∗z)] and the regularization pa-

rameters ζ and κ.

• Output: Learned weight matrix G and Λ = φ(GV)
• Loss function (JT ):

JT = argmin
G,G′

‖ V − φ(G′Λ) ‖2F +

ζ

C
∑

c=1

‖ GVc ‖2,p + κ(Tr(ΛTΛL))
(11)

For a pair of test videos, similar steps are followed where

the given pair of videos is first converted into vidlets. If two

videos have different lengths, the frames of the shorter video

are iteratively cycled to match the number of frames of the

longer video. The vidlets are passed through the three stages

of the proposed video-based kinship verification framework.

The representation of all the vidlets is extracted and provided

to the SVM for classification.

4) Classification: The final spatio-temporal representation

of streams of vidlets is obtained using the third stage learned

weight matrix, G. This learned representation Λ for each vidlet

is provided to a Support Vector Machine (SVM) [44] with

radial basis function kernel for computing the decision bound-

ary between the kin and non-kin class. The final classification

score for the input pair of videos is a sum of the probability

scores of each vidlet obtained as output from the SVM.

C. Implementation Details

Every video is pre-processed and contiguous frames are

extracted. Face detection and alignment is performed on each

frame of the video to obtain an image of size 128×128. This is

followed by vidlet creation. For experimental purposes, three

different values of z (pivot’s neighboring frames) are analyzed

with z = 1, 2, and 3.

In the first stage of the proposed kinship verification frame-

work, three Supervised Mixed Norm autoencoders (SMNAEs)

are stacked together, each containing 8192, 4096, and 2048

hidden nodes in their layers, respectively. The spatial represen-

tation learned from the first stage of the proposed framework

is used to extract pairwise frame representation. This is used

as input to the second stage of the proposed framework.

Mother -
Daughter 

(49)

Sister -
Sister
(67)

Brother -
Brother

(48)

Father -
Son
(65)

Brother -
Sister
(54)

Father -
Daughter

(51)

Mother -

Son
(21)

Fig. 4: Sample kin-pair subjects from Kinship Video (KIVI)

face database comprising of seven kin-relations. The number

of respective kin pairs present in each kin-relations category

in KIVI database is also indicated.

In the second stage, the third frame pair in the vidlet repre-

sents the pivot with z = 2. The spatial kinship representations

learned from the first stage are concatenated in a pairwise

fashion and sent to the second stage stacked SMNAEs. The

second stage consists of two stacked SMNAE autoencoders,

each containing 2304 and 1024 hidden nodes. Finally, all

the pairwise spatio-temporal representations learned from the

second stage of the proposed kinship verification framework

are concatenated to form the input to the stacked autoencoder

in the third stage.

The final stage learns the kinship-specific representation

of the vidlets which aggregates the spatial and temporal

information. The stacked SMNAE autoencoder used in this

stage consists of two autoencoders, each containing 3072 and

2048 hidden nodes. A vector of size 2048 is extracted for each

vidlet and is used as input to the SVM classifier. The score for

the complete video is calculated as the sum of the probability

scores of all the vidlets from the binary SVM classifier.

III. KINSHIP VIDEO (KIVI) DATABASE

Existing kinship video database, UvA-NEMO Smile [30]

database was initially created for capturing smile and expres-

sion variations. However, it was captured in controlled settings

with limited real-world variations and is not suitable for kin-

ship verification in uncontrolled videos. Therefore, to include

realistic variations observed in the wild we collected the largest

unconstrained kinship video (KIVI) face database. It consists

of video sequences of 503 individuals forming a total of 355

positive kin pairs from 211 families. For creating the proposed

KIVI database, popular celebrity families are selected and the

ground truth is annotated manually by validating the kinship

information from the Internet. For each subject in the database,

there is one corresponding video. The average video duration
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TABLE III: Characteristics of the proposed KIVI database.

No. of Individuals 503

No. of Kin Relations
7 (Brother-Brother, Sister-Sister,
Brother-Sister, Father-Son, Father-Daughter,
Mother-Son, and Mother-Daughter)

No. of Families 211

Ethnicity of Families
African-American (9), Asian (74), and
Caucasian (128)

Average Video Duration 18.78 seconds

No. of Still Frames 252,804

Average Frame Rate 26.79 fps

No. of Video Kin Pairs 355 Positive and 355 Negative

No. of Image Kin Pairs 212,018 Positive and 212,018 Negative

is 18.78 seconds with the average frame rate of 26.79 frames

per second (fps) and the total number of still frames in the

database is over 250,000. As illustrated in Fig. 4 the database

includes seven kin-relations..

The database contains videos with variations in illumination,

pose, occlusion, ethnicity, and expression collected from the

Internet. It has multi-ethnic kin pairs of Asian (74), Caucasian

(128), and African-American (9) ethnicity. The characteristics

of the KIVI database are summarized in Table III. The KIVI

database will be publicly available to the research community

at http://iab-rubric.org/resources/KIVI.html. For performance

evaluation, fixed unseen training and testing partitions of KIVI

database are created with non-overlapping subjects. 214 kin

subject pairs are chosen at random as the test partition while

the remaining kin pairs form the train partition. An equal

number of non-kin pairs are added in both the partitions.

IV. EXPERIMENTAL EVALUATION

Experimental evaluation of the proposed kinship verification

framework in unconstrained videos is performed using the

training and testing partitions of the KIVI database. For

comparison, Deep+Shallow algorithm proposed by Boutellaa

et al. [45] for kinship verification in videos is utilized. They

proposed a fusion of VGG-Face and textural features (LBP-

TOP [46], LPQTOP, and BSIFTOP) and applied SVM for final

classification. Additionally, comparative analysis is performed

using existing image-based kinship verification algorithms. It

is to be noted that these algorithms are developed to operate

on still face images and not videos. Therefore, these existing

algorithms are applied to each frame followed by score-

level fusion of the frame-wise scores to produce the final

classification of the video pair. The equal error rate (EER)

is calculated for each experiment and the kinship verification

accuracy is reported for all experiments as (100 − EER)%.

The following image-based kinship verification algorithms are

used for comparison purposes and the source codes have been

obtained from the authors directly except [21].

• Neighborhood repulsed metric learning (NRML) [9],

• Chromaticity-based approach [23],

• Color space approach [21],

• VGG-Face [47],

• Stacked Denoising Autoencoder (SDAE) with Neural

Network (NN) and Support Vector Machine (SVM),

• Kinship verification via representation learning - filtered

contractive deep belief networks (KVRL-fcDBN) [28].

TABLE IV: Video-based kinship verification accuracy (%)

of existing image-based and proposed kinship verification

algorithms on KIVI face database.

E
x

is
ti

n
g

Kinship Verification Algorithm Accuracy (%)

Chromaticity based approach [23] 43.98

Color space approach [21] 52.58

Deep+Shallow [45] 54.46

NRML [9] 55.61

SDAE Autoencoder with NN 64.48

SDAE Autoencoder with SVM 66.88

VGG-Face [47] 70.09

KVRL-fcDBN [28] 79.91

P
ro

p
o

se
d L2,p Autoencoder with NN 78.51

L2,p Autoencoder with SVM 79.21

SMNAE based framework with NN 81.78

SMNAE based framework with SVM 83.18

A. Video-based Kinship Verification Results

1) Experimental Protocol: The objective of the video-based

protocol is to compute the kinship verification performance

of the proposed framework on a pair of input videos of the

KIVI database. The experiments are performed with 40%-

60% randomly created train-test partitions. There is no overlap

between subjects or families in the training and testing folds.

The test set consists of 214 positive kin pair videos while the

train set contains 141 kin pair videos with an equal number of

non-kin pair videos in each set. The entire video is processed

and classified as kin or non-kin. The performance of existing

image-based techniques and the proposed video-based kinship

framework using Supervised Mixed Norm autoencoders (SM-

NAEs) are evaluated on the test set of the KIVI database.

As stated earlier, existing image-based kinship verification

algorithms are applied to each frame which is followed by

score-level fusion of the frame scores to generate the final kin

classification for the video.

2) Experimental Results: The results for video-based kin-

ship verification using the proposed framework and existing

image-based kinship verification algorithms are shown in

Table IV and Fig. 5. The proposed framework with SMNAE

and SVM yields the highest kinship verification accuracy of

83.18%. Sample video pairs which are correctly and incor-

rectly predicted by the proposed framework are shown in Fig

6. The detailed analysis of the results is described below.

Comparison with existing approaches: From Table IV and

Fig. 5, it is observed that the proposed multi-stage kinship

verification in videos framework consisting of SMNAE with

SVM as the classifier outperforms existing approaches with

83.18% video-based kinship verification accuracy. It surpasses

the accuracy of existing video-based kinship verification algo-

rithm [45] by over 30%. It is to be noted that the proposed

kinship verification framework with SMNAE achieves 3.27%

higher accuracy as compared to the state-of-the-art algorithm

for image-based KVRL-fcDBN kinship verification algorithm

[28]. This indicates that simple aggregation of frame-wise

scores may not encode the spatio-temporal information present

in videos. Hence, this highlights the need for developing video-

specific kinship verification algorithms.
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Fig. 5: Video-based kinship verification performance of (a)

existing image-based algorithms using frame level aggregation

and (b) proposed framework using 3-Stage existing SDAE,

3-Stage ℓ2,p AE with mixed norm regularization, and the

proposed 3-Stage SMNAEs on the KIVI database.

Effect of autoencoders in the proposed kinship verification

framework: To examine the efficacy of different autoencoders

as the representation learning unit in the video based kinship

verification framework, the same experiments are performed

using traditional stacked denoising autoencoders (SDAE) and

L2,p autoencoders in the proposed framework. As observed in

Table IV, L2,p autoencoder with SVM yields 12.33% higher

classification accuracy as compared to traditional stacked

denoising autoencoders. However, it is to be noted that

SMNAE demonstrates around 4% higher performance than

L2,p autoencoder for video-based kinship verification. The

increase in performance of SMNAE as compared to L2,p

autoencoder illustrates the efficacy of the pairwise class-based

reconstructive penalty term in the loss function of SMNAE for

verifying kin pair videos.

Effect of number of neighboring frames (z): The number

Actual 

Label

Predicted Label

Kin Non-Kin

Kin

Non-

Kin

Fig. 6: Sample results of the proposed SMNAE framework in

the form of a confusion matrix.

Pivot

z = 1

z = 2

Fig. 7: Variations across the pivot frame with respect to

number of neighbors (z).

of neighboring frames (z) to be considered with respect to

a pivot frame in a vidlet is a crucial parameter. As shown

in Fig. 7, the number of neighboring frames selected in the

temporal neighborhood affects the content in different frames

thereby influencing the learned spatio-temporal representation.

Therefore, we next analyze the effect of z in the proposed

SMNAE based kinship verification framework.

The results are computed with z = 1 to z = 3. It is to

be noted that z = 0 denotes that there are no neighbors

for the pivot frame and hence, is same as the traditional

image-based kinship verification experiment. The proposed

framework yields 83.18% kinship verification accuracy with

z = 2 as compared to 82.24% with z = 1 and 80.14%

with z = 3. As shown in Fig. 7, it can be inferred that

when the temporal neighborhood is very small, consisting

of just one neighboring frame on both sides of the pivot

frame (z = 1), the encoded spatio-temporal yields lower

performance as compared to z = 2. With z = 3, the total

number of contiguous frames including the pivot frame is 7.

As the number of frame increases, the temporal representation

is not accurately captured because the frames are not in

close proximity of the pivot frame and this decreases the

kinship classification performance. Therefore, this experiment

illustrates that the best value for z is 2 for the KIVI database.

Effect of sparsity norm (p): For determining suitable value

of p in ℓ2,p norm term in Eqs. 9, 10, and 11, comparative
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TABLE V: Video-based kinship verification performance on

the seven kin-relations in the KIVI database using the proposed

SMNAE based framework.

Kin Relationship Accuracy (%)

Mother-Daughter 92.31

Sister-Sister 83.64

Brother-Sister 82.86

Father-Daughter 81.82

Brother-Brother 81.25

Father-Son 80.00

Mother-Son 77.78

analysis is performed with different values of p (0.2, 0.4,

0.6, 0.8, and 1). It is observed that the best performance of

83.18% is achieved when p = 0.8 as compared to 77.10%

(p = 0.2), 78.50% (p = 0.4), 78.97% (p = 0.6), and

81.13% (p = 1). It is noted that smaller values of p produce

lower kinship verification accuracy. This may suggest that with

smaller values of p, the learned network becomes too sparse

and hence, encoding inadequate information for the classifier.

However, it is to be noted that different values of p can produce

different performance on other databases.

Role of classifier for final kin vs non-kin decision: The

effect of classifier after the third stage of the proposed kinship

verification framework is analyzed. The proposed SMNAE

based framework with neural network (NN) classifier yields

1.4% lower accuracy as compared to the performance of

SVM with the proposed framework. This result illustrates

the effectiveness of SVM in learning the kin vs non-kin

classification boundary as compared to the neural network.

Effect of kin-relation: Experimental evaluation is performed

on all seven types of kin-relation in the input kin pair video.

The classification accuracy of the proposed kinship verification

framework for different kin-relations is shown in Table V.

It is observed that mother-son pair is the most difficult to

detect while mother-daughter video pairs are verified with

the highest accuracy of 92.31%. It has been ascertained that

humans are able to verify kin pairs easily if there is at least

one female subject in the pair [48]. One reason postulated for

this phenomenon is higher degree of variation in facial images

of males. A similar trend is noticed here as brother-brother

and father-son kin pair videos have lower kinship verification

accuracy as compared to other relationships due to the absence

of a female subject. However, mother-son relationship kin

pairs contradict this pattern and one reason for that can be

the fewer number of samples of this relation as compared to

other relationships in the KIVI database.

Role of fusion of vidlets: An input video pair of two subjects

produces many vidlets. Therefore, in the proposed kinship

verification framework, the final classification score for the

input pair of videos is a sum of the probability scores of each

vidlet obtained as output from the SVM. For comparative anal-

ysis, the performance of the proposed framework is computed

by applying the max rule on the probability scores. In the

max rule, the vidlet pair with the highest probability score

is chosen for providing the final classification. Video-based

TABLE VI: Image-based kinship verification accuracy of

existing image-based and proposed kinship verification algo-

rithms on still frames of the KIVI face database.

Kinship Verification Algorithm Accuracy (%)

E
x

is
ti

n
g

Color space approach [21] 51.18

Chromaticity based approach [23] 54.00

NRML [9] 54.47

SDAE Autoencoder with NN 58.77

SDAE Autoencoder with SVM 61.33

VGG-Face [47] 69.32

KVRL-fcDBN [28] 77.97

P
ro

p
o

se
d First stage L2,p Autoencoder with NN 76.20

First stage L2,p Autoencoder with SVM 76.48

First stage SMNAE with NN 77.41

First stage SMNAE with SVM 79.09

kinship verification accuracy of 80.37% is obtained with the

max rule as compared to 83.18% by using the sum rule. In

sum rule fusion, all the vidlet pairs contribute equally and are

combined to produce the final decision. The performance is

higher as compared to max rule fusion where only one pair

is selected to produce the decision. This demonstrates that it

is beneficial to integrate decisions from all the vidlet pairs to

produce the final classification of kin or non-kin.

B. Image-based Kinship Verification Results

The proposed SMNAE based framework achieves state-of-

the-art kinship verification accuracy in videos. However, in

certain scenarios images may be the only source of information

due to unavailability of videos. In such scenarios, kinship can

only be determined using image pair of the subjects. The

performance of the proposed kinship verification framework

on images is reported below.

1) Experimental Protocol: This protocol is created to eval-

uate the performance of the proposed kinship verification

framework at frame-level (image-level) without taking into

account the temporal information present in videos. Existing

image-based kinship verification algorithms are applied to

each frame. Corresponding frames of the input pair of video

are extracted and kinship verification is performed on a per-

frame basis. On average, the test set consists of 125,708 pairs

of positive kin frames while the train partition contains 86,310

pairs of positive kin pair frames. An equal number of non-kin

frame pairs are added in both test and training partitions.

2) Experimental Results: The kinship verification perfor-

mance is evaluated on per-frame basis and the results are

reported in Table VI and Fig. 8.

Comparison with existing approaches: The performance of

the proposed video-based kinship verification framework is

evaluated on images using the first stage of the kinship veri-

fication framework as this stage of the framework is intended

to encode the spatial features irrespective of the temporal

information. It is observed that the first stage of stacked

SMNAE with SVM classifier yields the highest classification

accuracy of 79.09% on the KIVI database. Furthermore, it is

observed that the state-of-the-art algorithm for image-based
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Fig. 8: Image-based kinship verification performance of (a)

existing image-based algorithms (b) first stage of SDAE, L2,p

AE, and proposed SMNAE on still frames of KIVI database.

kinship verification, KVRL-fcDBN [28] yields kinship verifi-

cation accuracy of 77.97%. In [28], the authors have reported

that KVRL-fcDBN achieves more than 90% classification

accuracy on five publicly available kinship image databases.

This decrease in the performance of KVRL-fcDBN [28] on

KIVI database demonstrates the challenging nature of the

database due to real-world variations in pose, illumination,

occlusion, ethnicity, and expressions.

C. Performance on Existing Databases

To demonstrate the efficacy of the proposed SMNAE

framework on existing publicly available kinship databases,

five image-based and one video-based kinship databases are

selected. The experimental evaluation on these databases is

performed using the pre-defined protocols described in the

respective papers. Comparative analysis on these databases is

performed using existing kinship verification algorithms and

the results are summarized in Table VII.

The first stage of the proposed SMNAE based framework,

signifying the scenario when z = 0, is fine-tuned and evaluated

TABLE VII: Kinship verification accuracy (%) of kinship

classification algorithms on existing databases. Results of

existing algorithms are directly reported from the original

papers.

Image Video

Method Cornell UBKin KFWI KFWII
WVU
Kin

UvA-
Nemo

NRML - - 69.90 76.50 - -

PDFL 71.90 67.30 70.10 77.00 - -

DDMML - - 83.50 84.30 - -

VTCL - - 80.50 82.30 - 93.65

KVRL
fcDBN

89.50 91.80 96.10 96.20 90.80 -

Proposed 94.40 95.30 96.90 97.10 93.40 96.07

on the following five publicly available image-based kinship

databases: (i) Cornell [1], (ii) UB KinFace [2], (iii) KinFaceW

(KFW)-I [9], (iv) KFW-II [9], and (v) WVU Kin [28]. The

performance of the proposed SMNAE is compared with the

following existing kinship verification algorithms: (i) NRML

[9], (ii) PDFL [14], (iii) DDMML [26], (iv) VTCL [31], and

(v) KVRL-fcDBN [28]. The analysis of the results reported in

Table VII illustrates that the proposed SMNAE outperforms

other existing algorithms on all five image databases by 0.8%

to 4.9% on the task of kinship verification.

The performance of the proposed three-stage SMNAE based

framework is also evaluated on the UvA-Nemo Smile dataset

[30]. This video dataset consists of 95 subjects having a kin

relationship. Following the protocol described by Dibeklioglu

et al. [30], the proposed SMNAE framework achieves 96.07%

kinship verification accuracy. The three-stage SMNAE frame-

work which encodes spatio-temporal kinship-specific represen-

tation outperforms the visual transformation aided technique

[31] by 2.42%.

V. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

This research presents a deep learning based video kinship

verification framework using a novel Supervised Mixed Norm

Autoencoder. The proposed three-stage SMNAE encodes the

spatio-temporal kinship cues present in video frames for video-

based kinship verification. The comparative analysis with

existing algorithms on publicly available video-based and five

image-based kinship databases demonstrates the efficacy of the

proposed kinship verification framework. Also, a new kinship

video database, termed as KIVI database, is introduced which

contains video sequences of 211 families, 355 true kin pairs,

and seven kin-relations with more than 250,000 still frame

images. On the KIVI database, the proposed algorithm yields

state-of-the-art kinship verification accuracy of 83.18%. In

the future, this kinship database will be expanded to include

new kin-relations such as cousins, nieces, nephews, aunts, and

uncles and further evaluation will be performed on Family in

the Wild database. Finally, we also plan to extend the proposed

algorithm by incorporating video frame selection techniques

[49], [50].

APPENDIX

Additional experiments are performed to evaluate the ef-

ficacy of the proposed SMNAE on two standard databases,
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TABLE VIII: Performance of the proposed SMNAE, KLD,

and GSAE autoencoders on MNIST and CIFAR-10 databases.

Database Metric KLD GSAE SMNAE

MNIST Error rate (%) 1.71 1.19 0.98

CIFAR-10 Accuracy (%) 74.30 76.80 79.50

MNIST and CIFAR-10. Since the input is a single image,

a minor modification is required. In Eq. 4, the parameter,

Mij is updated to denote class information and rest of the

computation remains the same. The experiments are performed

with the pre-defined experimental protocol of the MNIST and

CIFAR-10 databases, and the performance of the proposed

SMNAE is compared with the traditional KL-divergence based

Autoencoder (KLD) and Group Sparse Autoencoder (GSAE)

[48]. As shown in Table VIII, on MNIST database, SMNAE

yields the lowest error of 0.98% as compared to 1.19%

by GSAE, and 1.71% by KL-divergence based autoencoder.

On CIFAR-10 image database, SMNAE achieves the highest

classification accuracy of 79.50% which is at least 2.7% higher

than other autoencoder formulations. These experiments fur-

ther show the usefulness of ℓ2,p-norm based SMNAE approach

on other object classification problems.
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