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Abstract. Chemical exchange in solution state has been investigated traditionally by both 1D and 2D 
NMR, permitting the extraction of kinetic parameters (e.g. the spin-lattice relaxation time T1, the  
exchange rate constant k and the activation parameters). This work demonstrates a simple 1D NMR  
approach employing multiply selective excitation to study multi-site exchange processes in solution,  
applying it to systems that exhibit three-site exchange. This approach involves simultaneous excitation of 
all – or a chosen subset of – the exchanging sites by using an appropriately modulated shaped radiofre-
quency pulse. The pulse sequence, as well as analysis is summarized. Significant features of the experi-
ment, which relies on sign labelling of the exchanging sites, include considerably shorter experiment time 
compared to standard 2D exchange work, clear definition of the exchange time window and uniform 
pulse non-ideality effects for all the exchanging sites. Complete kinetic information is reported in the 
study of dynamic processes in superacid solutions of two weak bases, studied by 1H NMR. An analytical 
solution, leading to the determination of four rate parameters, is presented for proton exchange studies on 
these systems, which involve a mixture of two weak bases in arbitrary concentration ratio, and 
stoichiometric excess of the superacid. 
 
Keywords. Chemical exchange; solution state; 1D NMR; modulated shaped RF pulses; multi-site  
selection; sign labelling. 

1. Introduction 

Chemical exchange in solution state has been inves-

tigated over the years by both 1D and 2D NMR 

methods.1–17 In general, one-dimensional (1D) mag-

netization transfer (MT) experiments9,18–31 or  

T1-based experiments offer better prospects for 

quantitation of the exchange processes compared to 

lineshape analysis methods1,2,16 which are T2-based 

experiments. In the slow exchange regime the two-

dimensional (2D) exchange experiment12 is an  

excellent tool to investigate the exchange process 

both qualitatively and quantitatively. Each of these 

methods has its own merits and demerits. Although 

2D EXSY is unrivaled in probing chemical  

exchange, the time required for complete quantita-

tion by standard EXSY12 is a major issue. More re-

cently, an ultrafast 2D exchange experiment32 has 

been proposed, that permits the acquisition of a 

complete set of mixing incremented 2D exchange 

patterns within a single experiment entailing a total 

time of ca. 1 s. 1D MT experiments on the other 

hand do not throw light on the exchange pathways 

and need prior knowledge of the chemical shifts of 

the exchanging sites. 

 The present work proposes an efficient 1D 

method to study multi-site exchange processes in  

solution33–35 by NMR, and illustrate the current  

approach with studies on a system that exhibits 

three-site exchange.36, 37 The pulse sequence is given 

in figure 1 along with the standard 2D EXSY  

sequence for comparison. This approach involves  

simultaneous excitation of all – or a chosen subset 

of – the exchanging sites by using an appropriately 

amplitude modulated shaped (π /2) pulse at the  

beginning of the sequence which is immediately  

followed by a hard (π /2) pulse. Together, these two 

pulses result in selective rotation of magnetization 

of a chosen set of sites by a desired angle, e.g. 0° or 

180°. Thus, the z-magnetization of the spins is sign 

labelled, being placed in the ± z direction at the start 

of the mixing time, depending on the kind of modu-

lation used for the first pulse, and permitting thereby 

the creation of various initial states. During the  
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exchange period (τm), longitudinal magnetization is 

subject to spin-lattice relaxation as well as ex-

change. The last hard π/2 pulse brings the magneti-

zation back to the transverse plane for detection. By 

varying τm one may monitor the return of magnetiza-

tion to equilibrium. In keeping with the way the  

sequence functions, it is termed as the ‘multi-site  

selective inversion experiment’. Significant features 

include considerably shorter experiment time com-

pared to standard 2D EXSY,12 clear definition of the 

exchange time window, and uniform pulse non-

ideality effects for all the exchanging sites. 

 Double modulation of the shaped pulse envelope 

has been employed to investigate three site exchange. 

Table 1 sets out the phase cycle that have been  

implemented for the double cos and double sin 

modulated inversion experiments, as well as that for 

the cos–sin and sin–cos modulated inversion  

experiments; the purpose of the phase cycle is the 

suppression of signal components that arise from 

pulse imperfections. 

2. Experimental 

Multi-site selective inversion experiments were car-

ried out at a series of temperatures and at a number 

of τm values on a Bruker Avance 400 NMR spec-

trometer with a 5⋅4 cm vertical bore magnet,  

employing a Bruker 5 mm BBO probehead. The 

 
 

 
 

Figure 1. (a) The 1D exchange pulse sequence involv-
ing modulated shaped pulse, ϕ: phase of the pulses and 
the receiver; the phase cycle is given separately in a tabu-
lar form, (b) the 2D exchange pulse sequence involving 
three hard pulses. The rectangular bars denote π/2 pulses 
whereas the non-rectangular shape denotes the modulated 
shaped pulse. 

Bruker variable temperature unit BVT-3200 was 

used to measure and regulate the temperature during 

the experiments. 

 Modulated shaped pulses were generated using 

the Bruker ‘shapetool’, invoking the appropriate 

modulation frequencies. A Gaussian envelope38 has 

been used as the basic shape, whose amplitude is 

doubly modulated with cosine and/or sine wave(s) to 

produce four excitation sidebands respectively. The 

shaped pulse duration has been set to be shorter than 

the anticipated exchange lifetime; the pulse duration 

used in the present study is 10 ms. 

2.1 Shaped pulse modulation 

To achieve tri-selective excitation, the transmitter 

frequency (νT) may be positioned at the average of 

any two of the three chemical shifts in question,  

denoted by νA, νB, νC, here, νA corresponds to the 

lowest frequency signal, the next higher frequency 

signal being at νB the highest frequency line being at 

νC. The two modulation frequencies (νm
1
, νm

2
) are 

then given as half the modulus of the difference in 

frequencies between the third line and each of the 

chosen two lines in turn. The redundant frequency 

generated is given by the sum of the frequencies of 

the two chosen lines, minus that of the third. As an 

example, if the transmitter be placed at the mean 

frequency of the two highest frequency lines, νB and 

νC (i.e. νT = (νB + νC)/2), the two modulation  

frequencies are given by: νm = (νB – νA)/2 and 

νm = (νC – νA)/2. The redundant frequency is in turn 

given by νR = νB + νC – νA. 

 Four different double modulation schemes of the 

shaped pulse are possible, viz. double cosine,  

cosine–sine, sine-cosine and double sine, in keeping 

with a Hadamard matrix39 of order 4. Simple trigo-

nometric relations may be used to find the outcome 

of such double modulation schemes. Table 2 sum-

marizes the phase relations among the four excita-

tion frequencies for the four modulation schemes, 

the carrier being placed at the average of the two 

highest frequency peaks (νB, νC). 

2.2 Materials 

An equimolar mixture of fluorosulphonic acid 

(FSO3H) and antimony pentafluoride (SbF5), 

(known as ‘magic acid’40,41) was procured from 

Sigma-Aldrich and used as the solvent acid (site 1) 

without further purification or drying. To 0⋅41 ml of
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Table 1. Phase cycle used for the double modulated multi-selective inversion  
recovery experiment. 

Modulation employed* Scan ϕ1 ϕ2 ϕ3 ϕR 
 

Double cosine  1 0 0 0 0 
 2 2 2 0 0 

Cosine–sine 1 3 0 0 0 
 2 1 2 0 0 

*The first descriptor designates the modulation frequency 
1
m

ν , while the second des-
ignates

2
m

ν  

 
Table 2. Excitation phase relations obtained for four double modulation schemes 
with the transmitter being placed at the average of νB and νC. 

 Relative phase of the chemical sites excited 
 

Modulation employed* νfictitious νC νB νA 
 

cos–cos + + + + 
cos–sin + + – – 
sin–cos + – + – 
sin–sin + – – + 

*The first descriptor designates the modulation frequency 
1

,

m
ν  while the second  

designates 
2
m

ν  

 

 

the solvent acid (HA), 0⋅01 ml of water (the first 

solute base, B) and 0⋅055 ml of acetone (the second 

solute base, C), were added directly. Water and ace-

tone are fully protonated under this condition. The 

conjugate acids of the solute bases B and C, viz. 

HB+ and HC+ denote site 2 and site 3 respectively. 

The sample therefore contains exchangeable protons 

in three different sites with the equilibrium popula-

tion ratio HA : HB+ : HC+ = 5 : 1 : 1, as determined 

from the NMR spectral intensities. The dynamics of 

proton exchange observed in the superacid solution 

may be modelled as a three-site exchange process. 

3. Analysis 

Analytical solutions of the relevant kinetic equations, 

formulated using the modified Bloch-McConnell 

equations42 are available in the literature43 for both 

two-site and equally populated three-site exchange 

processes. 

 The kinetic equations for a closed three-site  

exchange network44 involving three unequally popu-

lated sites do not in general have an analytical solu-

tion for arbitrary initial conditions, since a total of 

nine unknown rate parameters, viz. three different 

pairs of pseudo-first order rate constants (one pair 

between each pair of exchanging sites, viz. k12, k21, 

k13, k31, etc.), as well as three different spin-lattice 

relaxation rates (one corresponding to each site) 

have to be considered. Hence numerical solu-

tions33,45 are preferred in the general context. How-

ever, analytical solutions to determine all the nine 

parameters of a general three-site exchange process 

are available in the literature, considering extensive 

combinations of saturation transfer and inversion  

recovery experiments.46,47 

 In the case of proton exchange dynamics in super-

acid media,36,37 a closed exchange network as given 

in figure 2 has been considered. A 2D EXSY spec-

trum of the superacid solution at T = 298 K, given in 

figure 3, confirms this. The corresponding Bloch-

McConnell equations for such a general three site 

exchange process involving three unequally popu-

lated sites exchanging among each other may be 

written as follows: 
 

 ( )0

12 13 21 31

11

( )d

d

zz

z z z

I II
k k I k S k R

t T

 −
= − − + + + 
 

, 

 (1) 
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21 23 12 32
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( )d
( )

d
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z z z
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k k S k I k R

t T

 −
= − − + + + 
 

, 

 (2) 
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 (3) 

 

Here Iz, Sz, Rz 
z
I , Sz, Rx are z-magnetizations at any 

time t at sites 1, 2, 3 respectively, while I0, S0, 

 

 

 
 

Figure 2. The three-site exchange network. Exchange is 
going on simultaneously among all the three sites denoted 
as 1, 2 and 3. 

 

 

 
 

Figure 3. 2D EXSY spectrum of superacid solution 
containing water and acetone as the solute bases. The 
spectrum is acquired with a mixing time of 350 ms  
at T = 298 K. The spectrum was recorded with 2 K t2 
points and 128 t1 points and D1 + AQ = 7 s for a spectral 
width of 2⋅4 kHz. 16 scans were acquired per t1 incre-
ment. 

R0 represent the corresponding equilibrium magneti-

zations. T1i represents the spin-lattice relaxation time 

of site i and kij is the rate constant for the exchange 

of magnetization from site i to site j. 

 By invoking microscopic reversibility at dynamic 

equilibrium48 the above set of coupled inhomogene-

ous differential equations may be readily cast in 

homogeneous form, corresponding to the matrix 

given in (4). 
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In the present case the Bloch–McConnell equations 

have been formulated taking into account the fol-

lowing considerations: 

 (i) Within experimental error the system exhibits 

a single spin-lattice relaxation time, i.e. T1i = T1; 

i = 1, 2, 3, over the temperature range from 25°C to 

–40°C. 

 (ii) Concentration of the superacid (HA) is very 

high compared to the solute bases (B, C). Under 

these conditions, complete protonation of the two 

solute bases is guaranteed. 

 Subject to these two conditions, analytical solu-

tions of the kinetic matrix may be found for any  

arbitrary initial conditions using Mathematica, em-

ploying the actual population ratio of the three com-

ponents. In the present study, the equilibrium 

populations are in the ratio p1
 : p2

 : p3 = 5
 : 1 : 1, pi 

denoting the equilibrium population of the ith site as 

measured from the NMR intensities. Invoking  

microscopic reversibility at dynamic equilibrium48 
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the following relations may be written considering 

the population ratios mentioned: 

 

 k12 = 0⋅2k21; k13 = 0⋅2k31; k23 = k32.  (5) 
 

Further, following the arguments of Gold et al37 and 

using the second constraint of excess superacid con-

centration, one eventually arrives at a single experi-

mental first order rate constant for the two exchange 

processes: between sites 1, 2 (k12) as well as  

between sites 1, 3 (k13). Under these conditions,  

in fact, the resulting kinetic equation matrix has  

only three unknown parameters, viz. the single  

spin-lattice relaxation time and two different  

experimental first order rate constants. This may be 

further appreciated on considering the following 

points. 

 The system under investigation contains three  

individual equilibrium processes going on simultane-

ously. One is given by: 
 

 
HA,B

HB,A

k

k

HA B HB A
+ −→+ +← . (6) 

 

Here the second order rates, viz. kHA,B and kHB,A are 

related to the corresponding first order rate con-

stants37 as given below: 

 12
,

[ ]
HA B

k
k

B
= , (7a) 

 21

,
[ ]

HB A

k
k

A
−

= . (7b) 

The other two equilibrium processes along with the 

respective second order rates are given below: 

 
,

,
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k

k

HA C HC A
+ −→+ +← . (8) 

Here 

 13
,

[ ]
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k
k

C
= , (9a) 

 31
,

[ ]
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k
k

A
−

= . (9b) 

 

Similarly 

 

 
,

,

HB C

HC B

k

k

HB C HC B
+ +→+ +← , (10) 

with 
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,

[ ]
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k
k

B
= , (11a) 

 

 32
,

[ ]
HC B

k
k

C
= . (11b) 

 

Here, [A–] is the concentration of anion, [B], the 

concentration of water and [C], that of acetone pre-
sent in the solution at equilibrium. 

 Following (5) and using the above relations,  

the kinetic matrix in this case may thus be written 

as: 
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 (12) 

 

Further, for the proton exchange dynamics in super-

acid media,37 the experimental first order rate  

coefficients k12 and k13 (7a and 9a) equal the  

inverse of the mean residence time of the proton on 

HA (site 1), while the first order rate coefficients k21 

and k23 (7b and 11a) equal the inverse of the mean 

residence time of proton on HB+ (site 2) and the first 

order rate coefficients k31 and k32 (9b and 11b)  

correspond to the mean residence time of proton on 

HC+ (site 3), which are obtainable from NMR mea-

surements. For the acid–base reaction given in (6) 

and (8), the following relations hold good at equili-

brium: 
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,12

,

[ ][ ]

[ ][ ]

HA B

HB A

k HB A
K

k HA B

+ −

= = , (13) 
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,

[ ][ ]
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k HC A
K
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+ −
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Following the arguments of Gold et al37 in the above 

equations the values of kHA,B, kHA,C are assumed to be 

same for the solute bases B and C since the value of 

this constant must be large and close to the limit set 

by the rate of encounters.37 Further, the value of  

[A–]/[HA] is known from the stoichiometric compo-

sition of the solution. This follows because [A−] 

must very closely approximate the sum of the initial 

concentrations ([B]0, [C]0) of the added bases B and 

C if the bases are almost completely converted into 
their conjugate acids. The formation of A– is accom-

panied by a corresponding reduction of the concen-

tration of HA. Furthermore, this implies that at 

equilibrium [HB+] must be essentially equal to [B]0 

while [HC+] must be essentially equal to [C]0. The 

equilibrium constants K12 and K13 are then essen-

tially independent of the concentration of the added 

bases under the condition of complete protonation of 

the bases – and depend only on the chemical compo-

sition of the solvent acid (in the present instance the 

stoichiometric proportion of fluorosulphonic acid 

and antimony pentafluoride).37 Considering the ratio 

of the equilibrium constants, one may therefore 

write: 
 

 
,

,

[ ]

[ ]

HC A

HB A

k HB

k HC

+

+
= . (15) 

 

Since the equilibrium concentrations of the two  

conjugate acids are equal as measured from  

the NMR intensities, i.e. [HB+] = [HC+], it follows 

that: 
 

 kHB,A = kHC,A. (16) 
 

Equation (16) implies that the second order deproto-

nation rates of the two bases are equal under the 

condition of complete protonation of the two bases. 

This in turn results in equalization of the two first 

order rate constants, viz. k21, k31. Hence it may be 

concluded that only three unknown parameters, viz. 

T1, k21 = k31 = k, k23 are to be determined from the 

kinetic equation given in (12) which is re-written as 

follows: 
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The above differential equation may be solved for 

any arbitrary initial condition with the help of 

Mathematica, employing the actual population ratios 

of the three components. 

 The solution of (17) has been obtained by  

employing two different initial conditions with the 

help of Mathematica 5.1. To maintain compact nota-

tion, the mixing time τm is represented by t in all the 

following equations. 

 (i) Iz(0) = –I0; Sz(0) = –S0; Rz(0) = –R0: A double 

cosine modulated pulse followed by a hard π/2 pulse 

results in this initial state. The corresponding solution 

is given in (18) in terms of the ‘sum’ magnetization 

that has a mono-exponential dependence on T1 alone. 
 

 
0 0 0

1

( ) 1 2exp
z z z

t
I S R I S R

T

  
+ + = + + − −  

   
. (18) 

 

 (ii) Iz(0) = I0; Sz(0) = S0; Rz(0) = R0: a cosine–

sine modulated pulse followed by a hard π/2 pulse 

results in this initial condition where only the proto-

nated acetone peak (site 3) is inverted. The analyti-

cal solutions (19, 20 and 21) for each of the three 

magnetization components now reveal the other two 

kinetic parameters, viz. k and k23. 
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0 0
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Here 

 
 l = a + c – e + p; m = a + c – e – p; 

 n = –a + c – e + p; q = a – c + e + p, (22) 

 

 
23

1 1

1 1. .0 4 ;    ;   ;   0 2a k c k k b k d k
T T
= + = + + = = ,  

 (23) 
 

 2

23
;   ( ) 8e k p a c e bd= = − + + . (24) 

 

These solutions may be employed as fitting equa-

tions in order to derive the rate constants from the 

experimental data. 

4. Results and discussion 

Single pulse experiments are performed with a  

cosine modulated shaped pulse. The resulting line 

intensities after application of the cosine modulated 

Gaussian pulse follows a Gaussian profile as a func-

tion of frequency. This is in keeping with the fact 

that in the linear response regime the Fourier trans-

form of the time domain pulse envelope is an excel-

lent approximation to the excitation profile, barring 

relaxation effects. 

 The amplitude of the magnetization resulting after 

the cosine modulated Gaussian pulse for two simul-

taneously excited chemical sites has been plotted in 

arbitrary units (a.u.) against the frequency offset of 

the shaped pulse carrier in figure 4. It shows an  

expected Gaussian profile. In this case the shaped 

pulse carrier has been varied keeping the modulation 

frequency constant. The figure caption gives other 

relevant details of the experimental set-up. In a simi-

lar experiment modulation frequency of the cosine 

modulated Gaussian pulse has also been stepped up 

keeping the carrier frequency of the shaped pulse 

constant at the average of the two lines to be excited 

and one observes the expected Gaussian profile once 

again. 

 Figure 5 shows the spectra resulting after applica-

tion of double cosine and cosine–sine modulated ex-

citation pulses. The shaped pulse carrier frequency 

has been placed at the middle of the two lowest field 

peaks, viz. protonated acetone peak and the acid 

peak. Here pulse duration of 10 ms has been  

employed. A point to be noted here is that in case of 

exchange studies the choice of pulse duration is also 

governed by the required selectivity besides the 

 

 

 
 

Figure 4. Experimental excitation profile obtained with 
the cosine modulated Gaussian pulse of duration 40 ms 
and modulation frequency of 100 Hz. The shaped pulse 
carrier frequency has been moved in 10 Hz steps from 
one chemical site to the other. The maximum amplitude 
corresponds to the positioning of the carrier at the aver-
age of the two frequencies excited. The resulting phase 
remains constant within ± 5% as a function of frequency 
offset. 

 

 
 

Figure 5. Spectra resulting after multi-site selective 
shaped pulse excitation; bottom trace: double cosine 
modulation resulting in simultaneous excitation of all the 
three peaks with same phase relations. The shaped pulse 
carrier frequency is placed at the average of the two  
lowest field signals, viz. the acid peak and the acetone 
peak; top trace: cosine–sine modulation resulting in  
simultaneous excitation of all the three sites with inver-
sion of acid and water peaks. 
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anticipated k value at a particular temperature.  

Alternative shapes, e.g. sinc can be employed with 

shorter duration than a Gaussian to achieve a given 

selectivity. 

 Insertion of a double cosine modulated shaped 

pulse in the exchange sequence results in inversion 

of all the three sites whereas insertion of a cosine–

sine modulated shaped pulse in the exchange  

sequence results in inversion of acetone peak alone. 

Figure 6 shows the stack plot at T = 298 K for the 

cosine–sine modulated inversion experiment as a 

function of τm. The un-inverted peaks in the case of 

the cosine–sine modulated experiment, viz. the acid 

and the water peak show the characteristic dip49,50 in 

their intensity profiles whereas the protonated  

acetone peak exhibits the typical inversion recovery 

behaviour. 

 Using the fitting equations given in (18) and (21), 

the experimental data for the double cosine and the 

cosine–sine modulated experiments have been fitted 

to determine all the relevant kinetic parameters, viz. 

the spin-lattice relaxation time (T1), the deprotona-

tion rate constants for the two bases (k21 = k31 = k), 

as well as the proton exchange rate constant between 

water and acetone (k23). Figure 7a shows the plot of 

experimental signal intensities vs mixing time corre-

sponding to the ‘sum’ magnetization obtained from 

the double cosine modulated inversion experiment at 

T = 298 K, while figure 7b shows the plot of  

experimental signal intensities of the protonated  

acetone peak against mixing time at T = 298 K. In 

this case since the deprotonation rate constants for 

the two bases are equal (k21 = k31 = k), inversion of  

the acetone peak alone is sufficient to unravel all the 

 

 
 

Figure 6. Stack plot of the cosine-sine modulated  
inversion experiment as a function of mixing time (τ

m
) at 

T = 298 K. The respective τ
m
s are given next to each 

spectrum in units of ms. 

exchange rate constants. The kinetic parameters thus 

obtained are given for nine different temperatures in 

table 3. The activation parameters corresponding to 

the deprotonation process are given in table 4 and 

are in good agreement with the literature values.51 

5. Conclusion 

The present 1D exchange pulse sequence involves 

amplitude modulated shaped pulses; double modula-

tion of the shaped pulse envelope has been  

exploited. Singly modulated shaped pulses may be 

employed, on the other hand, to study two-site  

exchange processes. Incorporation of such a modu-

lated shaped pulse enables the creation of various 

 

 

 
 

Figure 7. (a) Plot of ‘sum’ magnetization against τm at 
T = 298 K resulting from the double cosine modulated 
inversion recovery sequence; (b) plot of signal intensities 
of the acetone peak against τ

m
 at T = 298 K resulting 

from the cosine–sine modulated inversion recovery  
sequence. 
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Table 3. Kinetic parameters obtained for the proton exchange dynamics in magic 
acid solution modelled as three-site exchange process. 

 Kinetic parameters 
 

Temperature T (K) R1 (s
–1) K21 = k31 (s

–1) k23 (s
–1) 

 

233 2⋅74 ± 0⋅01 1⋅04 ± 0⋅01 0⋅36 ± 0⋅005 
238 2⋅46 ± 0⋅04 1⋅65 ± 0⋅2 0⋅42 ± 0⋅02 
243 2⋅23 ± 0⋅006 2⋅27 ± 0⋅14 0⋅66 ± 0⋅01 
248 2⋅02 ± 0⋅002 3⋅88 ± 0⋅31 0⋅71 ± 0⋅02 
253 1⋅85 ± 0⋅003 5⋅84 ± 0⋅42 1⋅08 ± 0⋅004 
263 1⋅48 ± 0⋅002 12⋅88 ± 0⋅13 2⋅23 ± 0⋅03 
273 1⋅21 ± 0⋅002 20⋅00 ± 1⋅34 3⋅32 ± 0⋅09 
283 1⋅02 ± 0⋅004 30⋅65 ± 1⋅38 4⋅40 ± 0⋅06 
298 0⋅78 ± 0⋅001 70⋅05 ± 0⋅31 6⋅17 ± 0⋅08 

 
 

Table 4. Activation parameters obtained for the deprotonation process in magic acid solu-
tion. 

Arrhenius parameters Eyring parameters 
 

Activation energy Frequency factor Enthalpy of activation Entropy of activation 
Ea (kJ mol–1) A  (s–1) ∆H* (kJ mol–1) ∆S* (J mol–1 K–1) 
 

37⋅33 ± 1⋅16 (2⋅62 ± 0⋅08) × 108 35⋅17 ± 1⋅66 −90⋅89 ± 4⋅48 

 
 

initial states of the exchanging sites, avoids off-

resonance effects, and ensures uniform pulse non-

idealities for all exchanging sites. The 1D method 

described, permits a clear definition of the exchange 

time window; it also enables genuinely accurate 

measurements of the kinetic as well as activation pa-

rameters, since this fast experiment may be readily 

carried out – with standard hardware and software – 

at a large number of mixing times and at different 

temperatures, in a modest total experiment time. 

 One may employ the proposed pulse sequence 

even for closely spaced frequencies. The proposed 

pulse sequence has been successfully implemented 

to study amide rotation in dimethylacetamide by 1H 

NMR (not reported) – this system exhibits only 

0⋅4 ppm frequency separation between the two ex-

changing sites. Clearly on modern NMR machines 

that operate at 400 MHz and higher our simple 

modulated Gaussian or sinc pulses turn out to be ef-

ficient even for line spacing substantially less than a 

ppm. There are, of course, limits to improving selec-

tivity by employing long shaped pulses, bearing in 

mind the constraint imposed by the exchange rate 

constant. 

 Analytical solutions for the kinetic parameters for 

a three-site exchange, which are valid under the 

conditions of the present study, have also been 

given. 
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