
Kamal, Shyam, Bandyopadhyay, Bijan and Spurgeon, Sarah K. (2013) Stabilization 

of a fractional-order chain of integrators: a contraction-based approach. 

 IMA Journal of Mathematical Control and Information, 30 (4). ISSN 0265-0754. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/38559/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1093/imamci/dnt042

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 

Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 

setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 

in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 

our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 



IMA Journal of Mathematical Control and Information Page 1 of 13

doi:10.1093/imamci/dnnxxx

Stabilization of a Fractional Order Chain of Integrators: A Contraction

Based Approach

S. Kamal1, B. Bandyopadhyay 1, S. Spurgeon 2,
1 IDP in Systems and Control Engg., Indian Institute of Technology Bombay, India

2 School of Engineering and Digital Arts, University of Kent, UK

In this paper, stabilization of a chain of fractional order integrators is attempted. The stability is proved

using contraction analysis. A numerical example is presented to illustrate the proposed method.
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1. Introduction

The idea of fractional calculus has been established since the development of the regular integer order

calculus, with the first reference being associated with Leibniz and L’Hospital in 1695 where half order

derivatives were mentioned. In the last two decades, fractional differential equations have been used to

model various physical phenomena. We can refer to Machado et al. (2010) and Sabatier et al. (2013)

for the recent history of fractional calculus and state space representation respectively. Since it plays

an incessantly important role in modeling significant phenomenon in science and engineering, the study

of stability of fractional differential equations has attracted much attention by Li et al. (2011). Further-

more, in recent years, increasing attention has been given to fractional order controllers, and a great deal

of progress has been achieved in Kamal et al. (2012), Ortigueira et al. (2008) and Dingy et al. (2002)

and the references cited therein.

There are several types of stability concepts proposed in control theory depending on how and when

the system is stabilized. One of the most classic concepts regarding stability is obtained by introducing a

weighted norm, or more generally by defining a Lyapunov function, which is decreasing at each instant

and is strongly related to the norm of the system states. The revisiting concept of contraction leads to

the introduction of suitable Riemann metrics or more generally Finsler metrics. Recently, inspired from

fluid mechanics and differential geometry, Lohmiller and Slotine proposed a new method of stability

analysis known as contraction theory (Lohmiller et al. (1998), Aylward et al. (2008)) and (Jouffroy

et al. (2010)). This theory is based on the concept that the stability can be analyzed differentially by

analyzing if the nearby trajectories converge to one another, rather than through finding some implicit

motion integral as in Lyapunov theory, or through some global state transformation as in feedback lin-

earization (see Angeli (2002)).

Making use of the concepts of contraction theory we have attempted to design a globally exponen-

tially stable controller for fractional order systems. To the best of the author’s knowledge this is the first

attempt in this direction.

The paper has been organized in the following way: In Section II some preliminaries of fractional

calculus have been presented. Section III introduces the concept of contraction theory and the motiva-

tion behind present work is given in Section IV. The main result is presented in Section V. In Section VI,

a numerical example is presented to illustrate the proposed method. Finally, some concluding remarks

are included in Section VII.

The author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.



2. Preliminaries of Fractional order calculus

Fractional-order integration and differentiation are the generalization of their integer-order counterparts.

Efforts to extend the specific definition of the traditional integer-order to the more general arbitrary order

produced different definitions for fractional derivatives. One of the most common definitions used is the

Reimann-Liouville definition (see Podlubny et al. (1999)).

DEFINITION 2.1 The α th-order fractional integration of the function f (t) with respect to t and the

terminal value t0 is given by

t0 Iα
t f (t) =

1

Γ (α )

∫ t

t0

f (τ )
(t − τ )(1−α )

dτ , (2.1)

and, the R-L definition of the α th-order fractional derivative is given by:

Dα f (t) =
dα f (t)

dtα =
1

Γ (m−α )

dm

dtm

∫ t

t0

f (τ )
(t − τ )(α−m+1)

dτ , (2.2)

and, the Caputo definition of the α th-order fractional derivative is given by:

CDα f (t) =
1

Γ (m−α )

∫ t

t0

f (m)(τ )
(t − τ )(α−m+1)

dτ , (2.3)

where m is the first integer larger than α and Γ (·) is Euler’s Gamma function.

Properties A few important properties of fractional derivatives and integrals follows (see Chen et

al. (2009)):-

• For α = n, where n is an integer, the operation Dα f (t) gives the same result as classical differen-

tiation of integer order n.

• For α = 0 the operation Dα f (t) is the identity operator:

Dα f (t) = f (t). (2.4)

• Fractional differentiation and integration are linear operations:

Dα (a f (t)+ bg(t)) = aDα f (t)+ bDα g(t). (2.5)

• The additive index law (semigroup property)

Dα Dβ f (t) = Dβ Dα f (t) = Dα+β f (t), (2.6)

holds under some reasonable constraints on the function f (t).

REMARK 2.1 In the fractional calculus, Caputo derivative and Riemann-Liouville are mostly used Li et

al. (2011). It seems that the former is more acceptable, since the initial value of fractional differential

equation with Caputo derivative is the same as that of the integer differential equation. For example, the

initial value x(t) of fractional differential equation C
0 Dα

t x(t) = f (t,x) with α ∈ (0,1), t > 0 is assumed

as x(0)≡ x0.



But for the fractional differential equation RL
0 Dα

t x(t) = f (t,x) with α ∈ (0,1), t > 0, the initial value

of x(t) involves fractional integral, (and/ or derivative), its initial condition is given as [ RL
0 Dα−1

t x(t)]t=0 =
x′0.

However, Caputo definition is not able to capture exact physical behavior of the system which is

illustrated by Sabatier et al. (2010), that system trajectories generated by Caputo definition, when initial

condition is nonzero differs from the actual. Physical and geometrical interpretations for fractional

derivatives and initial value condition can be found in Heymans et al. (2008) and more coherent way in

Sabatier et al. (2010).

Another way (see Zhang et al. (2009)), fractional-order initial value conditions for RL-type differen-

tial equation can be given as follows:- For example, the initial value condition for the RL
0 Dα

t x(t) = f (t,x)

with α ∈ (0,1), t > 0 is [RL
0 Dα−1

t x(t)]t=0 = x′0 which can be replaced by [t 1−α x(t)]t=0 =
x′0

Γ (α ) . How-

ever, the calculation of [RL
0 Dα−1

t x(t)]t=0 = x′0 is not feasible always. Above mathematical foundation is

explained using the following Theorem (Kilbas et al. (2006))

THEOREM 2.1 (Kilbas et al. (2006)) Let 0 < α < 1 and let x(t) ∈ C1−α ([0,b])

a If

lim
t→0+

[

t1−α x(t)
]

= c, c ∈R (2.7)

Then

I1−α x(0+) = lim
t→0+

I1−α x(t) = cΓ (α ) (2.8)

b If

lim
t→0+

I1−α x(t) = b, b ∈ R (2.9)

and if there exists the limit, limt→0+
[

t1−α x(t)
]

, then

lim
t→0+

[

t1−α x(t)
]

=
b

Γ (α )
. (2.10)

RL definition is considered henceforth unless otherwise specified. In the next section we present a brief

review of contraction analysis of the dynamical system, which is essential for proving the the main result

of this paper.

3. Contraction analysis of dynamical systems (Aylward et al. (2008))

Consider an autonomous dynamical system

ẋ = f (x(t)), (3.1)

where f is a nonlinear vector field and x(t) is an n-dimensional state vector. It is assumed that all the

quantities are real and smooth and thus all the required derivatives exist and are continuous. In con-

traction analysis, the state x is slightly modified to see the change in velocity vector ẋ, that is termed



as the virtual displacement (infinitesimal displacement at fixed time) δx and virtual velocity δẋ respec-

tively, introduced by Lagrange. Due to this infinitesimal displacement of the state, virtual dynamics are

introduced into the system, which can be represented by,

δẋ = δ f (x(t)) =
∂ f (x(t))

∂x
δx. (3.2)

State dependent local and virtual change of coordinates using nonsingular transformation matrix Θ

δz =Θδx(t), (3.3)

produce virtual dynamics (3.2) converted into δz-coordinates as

d

dt
δz = Θ̇δx(t)+Θδẋ(t) = Fδz, (3.4)

where F is termed the generalized Jacobian, given by

F =

(

Θ̇ +Θ
∂ f

∂x

)

Θ−1. (3.5)

The rate of change of squared length is given by

d

dt
(δzT δz) = 2δzT Fδz, (3.6)

A more general definition of infinitesimal length can be given by

δxT (t)M(x(t))δx(t) (3.7)

where M(x(t)) is a symmetric, uniformly positive definite and continuously differentiable metric (for-

mally, this defines a Riemannian manifold). Using the more general definition of infinitesimal length,

one can calculate its rate of change as

d

dt
(δxT (t)M(x(t))δx(t))

= δxT (t)

(

∂ f T

∂x
M+M

∂ f

∂x
+ Ṁ

)

δx(t), (3.8)

Based on the above observation, Lohmiller et al. (1998) give the following definition of the contraction

region as:

DEFINITION 3.1 : Given the n-dimensional system equations ẋ = f (x(t)), a region of the state space

is called a contraction region with respect to a uniformly positive definite metric M(x(t)) = Θ TΘ , if

equivalently F in equation (3.5) or
∂ f T

∂x
M+M

∂ f
∂x

+ Ṁ are uniformly negative definite in that region.

Using the definition above, Lohmiller et al. (1998) generalized the convergence result as:

THEOREM 3.1 : Given the system equations ẋ = f (x(t)), any trajectory, which starts in a ball of

constant radius with respect to the metric M(x(t)), centered at a given trajectory and contained at all

times in a contraction with respect to M(x(t)), remains in that ball and converges exponentially to this

trajectory.



Proof. - See Lohmiller and Slotine (1998). �

A similar theorem (see Aylward et al. (2008)) shows that contraction metrics can be used to prove

convergence to a single trajectory, and thus existence and/or uniqueness of equilibria.

THEOREM 3.2 : Consider the autonomous system ẋ = f (x(t)). If a contraction metric exists for the

system over the entire state-space and a finite equilibrium exists, then this equilibrium is unique and all

trajectories converge to this equilibrium. If the system is exponentially contracting, there exists a unique

finite equilibrium, and all trajectories converge to this equilibrium.

In terms of the Jacobian matrix, Lohmiller et al. (1998) have given the following definition for

finding a contraction region:

DEFINITION 3.2 : Given the system equations ẋ = f (x, t), a region of the state space is called a contrac-

tion or semi-contraction region, if the Jacobian matrix ∂ f/∂x is uniformly negative definite or negative

semi-definite in that region.

The main result of this paper is inspired from the finite time stabilization of an integrator chain (Bhat

et al. (2005)), which is presented in next section.

4. Motivation: Finite time stabilization of an integrator chain (Bhat et al. (2005))

Consider the nominal system (4.1), which is represented by SISO independent integrator chains, defined

as follows























ż1 = z2

...

żn−1 = zn

żn = u.

(4.1)

THEOREM 4.1 (Bhat et al. (2005)) Let k1, ...,kn > 0 be such that the polynomial λ n + knλ n−1 + ...+
k2λ + k1 is Hurwitz. Consider system (4.1). There exists ε ∈ (0,1) such that, for every α ∈ (1− ε,1),
the origin is a globally finite time stable equilibrium for the system under the feedback

u(z) =−k1sgn(z1)|z1|α1 − ...− knsgn(zn)|zn|αn , (4.2)

where α1, ...,αn satisfy

αi−1 =
αiαi+1

2αi+1 −α1

, i = 2, ...,n, with αn+1 = 1. (4.3)

REMARK 4.1 Above result is only limited for the integer order systems. But in the last two decades,

fractional chain of integrators have been used to model various stable physical phenomena. Therefore,

in next section we generalized same kind of result for the fractional order.



5. Main Result

Consider the following fractional order system:































Dα x1 = x2

Dα x2 = x3

...

Dα xn−1 = xn

Dα xn = u.

(5.1)

This can be also represented as:

Dα x = Ax+Bu,

where Dα x = [Dα x1 Dα x2 ... Dα xn]
T = Dα [x1 x2 ... xn]

T
,

A =













0 1 ... 0
...

...
. . .

...

0 0
... 1

0 0 0 0













and BT =
(

0 0 ... 1
)

(5.2)

and x(t) ∈ Rn represents the state vector, u ∈ R and α ∈ (0,1). A and B are system matrices of appro-

priate dimensions. Note that (A,B) are controllable.

REMARK 5.1 (Djamah et al. (2009)) In the commensurate case the above state space model remains

valid with Dα x = Dα [x1 x2 ... xn]
T

same as integer order.

Following Threorem presents the main result of this paper stabilization of fractional chain of inte-

grators.

THEOREM 5.1 Let k1, ...,kn > 0 be such that the polynomial λ n + knλ n−1 + ...+ k2λ + k1 is Hurwitz

(in the sense of fractional order systems (see the Appendix)). Consider the system (5.1). There exists

ε ∈ (0,1) such that, for every βi ∈ (1− ε,1), where i=1,2...n, the origin is a globally exponential stable

equilibrium for the system under the feedback:

u =

[

n

∑
i=1

−ki|xi|βisgn(xi)−
n

∑
j=1

(x j)t
α−1

Γ (α )

]

Ω , (5.3)

where Ω = (t −δ)(1−α ). Here, δ is interpreted as the step size for numerical control implementation.

The βi’s satisfy

βi−1 =
βiβi+1

2βi+1−β1

, i = 2, ...,n, with βn+1 = 1. (5.4)

Proof. Consider,

Dα x = Ax+Bu (5.5)

Applying D1−α to both side of (5.5), one can write

D1−α Dα x = D1−α Ax+D1−α Bu,

ẋ = D1−α Ax+D1−α Bu.



Consider now two neighboring trajectories in the flow field of the above equation and the virtual dis-

placement δx between them. This yields the following

δẋ =

[

∂D1−α Ax

∂x
+

∂D1−α Bu

∂x

]

δx.

The squared distance between these two trajectories can be defined as δx T δx, the rate of change of

which is given by

dδxT δx

dt
= 2δxT δẋ

= 2δxT

[

∂D1−α Ax

∂x
+

∂D1−α Bu

∂x

]

δx.

Consider,

D1−α Ax =
1

Γ (1− (1−α ))

d

dt

∫ t

0

Ax(τ )
(t − τ )((1−α )−1+1)

dτ

∂D1−α Ax

∂x
=

1

Γ (α ))

d

dt

∫ t

0

A

(t − τ )(1−α )
dτ

=
Atα−1

Γ (α )
.

For the proposed controller,

u =

[

n

∑
i=1

−ki|x|βisgn(x)−
n−1

∑
j=1

(x j+1)t
α−1

Γ (α )

]

Ω ,

where Ω = (t −δ)(1−α ).

D1−α Bu =
1

Γ (1− (1−α ))

d

dt

∫ t

0

Bu(τ )
(t − τ )((1−α )−1+1)

dτ .

Substituting,

D1−α Bu =
1

Γ (1− (1−α ))

d

dt

∫ t

0
Bp(x)dτ ,

where

p(x) =

[

n

∑
i=1

−ki|xi|βisgn(xi)−
n

∑
j=1

(x j)t
α−1

Γ (α )

]

.

D1−α Bu =
1

Γ (α ))

d

dt

∫ t

0
p(x)dτ ,

∂D1−α Bu

∂x
=

1

Γ (α )

d

dt

∫ t

0

∂Bp(x)

∂x
dτ

=
1

Γ (α )

∂Bp(x)

∂x

=
BP(x)

Γ (α )
.



where,

P(x) =















0 0 ... 0
... 0

. . .
...

0 0
... 0

−k1|x1|(β1−1)− tα−1

Γ (α ) ... 0 −kn|xn|(βn−1)− tα−1

Γ (α )















(5.6)

The Jacobian is represented by:

J =

[

∂D1−α Ax

∂x
+

∂D1−α Bu

∂x

]

=
Atα−1

Γ (α )
+

BP(x)

Γ (α )

(5.7)

One can easily observe that as t → ∞, the Jacobian J becomes

J =













0 → 0 ... 0
... 0

. . .
...

0 0
... 0

(−)ve ... (−)ve (−)ve













. (5.8)

which is negative semi-definite, only when k i > 0, i = 1,2...,n. Hence, the rate of change of the distance

between the two considered trajectories is negative. As a result, the distance progressively decreases.

By path integration, this implies that the length of any finite path converges exponentially to zero.

More discussion is required for selection of k i, because of the different scaling property satisfied by

fractional order integral when compared to the integer order case. Due to this, a different kind of vector

field analysis is required for characterizing the contraction behavior in the whole space. Mathematically,

the above discussion can be expressed like this

0Iα
t f (t) =

1

Γ (α )

∫ t

0

f (τ )
(t − τ )(1−α )

dτ ,

One can write in form

0Iα
t f (t) =

∫ t

0
f (τ )dgt (τ )

gt(τ ) =
1

Γ (α )
{tα − (t − τ )α}

The scaling property of gt(τ ) is given as

gt1(τ1) = gkt(kτ ) = kα gt(τ )

when t1 = kt and τ1 = kτ . Due to this scaling property, the closed loop homogeneous vector field

vfractional of this fractional order system is modified as

vfractional =
1

β1

x1
∂α

∂xα
1

+ ...+
1

βn

xn
∂α

∂xα
n



where βn;n = 1, ...,n are defined as in (5.4). Moreover, the above vector field is linear with the Hur-

witz(in fractional sense) characteristic polynomial λ n + knλ n−1 + ...+ k2λ + k1. Therefore, a global

uniform contraction region is obtained after applying the proposed control to the fractional chain of

integrators. �

6. NUMERICAL RESULT

As an illustration of the results presented in this paper, a commensurate fractional order linear model of

the long Aluminum rod heated from one of its sides is considered in Sabatier et al. (2007). The input u(t)
to such a model is the thermal flux applied at one end of the rod and the output is the actual temperature

at a prescribed section of the rod. Consider the continuous fractional order state-space model of the

specified system, which is given by

D0.5x(t) = Ax(t)+ bu(t) (6.1)

where

A =





0 1 0

0 0 1

0 −0.0601251 −0.42833



 , B =





0

0

1



 (6.2)

The proposed controller for the above system (6.1) is represnted as u = u 1 −A0x(t), where

A0 =





0 0 0

0 0 0

0 −0.0601251 −0.42833



 (6.3)

After applying the control u = u1 −A0x(t), in (6.1), the closed loop system can be represnted as the

fractional chain of integrtors










Dα x1 = x2

Dα x2 = x3

Dα x3 = u1.

(6.4)

Now u1 is given by (5.3)

u1 =

[

3

∑
i=1

−ki|xi|βisgn(xi)−
3

∑
j=1

(x j)t
α−1

Γ (α )

]

Ω , (6.5)

where k1,k2 and k3 are given by following polynomial

λ 3 + 0.78λ 2+ 0.4954λ + 0.7455= 0 (6.6)

Since all the coefficients of the above polynomial are positive, it is easy to check that D(P) < 0 (see

the Appendix). Hence, the above polynomial is Routh Hurwitz in the fractional sense. β 1 = 1/2,β2 =
3/5,β3 = 3/5 and the initial conditions of state vector were chosen as x 1 = Γ (0.5), x2 = −Γ (0.5) ,

x3 = 1.5Γ (0.5). The numerical simulation for the states is depicted in Figure (1).
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FIG. 1. Evolution of state(x1 ,x2 and x3) w.r.t. time

7. Conclusions

The exponential stability of a fractional order system with the proposed controller is proved using con-

traction analysis. It can be seen that when α = 1, the controller (5.3) takes the following form:

u|α=1 =−(k1sgn(x1)|x1|β1 + x1)− (k2sgn(x2)|x2|β2 + x2)

− ...− (knsgn(xn|xn|βn + xn).

This controller is very similar to the one proposed by Bhat et al. (2005) which is discussed in section

IV. The only difference is the addition of the proportional term. This proportional term will accelerate

the convergence of the system states.

Appendix

On fractional Order Routh-Hurwitz Conditions (Ahmed et al. (2006))

The problem of interest is that all the roots of the polynomial equation

P(λ ) = 0, P(λ ) = λ n + a1λ n−1 + a2λ n−2 + ...+ an, (7.1)

satisfy

|arg(λ )|> απ/2, (7.2)

where all the coefficients in (7.1) are real.

For integer order (α = 1) the solution yields the Routh-Hurwitz conditions

0 < a1, 0 <

(

a1 1

a3 a2

)

, 0 <





a1 1 0

a3 a2 a1

a5 a4 a3



 ... (7.3)

For α ∈ [0,1) these conditions are sufficient but not necessary.

DEFINITION 7.1 The discriminant D( f ) of a polynomial

f (x) = xn + a1xn−1 + a2xn−2 + ...+ an,



is defined by D( f ) = (−1)n(n−1)/2R( f , f ′) where f ′ is the derivative of f and where g(x) = xn+b1xl−1+
b2xl−2 + ...+ bl and R( f ,g) is an (n+ l)⊗ (n+ l) determinant.

Proposition

1. For n = 1 the condition for (7.2) is a1 > 0.

2. For n = 2 the conditions for (7.2) are either the Routh-Hurwitz conditions or a 1 < 0, 4a2 > (a1)
2,

∣

∣

∣tan−1(
√

4a2 − (a1)2)/a1

∣

∣

∣> απ/2.

3. For n = 3 if the discriminant of p(λ )D(P) is positive then the Routh-Hurwitz conditions are the

necessary and sufficient conditions for (7.2), i.e.,

a1 > 0, a3 > 0 a1a2 > a3 if D(P)> 0. (7.4)

4. If D(P)< 0, a1 � 0, a2 � 0, a3 > 0 , α < (2/3) then (7.2) is satisfied.

Also if D(P)< 0, a1 < 0, a2 < 0, α > (2/3) then all roots of P(λ ) satisfy |arg(λ )|< απ/2.

5. If D(P)< 0, a1 > 0, a2 > 0, a1a2 = a3 then (7.2) is satisfied for all α ∈ [0,1).

6. For general n, an > 0, is a necessary condition for (7.2).

7. If ∀λ , P(λ ) = P(−λ ) then define x = λ 2 and the Routh-Hurwitz conditions for the resulting

polynomial in x are necessary conditions for (7.2) for all α ∈ [0,1).

8. For n > 1, the necessary and sufficient condition for (7.2) is

∫ ∞

0
dz/P(z)|C2 +

∫ 0

−∞
dz/P(z)|C1 = 0, (7.5)

where C1 is the curve z = x(1− itanαπ/2), and C2 is the curve z = x(1− itanαπ/2), i =
√
−1

Note:- Using the results of Mishina et al. (1965), if D( f ) > 0 (< 0) then there is an even(odd) number

of pairs of complex roots for the equation f (x) = 0. For n = 3 this implies that D( f ) > 0 implies that

all the roots are real and D( f ) < 0 implies that there is only one real root and one complex root and its

complex conjugate. For n = 3 we have

D(P) = 18a1a2a3 +(a1a2)
2 − 4a3(a1)

3 − 4(a2)
3 − 27(a3)

2. (7.6)

Proof. See Ahmed et al. (2006) �
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