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ABSTRACT
It appears that there is a genuine shortage of radio pulsars with surface magnetic fields signif-
icantly smaller than ∼ 10

8 Gauss. We propose that the pulsars with very low magnetic fields
are actually strange stars locked in a state of minimum free energy and therefore at a limiting
value of the magnetic field which can not be lowered by the system spontaneously.
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1 INTRODUCTION

A radio pulsar is a strongly magnetized rotating neutron star. The

dipolar component of the magnetic field can be estimated from its

spin-period (P ) and the period derivative (Ṗ ), apart from some

structural constants (B ∝
√

PṖ ). Magnetic fields estimated in

this fashion broadly classifies the radio pulsars in two categories -

a) isolated pulsars with rotation periods usually above 1s and very

strong magnetic fields (1011−1013 G); (b) binary/millisecond pul-

sars with much shorter rotation periods and considerably weaker

magnetic fields (108 − 1010 G). Observations suggest a connection

between the low magnetic field of the second group with their being

processed in binary systems, indicating an accretion-induced field

decay in such cases (see Bhattacharya (2002) for a review).

However, none of the existing mechanisms of field evolution im-

plies that the final field should saturate to a particular value irre-

spective of the evolutionary history of a given pulsar. Surprisingly,

the observed pulsar population seems to have a lower bound for the

magnetic field strength. Till date some fifteen-hundred radio pul-

sars have been discovered, for a large number of which the values

of P and Ṗ (and therefore B) are available. Fig.[1] shows a plot

of the magnetic field vs. the spin period (B − P ) of these pulsars.

It appears that there exist a minimum value of the magnetic field,

around ∼ 108 G.

In the present work, we try to offer an explanation for the mini-

mum magnetic field by associating the millisecond pulsars with the

strange stars. The relation between the decay of the magnetic field

and the binary history of a pulsar has been firmly established. It

is also understood that the very low-field pulsars, in particular the

millisecond pulsars, are products of low-mass X-ray binary systems

(LMXB). Recently, there has been an attempt to associate the bot-
tom magnetic field of the millisecond pulsars with the total amount

of mass accreted (Zhang 2004). However, we feel that the minimum

field, characteristic of pulsars processed in LMXBs, arises due to

an entirely different reason. Because of the long evolutionary time-

scales the total amount of mass accreted by a neutron stars in an

LMXB is quite large. Addition of this extra mass may trigger the

conversion of a neutron star into a strange star via deconfinement

(Olinto 1987). Interestingly, many of the compact objects suspected

to be strange stars are residing in LMXBs (Li et al. 1999; Datta,

Thampan, & Bombaci 2000). In view of this, we suggest that it is

the intrinsic property of a strange star which gives rise to a lower-

bound of the magnetic field.

Strange Quark Matter (SQM), composed of u, d and s quarks, may

probably be the ultimate ground state of matter (Witten 1984). It

has been found that the stable range of mass (1M⊙ − 2M⊙) for

strange stars is quite similar to that for neutron stars. Furthermore,

in this range the radii of strange stars are not very different from

those of the standard neutron stars (Haensel, Zdunik, & Schaefer

1986). Since the range of stable rotation periods sustainable by

these two types of stars are also similar, it has always been sus-

pected that some of the pulsars could very well be strange stars

(Alcock, Farhi, & Olinto 1986). In this article we take the view

that if not all pulsars then at least the millisecond pulsars could be

strange stars.

The aim of the present work is to show that the physics of strange

stars naturally gives rise to a lower limit of the magnetic field. In

fact, a tuning of the QCD parameters does produce a value very

close to 108 Gauss. The paper is organized as follows. In section

2 we discuss our model and describe the calculations in section 3.

And finally, we present our conclusions in section 4.



2 Ray Mandal et al.

Figure 1. Magnetic field vs. spin-period of observed pulsars. The

data is obtained from the ATNF on-line pulsar catalog available at –

http://www.atnf.csiro.au/research/pulsar/psrcat/ and include both galactic

and extra-galactic pulsars.

2 DI-QUARK FORMATION

To explain the observed minimum of the pulsar magnetic field we

consider a rotating strange star model. The strange star is under-

stood to consist of a uds plasma with a small admixture of electrons

to maintain overall charge neutrality, where each particle species is

Fermi-degenerate (Witten 1984; Benvenuto, Horvath, & Vucetich

1991; Benvenuto, Vucetich, & Horvath 1991). The star may also

support a thin hadronic crust of mass Mcrust
<
∼ 10−5 M⊙ (Alcock,

Farhi, & Olinto 1986). In our discussion we shall neglect the effect

of this crust.

In this work, we construct a rotating strange star using the recently

proposed realistic quark matter EOS in which — (a) a mean field is

derived from a two-body potential incorporating asymptotic free-

dom with a deconfinement transition and (b) a density dependent

ansatz for the quark mass using chiral symmetry restoration at high

density (Dey et al. 1998). This EOS produces an absolutely stable

SQM with the same parameters for which ud matter is unbound.

The surface of such a star is rather sharp, since the deconfinement

transition for strong interaction sets in very quickly at a critical

density of about ∼ 4.5ρ0, where ρ0 = 0.17 /fm3. This model has

been successfully used to describe rotating strange stars (Gondek-

Rosińska et al. 2000; Bombaci, Thampan, & Datta 2000).

Apart from the mean field there exists a spin-dependent part of the

interaction responsible, for example, for the π − ρ or the N − ∆
mass splitting. This interaction potential, allowing the quarks to in-

teract with each other to form di-quarks in definite color-spin chan-

nel, is given by (Sinha et al. 2002),

Vij = −V0(λi.λj) (Si.Sj) e
−σ2r2

ij , (1)

where V0 is the strength and σ is the range of the potential. λ and

S are the colour and spin matrices and rij is the distance between

the i-th and the j-th particle. V0 and σ are adjusted such that the

predictions for π − ρ or N − ∆ splitting are well within the ex-

perimental error limits. This interaction is assumed to be instanton

induced with a constant strength through the entire density range.

There can be two types of di-quarks — flavor symmetric and anti-

symmetric. With the negative sign in Eq.(1) the potential is attrac-

tive in two combinations — (i) the spin singlet, colour antisymmet-

ric state (3̄) and (ii) the spin triplet, colour symmetric state (6). With

such spin-color combinations, ud pairs formed in the flavor anti-

symmetric state with L = 0 and ss pairs formed in the L = 1 state

will decrease the energy further (Sinha et al. 2005). Since the pairs

are not physically bound they would experience stronger attraction

when they come closer but their kinetic energy may overcome the

potential and take them apart again. However, on the average there

would be a fixed number of charged di-quarks at any instant. Bailin

& Love (1984) have shown that this can give rise to superconduc-

tivity within the star even when the momentum transfer is large.

In a rotating star with one superconducting species, a uniform mag-

netic field (London field) is set up such that,

B =
2m∗c

q∗
Ω (2)

where m∗ and q∗ are the effective mass and the charge of the pair.

Ω is the angular velocity of the star (Baym 1988). Typically the

strength of the London field is rather small and is ∼ 10−1 G for the

ud pair.

However, the situation is much more complicated with two species

of di-quarks. In a rotating strange star both the ud and the ss super-

conducting pairs are present. The London field would be different

for pairs with different mass and charge. From the minimization

of the Ginzburg-Landau free energy Chau (1997) concluded that

at least one species will rotate without creating vortices, when the

species are non-interacting. The other species, having a different

London field, would create vortices to rotate with the same angu-

lar velocity. But if the species are interacting then they would form

vortex bundles surrounding a common normal core with a mag-

netic flux trapped within. We look at the minimization of Ginzburg-

Landau free energy density of such a system to estimate the mag-

netic field of such a star.

3 MINIMUM ENERGY STATE

To calculate the Ginzburg-Landau free energy of a rotating strange

star, consisting of ud and ss superconducting pairs, we assume the

pair momenta are small and the use of non-relativistic Ginzburg-

Landau theory is appropriate. Moreover, as mentioned above, we

expect them to exhibit superfluidity. A superfluid supports rotation

by forming a number of Onsager-Feynman vortices each carrying a

fixed quantum of circulation inversely proportional to the effective

mass.

For a star rotating with an angular velocity Ω, the Ginzburg-Landau

free energy functional of a di-quark assembly, is given by (Sauls

1989; Chau 1997), F =
∫

f dV , where the energy density f
consists of — (a) the magnetic energy of the superconductor, (b)

the kinetic and the nucleation energy of the vortices and (c) the

interaction energy between different quark species if appropriate.

The order parameter for the j-th species is Ψj(r) (= |Ψj |eiφj(r))

where φj is the phase and r is the distance variable. Then, in the

co-rotating frame, the Ginzburg-Landau free energy density for the

j-th species can be written as,
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fj = −aj |Ψj |2 + bj
2
|Ψj |4 + 1

2m∗
j

|PjΨj |2 +
|∇ ×A|2

8π
(3)

where a and b are positive constants such that the superconducting

state is preferred over the normal state and m∗
j is the effective mass

of the j-th pair. A is the corresponding vector potential satisfying

B = ∇ × A. Because of the rotation a uniform magnetic field is

set up such that A = (B × r)/2 along an array of vortices in the

superconducting interior of the star. The kinetic energy of the j-th

species is determined by its momentum operator Pj , given by,

Pj = −ih̄∇j +
q∗j
c
A−m∗

j (Ω× rj), (4)

where q∗j is the effective charge of the pair. If the quark species

are non-interacting then the above-mentioned free energy takes the

following form (Chau 1997):

f =
B2

8π

+
∑

j

{

h̄ρsj
m∗

j

[

ln

(

Rcj

ξj

)

− 3

4

]

+m∗

j

ξ2j
2h̄

Nj(0)∆
2
j

}

×
∣

∣

∣

∣

Ω− q∗

2m∗
j c

B
∣

∣

∣

∣

, (5)

where, ρsj is the density of the superconducting species, Rcj is the

inter-vortex spacing, ξj is the coherence length or the radius of the

core of the vortex and 1
2
N(0)∆2 is the difference in the energy

density between the normal and the super-conducting phase. The

vortices of each of the non-interacting di-quark species can form

its own Abrikosov lattice. However, the structure of f is such that

there exists a situation where only one species of superconducting

di-quarks form vortices whereas the other species rotate without

creating vortices.

However, we consider the more realistic situation in which the su-

perconducting di-quark species are interacting. The interaction in-

duces a drag energy. To minimize this drag a vortex bundle is cre-

ated where all the species share common normal core of radius ξ.

Assuming the velocities of all the species to be the same, the vortex

bundle density D is given by :

D = 2Ω/K (6)

where K is the circulation constant defined as,

K =
h

m∗
sq∗ud −m∗

udq
∗
s
(q∗udNs − q∗sNud) (7)

with Nj being the number of vortex quantum per bundle. Then,

inclusion of interaction changes the free energy functional to the

following,

f =
B2

8π

+
[

∑

j

{

h2ρsjN
2
j

4πm∗2
j

[

ln

(

Rcj

ξj

)

− 3

4

]

+
πξ2j
2

Nj(0)∆
2
j

}

+
Φ2

v

8π2λ2

]

× |D|, (8)

where Φv is the magnetic flux in the core of a vortex bundle given

by,

Φv =
hc

m∗
sq∗ud −m∗

udq
∗
s
(m∗

udNs −m∗

sNud). (9)

4 MINIMUM MAGNETIC FIELD

Typically, we expect the system to favour the minimum energy con-

figuration. As can be seen from the form of the free energy func-

tional, its minimization essentially puts a lower bound on the mag-

netic field. Therefore, once the system gets locked into this mini-

mum energy state, there is no natural way of decreasing the mag-

netic field further.

For the ground state configuration Nud = 0 and Ns = 1, giving

K =
hq∗ud

m∗
sq∗ud −m∗

udq
∗
s
, Φv =

hcm∗
ud

m∗
sq∗ud −m∗

udq
∗
s
. (10)

Although there are no vortex quanta for the ud-pair both the mass

and the charge of this pair enter in K as well as in Φv . This happens

because of the strongly interacting nature of the system.

To estimate the minimum field we use the following parameter

values. The masses of the di-quark pairs are taken to be m∗
ud ∼

270 MeV and m∗
s ∼ 560 MeV (Sinha et al. 2002). With these we

have, D = 3.7 × 103 ν cm−2 and Φv = 3.4 × 10−8 G cm2,

where ν is the rotation frequency of the star. The radial dimension

of the vortices, approximately equal to the inter-vortex distance, is

obtained as follows,

Rc =
1√
D

=
0.016√

ν
cm.

For example, for a pulsar with P = 1 ms, Rc = 2.02× 10−4 cm.

The penetration depth λ is given by,

λ =

(

m∗
sc

2

4π n∗
sq∗2s

)1/2

, (11)

where n∗
s is the number density of the ss-pairs. For ss-pairs the po-

tential is attractive in the L = 1 channel implying that the centrifu-

gal barrier in the p-state reduces the potential effectively. A simple

minded calculation shows that the ss-pair density is ∼ 10−8 fm−3

giving rise to a large value of λ. Using all these we have,

B =
Φv

πλ2
∼ 108G. (12)

Evidently, the small value of B is a manifestation of the large λ.

5 CONCLUSION

In this work, we have estimated the minimum magnetic field at

which the Ginzburg-Landau free energy of the SQM (with two

types of di-quark condensate) is minimized. For suitable QCD pa-

rameters this appears to be ∼ 108 G. It is mostly due to a large

coherence length of the ss-pair (∼ 105 fm) since they are in the



4 Ray Mandal et al.

L = 1 state. The centrifugal barrier of higher L-state would reduce

the ss-pair density. This and the large strange quark mass increase

the coherence length, ξ. It is still much smaller than the electron

superconductor coherence length but it is large compared to the

relevant QCD scale of 1 fm.

Although the magnetic field of ∼ 108 G is astronomically very

appealing, given the uncertainties in our parameters and the rough

nature of the estimate the actual value could differ by an order of

magnitude or so. The important conclusion of our study however

is obtaining a lower bound for the magnetic field. Once this value

is reached the magnetic field would not spontaneously decay (by

ohmic dissipation etc..) to a lower field strength if there is no exter-

nal perturbation present. Therefore, if the neutron stars in the low

mass binary systems do indeed undergo a deconfinement transition

to convert into strange stars we should not expect to see any radio

pulsar with field values significantly smaller than ∼ 108 Gauss.

Whether or not some (or all) of the pulsars are strange stars is an old

debate. One of the arguments against the strange stars have been the

fact that they would not be able to sustain glitches because the mat-

ter content of the hadronic crust of such stars are tiny compared to

the magnitude of the glitches observed (see (Madsen 2004) for a re-

cent update on this controversy). The recent observation of a micro-

glitch (δP/P ∼ 10−11) in the millisecond pulsar PSR B1821-24

by Cognard & Backer (2004) lends some credence to our hypoth-

esis that the millisecond pulsars are strange stars. Because a small

hadronic crust of a strange star would be just right to give rise to

such a micro-glitch.
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