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• Some useful results on majorization are developed.

• This enriches the theory of majorization.

• As applications, some distributions have been studied.
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a b s t r a c t

Majorization is a key concept in studying the Schur-convex property of a function, which is

very useful in the study of stochastic orders. In this paper, some results on Schur-convexity

have been developed.We have studied the conditions under which a function ϕ defined by

ϕ(x) =
n

i=1 uig(xi)will be Schur-convex. This fills some gap in the theory ofmajorization.

The results so developed have been used in the case of generalized exponential and gamma

distributions. During this, we have also developed some stochastic properties of order

statistics.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The notion of a stochastic order based on majorization, called majorization order, is quite useful in establishing various

useful inequalities. The method of majorization which is used in finding some nice and applicable inequalities is also useful

in understanding the insight of the theory. This concept deals with the diversity of the components of vector in R
n. Let

x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be any two real vectors. We arrange the components of x and y in ascending

order as x(1) ≤ x(2) ≤ · · · ≤ x(n) and y(1) ≤ y(2) ≤ · · · ≤ y(n) respectively. The vector x is said to majorize the vector y

(written as x
m

≽ y) if
j

i=1 x(i) ≤
j

i=1 y(i), for j = 1, 2, . . . , n− 1 and
n

i=1 x(i) =
n

i=1 y(i). In this case we also say that x is

more than y in majorization order. This is a partial order on R
n, and x

m

≽ y tells that the components of x are more dispersed

compared to those of y (although average is the same for both the vectors). Majorization order and its variants are used for

the last couple of decades at an accelerated rate, in many diverse areas of mathematics, statistics, economics, physics and

so on. It has also been used in reliability viz. optimal component allocation in parallel–series as well as in series–parallel

systems, allocation of standby in series and parallel systems, and so on, see, for instance, [1]. It has also been used in the
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Table 1

Schur-convexity/concavity of ϕ(x) =
n

i=1 uig(xi).

g u, x

u ∈ D+ , x ∈ D u ∈ D+ , x ∈ E u ∈ E+ , x ∈ D u ∈ E+ , x ∈ E

Increasing convex Schur-convex Inconclusive Inconclusive Schur-convex

Decreasing convex Inconclusive Schur-convex Schur-convex Inconclusive

Increasing concave Inconclusive Schur-concave Schur-concave Inconclusive

Decreasing concave Schur-concave Inconclusive Inconclusive Schur-concave

context of minimal repair of two-component parallel system with exponentially distributed lifetimes by Boland and El-

Neweihi [2]. Majorization is also used as a measure of income inequality, species diversity and bio-diversity. One may also

notice the usefulness ofmajorization ordering in pair comparisons, phase-type distributions, disease transmission, statistical

mechanics and so on. The details of these applications may be obtained in [3]. For an overview of majorization and some

more applications, one may refer to [4].

One question raised and also partially solved by Marshall et al. [4] on majorization is that what condition(s) a function

g : R
n → R should satisfy such that, given amonotonic sequence of real numbers {u1, u2, . . . , un}, the functionϕ : R

n → R,

defined by ϕ(x) =
n

i=1 uig(xi) is Schur-convex/Schur-concave (for definition, see Section 2). They have shown that if

u1 ≥ u2 ≥ · · · ≥ un ≥ 0, and g(·) is increasing and convex, then ϕ(x) is Schur-convex. They have also mentioned that

if u is decreasing, and g(·) is decreasing and convex, then ϕ(x) is Schur-convex. However, in the last statement there is a

typographical error and the term ‘decreasing and convex’ should be ‘decreasing and concave’. The other questions related to

ϕ could be: what can we say about ϕ when g is increasing and concave or decreasing and convex, and also u is in increasing

order, i.e., u1 ≤ u2 ≤ · · · ≤ un? This paper deals with this type of questions.We have shown that in some cases the property

of ϕ can be explicitly mentioned whereas in some cases no conclusion on Schur-convexity or Schur-concavity of ϕ can be

made.

The application of these results has been studied for order statistics generated from heterogeneous generalized

exponential distributions. The usefulness of this distribution has been seen in different studies available in the literature,

see, for instance, Gupta and Kundu [5]. Further, it is well known that there is a one-to-one correspondence between an

order statistic and the lifetime of a k-out-of-n system, which has a lot of applications in statistics, reliability theory, applied

probability, and so on and so forth. A k-out-of-n system is a special kind of coherent system,which survives as long as at least

k of the n components of the system survive. For details of this kind of systems onemay refer to [6]. It is to bementioned here

that we denote by Xk:n, the kth order statistic formed from X1, X2, . . . , Xn. Although different properties of order statistics

from homogeneous populations have been studied in detail in the literature, very less amount of work has been done so far

for order statistic from non-homogeneous populations, due to its complicated nature of expressions. For properties of order

statistics for independent and non-identically distributed random variables, one may refer to [7].

The applications of other majorization orders viz. different weak majorization orders (defined in Section 2) have been

discussed in connection with heterogeneous gamma populations for series systems.

The paper is organized as follows. Section 2 deals with different notations and definitions of differentmajorization orders

used in this paper. The interrelations among different orders are also given here. Section 3 deals with the main findings of

the paper. The details of the findings are given in Table 1. Section 4 deals with applications of different majorization orders.

This is discussed in connection with generalized exponential and gamma populations, whereas Section 5 concludes.

Throughout the paper, the word increasing (resp. decreasing) and nondecreasing (resp. nonincreasing) are used

interchangeably, and R denotes the set of real numbers {x : −∞ < x < ∞}. We also write a
sign
= b to mean that a and

b have the same sign. Further, by a
def
= bwemean that b is defined as a. For any differentiable function k(·), we write k′(t) to

denote the first derivative of k(t)with respect to t . The random variables considered in this paper are all nonnegative.

2. Notations and preliminaries

For an absolutely continuous random variable X , we denote the probability density function by fX (·), the cumulative

distribution function by FX (·), the hazard rate function by rX (·), and the reversed hazard rate function by r̃X (·). The survival

or reliability function of the random variable X is written as F̄X (·) = 1 − FX (·).

The following definitions may be obtained in [4].

Definition 2.1. Let x = (x1, x2, . . . , xn) ∈ R
n and y = (y1, y2, . . . , yn) ∈ R

n be any two vectors.

(i) The vector x is said to majorize the vector y (written as x
m

≽ y) if

j

i=1

x(i) ≤

j

i=1

y(i), j = 1, 2, . . . , n − 1, and

n

i=1

x(i) =

n

i=1

y(i).
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(ii) The vector x is said to weakly supermajorize the vector y (written as x
w

≽ y) if

j

i=1

x(i) ≤

j

i=1

y(i) for j = 1, 2, . . . , n.

(iii) The vector x is said to weakly submajorize the vector y (written as x ≽w y) if

n

i=j

x(i) ≥

n

i=j

y(i) for j = 1, 2, . . . , n.

(iv) The vector x is said to be p-larger than the vector y (written as x
p

≽ y) if

j

i=1

x(i) ≤

j

i=1

y(i) for j = 1, 2, . . . , n.

(v) The vector x is said to reciprocally majorize the vector y (written as x
rm

≽ y) if

j

i=1

1

x(i)
≥

j

i=1

1

y(i)
for j = 1, 2, . . . , n. �

It is not so difficult to show that x
m

≽ y ⇒ x
w

≽ y ⇒ x
p

≽ y ⇒ x
rm

≽ y.

Definition 2.2. Let I ⊆ R. A function ψ : In → R is said to be Schur-convex (resp. Schur-concave) on In if

x
m

≽ y implies ψ (x) ≥ (resp. ≤) ψ (y) for all x, y ∈ In.

Notation 2.1. Let us include the following notations. The first and the third are borrowed from [4].

(i) D = {(x1, x2, . . . , xn) ∈ R
n : x1 ≥ x2 ≥ · · · ≥ xn}.

(ii) E = {(x1, x2, . . . , xn) ∈ R
n : x1 ≤ x2 ≤ · · · ≤ xn}.

(iii) D+ = {(x1, x2, . . . , xn) ∈ R
n : x1 ≥ x2 ≥ · · · ≥ xn ≥ 0}.

(iv) E+ = {(x1, x2, . . . , xn) ∈ R
n : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn}.

In order to compare different order statistics, stochastic orders are used for fair and reasonable comparison. In the literature

many different kinds of stochastic orders have been developed and studied. Here we consider different stochastic orders.

For the definitions, motivations and usefulness of these stochastic orders, readers may see [8–10]. However, for the sake of

completeness and readers’ convenience we give the definitions below.

Definition 2.3. Let X and Y be two absolutely continuous random variables with respective supports (lX , uX ) and (lY , uY ),
where uX and uY may be positive infinity, and lX and lY may be negative infinity. Then, X is said to be smaller than Y in

(a) likelihood ratio (lr) order, denoted as X ≤lr Y , if

fY (t)

fX (t)
is increasing in t ∈ (lX , uX ) ∪ (lY , uY );

(b) hazard rate (hr) order, denoted as X ≤hr Y , if

F̄Y (t)

F̄X (t)
is increasing in t ∈ (−∞,max(uX , uY ));

(c) up shifted hazard rate (hr ↑) order, denoted as X ≤hr↑ Y , if X − x≤hr Y , for all x ≥ 0;

(d) down shifted hazard rate (hr ↓) order, denoted as X ≤hr↓ Y , if X ≤hr [Y − x|Y > x], for all x ≥ 0;

(e) reversed hazard rate (rhr) order, denoted as X ≤rhr Y , if

FY (t)

FX (t)
is increasing in t ∈ (min(lX , lY ),∞);

(f) up shifted reversed hazard rate (rhr ↑) order, denoted as X ≤rhr↑ Y , if X − x≤rhr Y , for all x ≥ 0;

(g) dispersive (disp) order, denoted as X ≤disp Y , if

F−1
X (b)− F−1

X (a) ≤ F−1
Y (b)− F−1

Y (a) for all 0 < a ≤ b < 1,

where, for any distribution function F , F−1 is the right continuous inverse of F ;

(h) usual stochastic (st) order, denoted as X ≤st Y , if F̄X (t) ≤ F̄Y (t) for all t ∈ R. �
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In the following diagram we present a chain of implications among the above mentioned stochastic orders.

Like stochastic orders, stochastic ageing is also another important concept which has many applications in reliability

theory. Different stochastic ageing properties describe howa system improves or deteriorateswith age. Here,weparticularly

consider increasing likelihood ratio (ILR), decreasing likelihood ratio (DLR), increasing failure rate in average (IFRA) and

decreasing failure rate in average (DFRA) classes. The definitions and usefulness of these ageing classes could be found in [6]

and [11].

Definition 2.4. A random variable X is said to be

1. increasing likelihood ratio (ILR) (resp. decreasing likelihood ratio (DLR)) if fX (t) is log-concave (resp. log-convex) in t;

2. increasing failure rate in average (IFRA) (resp. decreasing failure rate in average (DFRA)) if 1

t

 t

0
rX (x) dx is increasing

(resp. decreasing) in t . �

3. Some results on majorization

The following lemma may be obtained in [4, p. 83], where the parenthetical statement is not given.

Lemma 3.1. Let ϕ : D → R be a function, continuously differentiable on the interior of D . Then, for x, y ∈ D ,

x
m

≽ y implies ϕ(x) ≥ (resp. ≤) ϕ(y)

if, and only if,

ϕ(k)(z) is decreasing (resp. increasing) in k = 1, 2, . . . , n,

where ϕ(k)(z) = ∂ϕ(z)/∂zk denotes the partial derivative of ϕ with respect to its kth argument. �

On using the above lemma, we have the following.

Lemma 3.2. Let ϕ(x) =
n

i=1 gi(xi) with x ∈ D , where gi : R → R is differentiable, for all i = 1, 2, . . . , n. Then ϕ(x) is
Schur-concave on D if, and only if,

g ′
i (a) ≤ g ′

i+1(b) whenever a ≥ b, for all i = 1, 2, . . . , n − 1,

where g ′(a) = dg(x)

dx



x=a

. �

Now, we are in a position to prove the following theorem.

Theorem 3.1. Let ϕ(x) =
n

i=1 uig(xi) with x ∈ D , and let I ⊆ R be an interval. Consider a function g : I → R.

(a) If u = (u1, u2, . . . , un) ∈ D+ and

(i) g(·) is increasing and convex then ϕ(x) is Schur-convex on D;

(ii) g(·) is decreasing and concave then ϕ(x) is Schur-concave on D .

(b) If u = (u1, u2, . . . , un) ∈ E+ and

(i) g(·) is increasing and concave then ϕ(x) is Schur-concave on D;

(ii) g(·) is decreasing and convex then ϕ(x) is Schur-convex on D .

Proof. We give a proof for (i) only. The proof of (ii) follows by taking −g in place of g in (i).

(a) Let gi (xi) = uig (xi). If g(·) is increasing and convex then, for all a ≥ b, g ′(a) ≥ g ′(b) ≥ 0. Again, if u ∈ D+ then

uig
′(a) ≥ ui+1g

′(b). Hence, by Proposition H.2 of Marshall et al. [4], (i) is proved.

(b) Note that g(·) is increasing and concave implies that, for all a ≥ b, g ′(a) ≥ 0, g ′(b) ≥ 0 and g ′(a) ≤ g ′(b). So, if u ∈ E+

then uig
′(a) ≤ ui+1g

′(b). Hence, by Lemma 3.2, (i) is proved. �

The following counterexample shows that if g (·) is increasing and convex, and u ∈ E+, then ϕ (x) may not be Schur-

convex or Schur-concave on D .
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Counterexample 3.1. Let g(x) = ex, x = (30, 8, 2) ∈ D+ and y = (18, 12, 10) ∈ D+. So, clearly g(x) is increasing and

convex, and x
m

≽ y. Now, if u = (1, 2, 3) ∈ E+ is taken, then it can be easily checked that

3

i=1

uig (xi)−

3

i=1

uig (yi) = 1.068640854 × 1013 > 0,

giving that ϕ (x) > ϕ (y). Again, if x = (4, 3, 1) ∈ D+ and y = (3, 3, 2) ∈ D+ are taken then, for u = (1, 2, 30) ∈ E+ and

for the same function g (·), it can be easily checked that, although x
m

≽ y,

3

i=1

uig (xi)−

3

i=1

uig (yi) = −105.610615 < 0,

giving that ϕ (x) < ϕ (y). So, ϕ (x) is neither Schur-convex nor Schur-concave on D+. �

That nothing can be said about the Schur-convexity of ϕ (x) on D when g (·) is increasing and concave, and u ∈ D+, is

shown in the next counterexample.

Counterexample 3.2. For x = (30, 8, 2) ∈ D+, y = (18, 12, 10) ∈ D+ and u = (3, 2, 1) ∈ D+, if g(x) = ln x is taken,

which is increasing and concave, then

3

i=1

uig (xi)−

3

i=1

uig (yi) = −0.887891257 < 0,

giving that ϕ (x) < ϕ (y). Again, for x = (4, 3, 1) ∈ D+, y = (3, 3, 2) ∈ D+ and u = (30, 2, 1) ∈ D+ and, for the same

function g (·), it can be seen that

3

i=1

uig (xi)−

3

i=1

uig (yi) = 7.937314993 > 0,

satisfying the claim. �

The counterexample given below shows that ϕ (x) is neither Schur-convex nor Schur-concave on D if the function g(·)
is decreasing and convex, and u ∈ D+.

Counterexample 3.3. Let g(x) = e−x, which is decreasing and convex, and x = (4, 3, 1) ∈ D+ and y = (3, 3, 2) ∈ D+. Now,

if u = (3, 2, 1) ∈ D+ is taken, then it can be easily verified that

3

i=1

uig (xi)−

3

i=1

uig (yi) = 0.138129869 > 0,

giving that ϕ (x) > ϕ (y). Again, if we take x = (3, 2, 1) ∈ D+ and y = (2, 2, 2) ∈ D+ then, for u = (26, 2, 1) ∈ D+ and for

the same function g (·), it can be easily checked that, although x
m

≽ y,

3

i=1

uig (xi)−

3

i=1

uig (yi) = −1.991709429 < 0,

giving that ϕ (x) < ϕ (y). So, ϕ (x) is neither Schur-convex nor Schur-concave on D+. �

The following counterexample shows that if g (·) is decreasing and concave and u ∈ E+, then ϕ (x) is neither Schur-

convex nor Schur-concave on D .

Counterexample 3.4. Let g(x) = 1 − e−9x−0.4
, which is decreasing and concave for all x ∈ [0, 10]. Now, if we take x =

(8, 4, 3) ∈ D+, y = (7, 4, 4) ∈ D+ and u = (10, 10.2, 10.4) ∈ E+, then it can also be checked that although x
m

≽ y,

3

i=1

uig (xi)−

3

i=1

uig (yi) = −0.0108009 < 0,

giving that ϕ (x) < ϕ (y). Again, for the same function g (·) and for same x, y, if u = (1, 20, 30) ∈ E+ is taken then

3

i=1

uig (xi)−

3

i=1

uig (yi) = 0.0759684 > 0,

giving that ϕ (x) > ϕ (y). So, ϕ (x) is neither Schur-convex nor Schur-concave on D+. �
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FromCounterexample 3.3, it is clear that there is a typographical error in the parenthetical statement of Proposition H.2.b

in [4]. This can also be verified by observing that the parenthetical statement of Proposition H.2.b with ui ≡ 1 contradicts

Proposition C.1 of Marshall et al. [4, p. 92].
In all the above discussion we take x ∈ D . An immediate question that arises is—what will be the behaviour of ϕ, under

different conditions on g , when x ∈ E? In order to answer this question we take help of the following lemmas. The proof of

Lemma 3.3 is analogous to that of TheoremA.3 ofMarshall et al. [4, p. 83], whereas that of Lemma 3.4 is based on Lemma 3.3.

Lemma 3.3. Let ϕ : E → R be a function, continuously differentiable on the interior of E . Then, for x, y ∈ E ,

x
m

≽ y implies ϕ(x) ≥ (resp. ≤) ϕ(y)

if, and only if,

ϕ(k)(z) is increasing (resp. decreasing) in k = 1, 2, . . . , n,

where ϕ(k)(z) = ∂ϕ(z)/∂zk denotes the partial derivative of ϕ with respect to its kth argument.

Lemma 3.4. Let ϕ(x) =
n

i=1 gi(xi) with x ∈ E , where gi : R → R is differentiable, for all i = 1, 2, . . . , n. Then ϕ(x) is
Schur-convex (resp. Schur-concave) on E if, and only if,

g ′
i+1(a) ≥ (resp. ≤) g ′

i (b) whenever a ≥ b, for all i = 1, 2, . . . , n − 1,

where g ′(a) = dg(x)

dx



x=a

. �

Below we give a theorem whose proof, with the help of Lemma 3.4, follows in the same line as in Theorem 3.1.

Theorem 3.2. Let ϕ(x) =
n

i=1 uig(xi) with x ∈ E , and let I ⊆ R be an interval. Consider a function g : I → R.

(a) If u = (u1, u2, . . . , un) ∈ D+ and
(i) g(·) is increasing and concave then ϕ(x) is Schur-concave on E ;
(ii) g(·) is decreasing and convex then ϕ(x) is Schur-convex on E .

(b) If u = (u1, u2, . . . , un) ∈ E+ and
(i) g(·) is increasing and convex then ϕ(x) is Schur-convex on E ;
(ii) g(·) is decreasing and concave then ϕ(x) is Schur-concave on E . �

The following counterexample shows that if g (·) is increasing and convex, and u ∈ D+, then ϕ (x) may not be Schur-

convex or Schur-concave on E .

Counterexample 3.5. Let g(x) = ex, x = (3, 7, 10) ∈ E+ and y = (4, 7, 9) ∈ E+. So, clearly g(x) is increasing and convex and

x
m

≽ y. Now, if u = (3, 2, 1) ∈ D+ is taken, then it can be easily checked that

3

i=1

uig (xi)−

3

i=1

uig (yi) = 13819.8 > 0,

giving that ϕ (x) > ϕ (y). Again, if x = (1, 2, 3) ∈ E+ and y = (1.5, 1.5, 3) ∈ E+ are taken then, for u = (30, 3, 2) ∈ D+

and for the same function g (·), it can be easily checked that, although x
m

≽ y,

3

i=1

uig (xi)−

3

i=1

uig (yi) = −44.1801 < 0,

giving that ϕ (x) < ϕ (y). So, ϕ (x) is neither Schur-convex nor Schur-concave on E+. �

That nothing can be said about the Schur-convexity of ϕ (x) on E when g (·) is increasing and concave, and u ∈ E+, is

shown in the next counterexample.

Counterexample 3.6. For x = (4, 5, 6) ∈ E+, y = (5, 5, 5) ∈ E+ and u = (2, 3, 5) ∈ E+, if g(x) = ln x is taken, which is

increasing and concave, then

3

i=1

uig (xi)−

3

i=1

uig (yi) = 0.465321 > 0,

giving that ϕ (x) > ϕ (y). Again, for x = (7, 8, 10) ∈ E+, y = (7, 9, 9) ∈ E+ and u = (2, 11, 11.1) ∈ E+ and for the same

function g (·), it can be seen that

3

i=1

uig (xi)−

3

i=1

uig (yi) = −0.126112 < 0,

satisfying the claim. �
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The counterexample given below shows that ϕ (x) is neither Schur-convex nor Schur-concave on E if the function g(·)
is decreasing and convex, and u ∈ E+.

Counterexample 3.7. Let g(x) = e−x, which is decreasing and convex, and x = (4, 6, 8) ∈ E+ and y = (4, 7, 7) ∈ E+. Now,

if u = (1, 12, 12.1) ∈ E+ is taken, then it can be easily verified that

3

i=1

uig (xi)−

3

i=1

uig (yi) = 0.0118278 > 0,

giving that ϕ (x) > ϕ (y). Again, if we take x = (7, 9, 11) ∈ E+ and y = (8, 9, 10) ∈ E+ then, for u = (1, 3, 150) ∈ E+ and

for the same function g (·), it can be easily checked that, although x
m

≽ y,

3

i=1

uig (xi)−

3

i=1

uig (yi) = −0.00372823 < 0,

giving that ϕ (x) < ϕ (y). So, ϕ (x) is neither Schur-convex nor Schur-concave on E+. �

The following counterexample shows that if g (·) is decreasing and concave and u ∈ D+, then ϕ (x) is neither Schur-

convex nor Schur-concave on E .

Counterexample 3.8. Let g(x) = 1 − e−9x−0.4
, which is decreasing and concave for all x ∈ [0, 10]. Now, if we take x =

(3, 6, 8) ∈ E+, y = (5, 5, 7) ∈ E+ and u = (15, 3, 2) ∈ D+, then it can also be checked that although x
m

≽ y,

3

i=1

uig (xi)−

3

i=1

uig (yi) = 0.0690984 > 0,

giving that ϕ (x) > ϕ (y). Again, for the same function g (·) and for x = (3, 4, 5) ∈ E+, y = (3, 4.5, 4.5) ∈ E+, if

u = (16, 15, 14.9) ∈ D+ is taken then

3

i=1

uig (xi)−

3

i=1

uig (yi) = −0.00135098 < 0,

giving that ϕ (x) < ϕ (y). So, ϕ (x) is neither Schur-convex nor Schur-concave on E+. �

The observations, from Theorems 3.1 and 3.2, and the counterexamples, are reported in Table 1. The statements in the

body of the table are regarding the function given by ϕ(x) =
n

i=1 uig(xi).

4. Applications of majorization

In this section, we give two applications ofmajorization in the context of stochastic comparison of parallel/series systems

of components. The first one deals with parallel systems of heterogeneous generalized exponential (GE) components and

the other does the same with series systems of heterogeneous gamma components. Different orderings between parallel

systems of heterogeneous exponential components through majorization was first studied, to the best of our knowledge,

by Dykstra et al. [12]. Later, [13] extended the results for the multiple outlier heterogeneous exponential model. Similar

problem for parallel systems of heterogeneous gamma components was addressed by Zhao [14].

4.1. Application with generalized exponential model

A randomvariableX is said to haveGE distributionwith parameters (λ, θ), written as GE(λ, θ ), if the distribution function

of X is given by

FX (x) =


1 − e−λx
θ
, x > 0, λ > 0, θ > 0,

where θ is the shape parameter and λ is the scale parameter. Clearly, this distribution is a generalization of exponential

distribution in the sense that one can obtain exponential distribution from this distribution by taking θ = 1. Unlike

exponential distribution, this distribution has increasing (decreasing) failure rate for θ > (<)1 for any fixed λ. Therefore, if
it is known that the data are from a regular maintenance environment, it may make more sense to fit GE distribution than

exponential distribution.
Now, suppose Xi (resp. Yi), i = 1, 2, . . . , n, be n independent random variables following GE distributionwith parameters

(λi, θi) (resp. (δi, θi)). Write λ = (λ1, λ2, . . . , λn), δ = (δ1, δ2, . . . , δn) and θ = (θ1, θ2, . . . , θn). Then the distribution

functions of Xn:n and Yn:n can be written respectively as

FXn:n (x) =

n

i=1

FXi (x) =

n

i=1



1 − e−λix
θi
,
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and

FYn:n (x) =

n

i=1

FYi (x) =

n

i=1



1 − e−δix
θi
.

It is to be mentioned here that Theorem 4.1 given below gives comparison of two parallel systems under p-larger order

(which is weaker than majorization order). But before that we give a lemma, which is similar to the one in [15].

Lemma 4.1. Let ψ : E+ (resp. D+) → R be a function. Then, for x, y ∈ E+ (resp. x, y ∈ D+),

x
p

≽ y ⇒ ψ(x) ≥ ψ(y)

if, and only if,

(i) ψ(ea1 , . . . , ean) is Schur-convex in (a1, . . . , an) ∈ E (resp. (a1, . . . , an) ∈ D),

(ii) ψ(ea1 , . . . , ean) is decreasing in ai, for i = 1, . . . , n,

where ai = ln xi, for i = 1, . . . , n. �

In the following theorem we show that, if λ is p-larger than δ then Xn:n is superior to Yn:n in the usual stochastic order.

Theorem 4.1. Let Xi and Yi follow GE distributions with parameters (λi, θi) and (δi, θi) respectively, for i = 1, 2, . . . , n. Further,
let Xi’s and Yi’s be independent. Suppose that the set of conditions {λ ∈ E+, δ ∈ E+, θ ∈ D+} or {λ ∈ D+, δ ∈ D+, θ ∈ E+}
holds. Then

λ
p

≽ δ implies Xn:n ≥st Yn:n.

Proof. Let the set of conditions {λ ∈ E+, δ ∈ E+, θ ∈ D+} hold. Further, let FE(·) and r̃E(·) be the distribution function and

the reversed hazard rate function of the standard exponential distribution, respectively. Then the survival function of Xn:n

is given by

F̄Xn:n(x) = 1 −

n

i=1

[FE(e
ai)]θi

= Ψ (ea1 , ea2 , . . . , ean), say,

where ai = ln(λix), for i = 1, 2, . . . , n. Note that Ψ (ea1 , ea2 , . . . , ean) is decreasing in each ai, for i = 1, 2, . . . , n. Further,
for 1 ≤ p ≤ q ≤ n,

∂Ψ

∂ap
−
∂Ψ

∂aq
=

n

i=1

[FE(e
ai)]θi



θqe
aq r̃E(e

aq)− θpe
ap r̃E(e

ap)


≤ 0,

where the inequality follows because xr̃E(x) is decreasing in x > 0. Thus, by Lemma 3.3 we have that Ψ (ea1 , ea2 , . . . , ean) is
Schur-convex in (a1, a2, . . . , an) ∈ E whenever (θ1, θ2, . . . , θn) ∈ D+. Hence the result follows from Lemma 4.1. The result

follows in a similar way under the set of conditions {λ ∈ D+, δ ∈ D+, θ ∈ E+}. �

The following counterexample shows that Theorem 4.1 does not hold under the sets of conditions {λ ∈ D+, δ ∈ D+, θ ∈
D+} or {λ ∈ E+, δ ∈ E+, θ ∈ E+}, even if the condition of p-larger order is replaced by the majorization order.

Counterexample 4.1. Let X1, X2, Y1 and Y2 follow GE distribution with respective parameters (λ1, θ1), (λ2, θ2), (δ1, θ1) and

(δ2, θ2), where (λ1, λ2) = (1, 5) ∈ E+, (δ1, δ2) = (2, 4) ∈ E+, and (θ1, θ2) = (2, 100) ∈ E+. Clearly, (λ1, λ2)
m

≽ (δ1, δ2).
Now,

k1(x)
def
= F̄X2:2(x)− F̄Y2:2(x)

= (1 − e−2x)2(1 − e−4x)100 − (1 − e−x)2(1 − e−5x)100.

It can be shown that k1(x) changes sign. Thus, X2:2 ≱st Y2:2. Further, let (λ1, λ2) = (6, 2) ∈ D+, (δ1, δ2) = (5, 3) ∈ D+, and

(θ1, θ2) = (60, 2) ∈ D+. Clearly, (λ1, λ2)
m

≽ (δ1, δ2). Now,

k2(x)
def
= F̄X2:2(x)− F̄Y2:2(x)

= (1 − e−5x)60(1 − e−3x)2 − (1 − e−6x)60(1 − e−2x)2.

It is easy to verify that k2(x) changes sign. Thus, X2:2 ≱st Y2:2. �
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The following counterexample shows that the condition of p-larger order given in Theorem 4.1 cannot be replaced by

reciprocal majorization order.

Counterexample 4.2. Let X1, X2, Y1 and Y2 follow GE distribution with respective parameters (λ1, θ1), (λ2, θ2), (δ1, θ1) and

(δ2, θ2), where (λ1, λ2) = (2, 4) ∈ E+, (δ1, δ2) = (2.4, 3) ∈ E+, and (θ1, θ2) = (1, 0.99) ∈ D+. Clearly, (λ1, λ2)
rm

≽ (δ1, δ2)

and (λ1, λ2)
p

⋡ (δ1, δ2). Writing k3(x) = F̄X2:2(x)− F̄Y2:2(x) we have

k3(x) = (1 − e−2.4x)(1 − e−3x)0.99 − (1 − e−2x)(1 − e−4x)0.99.

It can be shown that k3(x) changes sign. Thus, X2:2 ≱st Y2:2. �

Below we give a lemma without proof, which will be used in proving the upcoming theorems.

Lemma 4.2. For x > 0, g(y) = y (eyx − 1)−1 is decreasing and convex in y > 0. �

The following lemma to be used in proving the next theorem, may be obtained in [4, p. 87], where the parenthetical

statements are not given.

Lemma 4.3. Let S ⊆ R
n. Further, let ϕ : S → R. Then

(a1, a2, . . . , an)≽w(b1, b2, . . . , bn) implies ϕ(a1, a2, . . . , an) ≥ (resp. ≤) ϕ(b1, b2, . . . , bn)

if, and only if, ϕ is increasing (resp. decreasing) and Schur-convex (resp. Schur-concave) on S. Similarly,

(a1, a2, . . . , an)
w
≽ (b1, b2, . . . , bn) implies ϕ(a1, a2, . . . , an) ≥ (resp. ≤) ϕ(b1, b2, . . . , bn)

if, and only if, ϕ is decreasing (resp. increasing) and Schur-convex (resp. Schur-concave) on S. �

The following theorem shows that, if (λ1, λ2, . . . , λn) weakly supermajorizes (δ1, δ2, . . . , δn), then Xn:n dominates Yn:n

in reversed hazard rate ordering.

Theorem 4.2. Let Xi and Yi follow GE distributions with parameters (λi, θi) and (δi, θi) respectively, for i = 1, 2, . . . , n. Further,
let Xi’s and Yi’s be independent. Suppose that the set of conditions {λ ∈ D+, δ ∈ D+, θ ∈ E+} or {λ ∈ E+, δ ∈ E+, θ ∈ D+}
holds. Then

λ
w
≽ δ implies Xn:n ≥rhr Yn:n.

Proof. The reversed hazard rate functions of Xn:n and Yn:n are given respectively by

r̃Xn:n (x) =

n

i=1

θiλie
−λix

1 − e−λix
=

n

i=1

θig(λi), (4.1)

and

r̃Yn:n (x) =

n

i=1

θiδie
−δix

1 − e−δix
=

n

i=1

θig(δi), (4.2)

where g(·) is as defined in Lemma 4.2. By Lemma 4.2 and Theorem 3.1 b(ii) we have that r̃Xn:n (x) is Schur-convex in

(λ1, λ2, . . . , λn). Further, by Lemma 4.2 and Theorem 3.2 a(ii) we also get that r̃Xn:n (x) is Schur-convex in (λ1, λ2, . . . , λn).
Again, note that r̃Xn:n (x) is decreasing in each λi. Thus, the result follows from Lemma 4.3.

Remark 4.1. Theorem 4.2 improves Theorem 3.2 of Dykstra et al. [12] in the sense that the latter can be obtained from the

former by taking θ1 = θ2 = · · · = θn = 1.

Remark 4.2. Counterexample 4.1 shows that Theorem 4.2 does not hold under the sets of conditions {λ ∈ D+, δ ∈ D+, θ ∈
D+} or {λ ∈ E+, δ ∈ E+, θ ∈ E+}. �

It is well known that p-larger order is weaker than the weak supermajorization order. Then a natural question arises—

whether the result discussed in Theorem 4.2 holds under p-larger order. The following counterexample answers this

question in negative.
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Counterexample 4.3. Let X1, X2, Y1 and Y2 follow GE distribution with respective parameters (λ1, θ1), (λ2, θ2), (δ1, θ1) and

(δ2, θ2), where (λ1, λ2) = (1, 7) ∈ E+, (δ1, δ2) = (2, 5) ∈ E+, and (θ1, θ2) = (2.1, 2) ∈ D+. Clearly, (λ1, λ2)
p

≽ (δ1, δ2) and

(λ1, λ2)
w

⋡ (δ1, δ2). Writing k4(x) = r̃X2:2(x)− r̃Y2:2(x) we have

k4(x) =
2.1

ex − 1
+

14

e7x − 1
−

4.2

e2x − 1
−

10

e5x − 1
.

It can be shown that k4(x) changes sign. Thus, X2:2 ≱rhr Y2:2. �

In the following theorem we generalize the above result for the up shifted reversed hazard rate order.

Theorem 4.3. Let Xi and Yi follow GE distributions with parameters (λi, θi) and (δi, θi) respectively, for i = 1, 2, . . . , n. Further,
let Xi’s and Yi’s be independent. Suppose that the set of conditions {λ ∈ D+, δ ∈ D+, θ ∈ E+} or {λ ∈ E+, δ ∈ E+, θ ∈ D+}
holds. Then

λ
w
≽ δ implies Xn:n ≥rhr↑ Yn:n.

Proof. Note that r̃n:n(x) is decreasing in x > 0, and hence Xn:n has log-concave distribution function. Then, on using

Theorem 4.2, the result follows from Theorem 2.2 of Di Crescenzo and Longobardi [10].

Remark 4.3. Counterexample 4.3 shows that the weak supermajorization condition given in Theorem 4.3 cannot be

replaced by p-larger order. �

Below we give another set of sufficient conditions under which the result given in Theorem 4.3 holds.

Theorem 4.4. Let Xi and Yi follow GE distributions with parameters (λi, θi) and (δi, θi), respectively, for i = 1, 2, . . . , n. Further,
let Xi’s and Yi’s be independent. If δi ≥ λi for all i = 1, 2, . . . , n, then Xn:n ≥rhr↑ Yn:n.

Proof. By Lemma 4.2 we have that g(·) is a decreasing function. Then Xn:n ≥rhr Yn:n immediately follows from (4.1) and

(4.2). Further, note that r̃n:n(x) is decreasing in x > 0. Hence, the result follows from Theorem 2.2 of Di Crescenzo and

Longobardi [10]. �

The following corollaries are immediate.

Corollary 4.1. If δi ≥ λi for all i = 1, 2, . . . , n, then Xn:n ≥rhr Yn:n.

Corollary 4.2. If min{δ1, δ2, . . . , δn} ≥ max{λ1, λ2, . . . , λn}, then Xn:n ≥rhr Yn:n. �

Now the question arises whether Theorem 4.2 can be strengthened further by replacing reversed hazard rate order

between Xn:n and Yn:n by likelihood ratio order. For n = 3, the following counterexample gives a negative answer, even

if the condition of weak supermajorization order is replaced by the majorization order.

Counterexample 4.4. Let Xi (resp. Yi) follow GE distributions with parameters (λi, θi) (resp. (δi, θi)), i = 1, 2, 3, where

(λ1, λ2, λ3) = (6, 4, 2) ∈ D+, (δ1, δ2, δ3) = (5, 5, 2) ∈ D+ and (θ1, θ2, θ3) = (1, 2, 3) ∈ E+. Clearly, (λ1, λ2, λ3)
m

≽
(δ1, δ2, δ3). Now, it can be shown that fX3:3(x)/fY3:3(x) is nonmonotone. Thus, there is no likelihood ratio order between X3:3 and

Y3:3. �

Below we see that there exists likelihood ratio order between Xn:n and Yn:n if Yi is a random variable following GE

distribution with parameters


λ, θi


, i = 1, 2, . . . , n, where λ = 1

n

n

i=1 λi.

Theorem 4.5. Let Xi and Yi follow GE distributions with parameters (λi, θi) and


λ, θi


, respectively, for i = 1, 2, . . . , n. Further,
let Xi’s and Yi’s be independent. Suppose that the set of conditions {λ ∈ D+, θ ∈ E+} or {λ ∈ E+, θ ∈ D+} holds. Then

Xn:n ≥lr Yn:n.

Proof. To prove the result, we have to show that

fXn:n(x)

fYn:n(x)
= c

n

i=1

θiλi



eλx − 1





eλix − 1


FXn:n(x)

FYn:n(x)
is increasing in x > 0, (4.3)

where c is a constant independent of x. Now, by Theorem 4.2, we have that

FXn:n(x)

FYn:n(x)
is increasing in x > 0.



A. Kundu et al. / Journal of Computational and Applied Mathematics 301 (2016) 161–177 171

So, from (4.3), it is only required to show that

η3(x)
def
=

n

i=1

θiλi



eλx − 1





eλix − 1
 is increasing in x > 0.

Differentiating η3(x)with respect to x, we have

η′
3(x) = λeλx

n

i=1

θiλi


eλix − 1
 −



eλx − 1

 n

i=1

θiλ
2
i e
λix



eλix − 1
2
. (4.4)

It can be shown that each of λ2i e
−λix/



1 − e−λix
2

and


1 − e−λix


/λi is decreasing in λi. Thus, we have, on using Equation

(1.5) of Mitrinović et al. [16]

n

i=1

θiλi

eλix − 1
≥

1

n

n

i=1

θiλ
2
i e

−λix



1 − e−λix
2

n

i=1



1 − e−λix


λi
.

Thus, η3(x) is increasing in x, if for all x > 0,

λ

n

n

i=1

1 − e−λix

λi
−


1 − e−λx


≥ 0,

which holds by judiciously using AM-GM inequality. Hence, the result follows.

Remark 4.4. The above theorem improves Theorem 2.1(b) of Dykstra et al. [12] in the sense that the latter can be obtained

from the former by taking θ1 = θ2 = · · · = θn = 1 and by noting the fact that likelihood ratio order is stronger than failure

rate order. �

In case of multiple-outlier model, the following theorem shows that the restrictions on the parameters given in

Theorem 4.2 can be relaxed. For more properties of this model, one may refer to Zhao and Balakrishnan [13].

Theorem 4.6. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two sets of independent random variables each following

the multiple-outlier GE model such that Xi ∼ GE (λ1, θi) and Yi ∼ GE (δ1, θi), for i = 1, 2, . . . , n1, Xj ∼ GE


α, θj


and

Yj ∼ GE


α, θj


, for j = n1 + 1, n1 + 2, . . . , n1 + n2 (=n). Further, let Xi’s and Yi’s be independent. Then

(λ1, λ1, . . . , λ1,
  

n1

α, α, . . . , α
  

n2

)
w
≽ (δ1, δ1, . . . , δ1,

  

n1

α, α, . . . , α
  

n2

) ⇒ Xn:n ≥rhr Yn:n.

Proof. From (4.1) and (4.2) we have

r̃Xn:n(x) = θg(λ1)+ θ∗g(α)

and

r̃Yn:n(x) = θg(δ1)+ θ∗g(α),

where θ =
n1

i=1 θi and θ
∗ =

n

j=n1+1 θj. Further,

(λ1, λ1, . . . , λ1,
  

n1

α, α, . . . , α
  

n2

)
w
≽ (δ1, δ1, . . . , δ1,

  

n1

α, α, . . . , α
  

n2

)

if, and only if, one of the following cases holds: (i) λ1 ≤ δ1 ≤ α, (ii) λ1 ≤ α ≤ δ1, (iii) α ≤ λ1 ≤ δ1. Note that, for all the

above three cases, r̃Xn:n(x) ≥ r̃Yn:n(x), and hence Xn:n ≥rhr Yn:n. �

We have shown that likelihood ratio ordering between Xn:n and Yn:n with heterogeneous GE components does not exist

for all n. Next theorem shows that a similar result still holds for multiple-outlier GE model.

Theorem 4.7. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two sets of independent random variables each following

the multiple-outlier GE model such that Xi ∼ GE (λ1, θ1) and Yi ∼ GE (δ1, θ1), for i = 1, 2, . . . , n1, Xj ∼ GE (λ2, θ2) and
Yj ∼ GE (δ2, θ2), for j = n1 + 1, n1 + 2, . . . , n1 + n2 (=n). Further, let Xi’s and Yi’s be independent. Suppose that the set of

conditions {(λ1, λ2) ∈ D+, (δ1, δ2) ∈ D+, (θ1, θ2) ∈ E+} or {(λ1, λ2) ∈ E+, (δ1, δ2) ∈ E+, (θ1, θ2) ∈ D+} holds. Then

(λ1, λ1, . . . , λ1,
  

n1

λ2, λ2, . . . , λ2
  

n2

)
m

≽ (δ1, δ1, . . . , δ1,
  

n1

δ2, δ2, . . . , δ2
  

n2

) ⇒ Xn:n ≥lr Yn:n.
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Proof. Write

F = {µ = (µ1, µ2, . . . , µn) : µi = λ1, for 1 ≤ i ≤ n1 and µi = λ2, for n1 + 1 ≤ i ≤ n},

G = {s = (s1, s2, . . . , sn) : si = δ1, for 1 ≤ i ≤ n1 and si = δ2, for n1 + 1 ≤ i ≤ n}

and

H = {θ = (θ1, θ2, . . . , θn) : θi = θ1, for 1 ≤ i ≤ n1 and θi = θ2, for n1 + 1 ≤ i ≤ n}.

Note that

fXn:n(x)

fYn:n(x)
=







n

i=1

θiµi

eµix−1

n

i=1

θisi
esix−1







FXn:n(x)

FYn:n(x)










µ∈F , s∈G, θ∈H

.

By Theorem 4.2, we have that

FXn:n(x)

FYn:n(x)
is increasing in x > 0.

So, to prove the result, it suffices to show that, for µ ∈ F , s ∈ G and θ ∈ H ,

∆(x)
def
=

n

i=1

θiµi

eµix−1

n

i=1

θisi
esix−1

=

n

i=1

θiu(µix)

n

i=1

θiu(six)

is increasing in x, where u(x) = x/(ex − 1). Now, u′(x) = u(x)v(x)/x, where v(x) = (ex − 1 − xex)/(ex − 1). It can be easily

shown that u(x) and v(x) are decreasing in x > 0. Now, differentiating∆(x)with respect to x, we get

∆′(x)
sign
=

n

i=1

θiu(six)

n

i=1

θiu(µix)v(µix)−

n

i=1

θiu(µix)

n

i=1

θiu(six)v(six).

Clearly,∆(x) is increasing in x > 0 if

Ω(µ1, µ2, . . . , µn)
def
=

n

i=1

θiu(µix)v(µix)

n

i=1

θiu(µix)

is Schur-convex in (µ1, µ2, . . . , µn) ∈ F , for θ ∈ H . Assume that ω(x) = u(x)v′(x), θ =
n1

r=1 θr and θ
∗ =

n

r=n1+1 θr .
Then, for 1 ≤ i ≤ n1,

∂Ω

∂µi

=
θ1x[θ

∗u′(λ1x)u(λ2x){v(λ1x)− v(λ2x)} + ω(λ1x){θu(λ1x)+ θ∗u(λ2x)}]

(θu(λ1x)+ θ∗u(λ2x))
2

and, for n1 + 1 ≤ j ≤ n,

∂Ω

∂µj

=
θ2x[θu

′(λ2x)u(λ1x){v(λ2x)− v(λ1x)} + ω(λ2x){θ
∗u(λ2x)+ θu(λ1x)}]

(θu(λ1x)+ θ∗u(λ2x))
2

.

Consider the following two cases:

Case I: Let 1 ≤ i, j ≤ n1 or n1 + 1 ≤ i, j ≤ n. Then

∂Ω

∂µi

−
∂Ω

∂µj

= 0.

Case II: Let 1 ≤ i ≤ n1 and n1 + 1 ≤ j ≤ n. Then

∂Ω

∂µi

−
∂Ω

∂µj

sign
= {v(λ1x)− v(λ2x)}{θ1θ

∗u′(λ1x)u(λ2x)+ θ2θu
′(λ2x)u(λ1x)}

+ {θu(λ1x)+ θ∗u(λ2x)}{θ1ω(λ1x)− θ2ω(λ2x)}.

Again, as v(x) is decreasing in x, on using Lemma 3.3 of Torrado and Kochar [17], we have that w(x) is increasing and

non-positive. Therefore, it follows that ∂Ω
∂µi

− ∂Ω
∂µj

≥ 0 whenever the set of conditions {(λ1, λ2) ∈ D+, (δ1, δ2) ∈ D+,
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(θ1, θ2) ∈ E+} holds. Further, ∂Ω
∂µi

− ∂Ω
∂µj

≤ 0 whenever the set of conditions {(λ1, λ2) ∈ E+, (δ1, δ2) ∈ E+, (θ1, θ2) ∈ D+}

holds. Hence the result follows from Lemmas 3.1 and 3.3. �

The following corollary immediately follows from the above theorem.

Corollary 4.3. Let Xi and Yi follow GE distributions with parameters (λi, θi) and (δi, θi), respectively, for i = 1, 2. Further, let
Xi’s and Yi’s be independent. Suppose that the set of conditions {λ1 ≥ λ2, δ1 ≥ δ2, θ1 ≤ θ2} or {λ1 ≤ λ2, δ1 ≤ δ2, θ1 ≥ θ2}
holds. Then

(λ1, λ2)
m

≽ (δ1, δ2) implies X2:2 ≥lr Y2:2.

Remark 4.5. Counterexample 4.1 shows that Theorem 4.7 does not hold under the set of conditions {(λ1, λ2) ∈
D+, (δ1, δ2) ∈ D+, (θ1, θ2) ∈ D+} or {(λ1, λ2) ∈ E+, (δ1, δ2) ∈ E+, (θ1, θ2) ∈ E+}.

Remark 4.6. The condition of majorization order given in Theorem 4.7 cannot be replaced by p-larger order as

Counterexample 4.3 shows.

Remark 4.7. The above theorem improves Theorem 3.5 of Zhao and Balakrishnan [13] in the sense that the latter can be

obtained from the former by taking θ1 = θ2 = · · · = θn = 1. �

Below we give another set of sufficient conditions under which the above theorem holds.

Theorem 4.8. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two sets of independent random variables each following

the multiple-outlier GE model such that Xi ∼ GE (λ1, θi) and Yi ∼ GE (δ1, θi), for i = 1, 2, . . . , n1, Xj ∼ GE


λ2, θj


and

Yj ∼ GE


δ2, θj


, for j = n1 + 1, n1 + 2, . . . , n1 + n2 (=n). Further, let Xi’s and Yi’s be independent. Then

min{δ1, δ2} ≥ max{λ1, λ2} ⇒ Xn:n ≥lr Yn:n.

Proof. Writing
n1

i=1 θi = θ and
n

j=n1+1 θj = θ∗ we have

fXn:n(x)

fYn:n(x)
=





λ1θ

eλ1x−1
+

λ2θ
∗

eλ2x−1

δ1θ

eδ1x−1
+

δ2θ
∗

eδ2x−1




FXn:n(x)

FYn:n(x)
.

As min{δ1, δ2} ≥ max{λ1, λ2}, by Corollary 4.2, we have that

FXn:n(x)

FYn:n(x)
is increasing in x > 0.

Thus, to prove the result, it suffices to show that

η4(x)
def
=

λ1θ

eλ1x−1
+

λ2θ
∗

eλ2x−1

δ1θ

eδ1x−1
+

δ2θ
∗

eδ2x−1

is increasing in x > 0.

Now, differentiating η4(x)with respect to xwe have

η′
4(x)

sign
= θ2u(λ1x)u(δ1x)[z(δ1x)− z(λ1x)] + θθ∗u(λ1x)u(δ2x)[z(δ2x)− z(λ1x)]

+ θθ∗u(δ1x)u(λ2x)[z(δ1x)− z(λ2x)] + θ∗2u(δ2x)u(λ2x)[z(δ2x)− z(λ2x)]

≥ 0,

where u(x) = x/(ex − 1) ≥ 0 and z(x) = x/(1 − e−x) ≥ 0. The inequality follows from the fact that min{δ1, δ2} ≥
max{λ1, λ2}, and z(x) is increasing in x > 0. Thus, the result is proved. �

In the following theorem we show that the above result holds under different set of sufficient conditions.

Theorem 4.9. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two sets of independent random variables each following

the multiple-outlier GE model such that Xi ∼ GE (λ1, θi) and Yi ∼ GE (δ1, θi), for i = 1, 2, . . . , n1, Xj ∼ GE


α, θj


and

Yj ∼ GE


α, θj


, for j = n1+1, n1+2, . . . , n1+n2 (=n). Further, let Xi’s and Yi’s be independent. Suppose that λ1 ≤ min{δ1, α}.
Then

(λ1, λ1, . . . , λ1,
  

n1

α, α, . . . , α
  

n2

)
w
≽ (δ1, δ1, . . . , δ1,

  

n1

α, α, . . . , α
  

n2

) ⇒ Xn:n ≥lr Yn:n.
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Proof. Write
n1

i=1 θi = θ and
n

j=n1+1 θj = θ∗. Then

fXn:n(x)

fYn:n(x)
=

 λ1θ

eλ1x−1
+ αθ∗

eαx−1

δ1θ

eδ1x−1
+ αθ∗

eαx−1



FXn:n(x)

FYn:n(x)
.

By Theorem 4.6, we have that

FXn:n(x)

FYn:n(x)
is increasing in x > 0.

Thus, to prove the result, it suffices to show that

ζ (x)
def
=

λ1θ

eλ1x−1
+ αθ∗

eαx−1

δ1θ

eδ1x−1
+ αθ∗

eαx−1

is increasing in x > 0.

Now, differentiating ζ (x)with respect to x we have

ζ ′(x)
sign
= θ2u(λ1x)u(δ1x)[z(δ1x)− z(λ1x)] + θ∗θu(αx)u(λ1x)[z(αx)− z(λ1x)]

+ θ∗θu(αx)u(δ1x)[z(δ1x)− z(αx)]

= γ (x), say, (4.5)

where u(x) = x/(ex − 1) ≥ 0 and z(x) = x/(1 − e−x) ≥ 0. It is easy to show that u(x) is decreasing in x > 0, and

z(x) is increasing in x > 0. Now from the hypothesis we have λ1 ≤ min{δ1, α} and (λ1, λ1, . . . , λ1,
  

n1

α, α, . . . , α
  

n2

)
w
≽

(δ1, δ1, . . . , δ1,
  

n1

α, α, . . . , α
  

n2

), which is equivalent to the fact that λ1 ≤ α ≤ δ1 or λ1 ≤ δ1 ≤ α.

Case I: λ1 ≤ α ≤ δ1. Then we have z(λ1x) ≤ z(αx) ≤ z(δ1x), which implies that γ (x) ≥ 0.
Case II: λ1 ≤ δ1 ≤ α. Then we have z(λ1x) ≤ z(δ1x) ≤ z(αx) and u(λ1x) ≥ u(δ1x) ≥ u(αx). From (4.5) we have

γ (x) ≥ [z(δ1x)− z(λ1x)][θ
2u(λ1x)u(δ1x)+ θ∗θu(αx)u(δ1x)]

≥ 0,

which gives that ζ ′(x) ≥ 0. Thus, the result is proved.

Corollary 4.4. Let X1 and X2 follow GE distributions with parameters (λ1, θ1) and (α, θ2), and let Y1 and Y2 follow GE

distributions with parameters (δ1, θ1) and (α, θ2), respectively. Further, let Xi’s and Yi’s be independent. Suppose that λ1 ≤
min{δ1, α}. Then

(λ1, α)
w
≽ (δ1, α) implies X2:2 ≥lr Y2:2.

Belowwe cite a counterexamplewhich shows that the conditionλ1 ≤ min{δ1, α} given in Theorem4.9 cannot be relaxed.

Counterexample 4.5. Let X1 and X2 follow GE distributions with respective parameters (λ1, θ1), (α, θ2), and Y1 and Y2 follow

GE distribution with respective parameters (δ1, θ1) and (α, θ2), where (λ1, α) = (2, 1) ∈ D+, (δ1, α) = (3, 1) ∈ D+ and

(θ1, θ2) = (6, 6.1) ∈ E+. Clearly, λ1 ≰ min{δ1, α} and (λ1, α)
w
≽ (δ1, α). One can show that fX2:2(x)/fY2:2(x) is nonmonotone.

Thus, X2:2 ≱lr Y2:2. �

Before going into the next theorem we give the following lemma without proof.

Lemma 4.4. If λ1 ≤ δ1 ≤ δ2 ≤ λ2 or λ1 ≥ δ1 ≥ δ2 ≥ λ2, and n1λ1 + n2λ2 = n1δ1 + n2δ2 then

(λ1, λ1, . . . , λ1,
  

n1

λ2, λ2, . . . , λ2
  

n2

)
m

≽ (δ1, δ1, . . . , δ1,
  

n1

δ2, δ2, . . . , δ2
  

n2

). �

The following theorem generalizes the result discussed in Theorem 4.9.

Theorem 4.10. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be two sets of independent random variables each following

the multiple-outlier GE model such that Xi ∼ GE (λ1, θ1) and Yi ∼ GE (δ1, θ1), for i = 1, 2, . . . , n1, Xj ∼ GE (λ2, θ2) and
Yj ∼ GE (δ2, θ2), for j = n1 + 1, n1 + 2, . . . , n1 + n2 (=n). Further, let Xi’s and Yi’s be independent. Suppose that the set of

conditions {λ1 ≤ δ1 ≤ δ2 ≤ λ2, θ1 ≥ θ2} or {λ1 ≥ δ1 ≥ δ2 ≥ λ2, θ1 ≤ θ2} holds. Then

(λ1, λ1, . . . , λ1,
  

n1

λ2, λ2, . . . , λ2
  

n2

)
w
≽ (δ1, δ1, . . . , δ1,

  

n1

δ2, δ2, . . . , δ2
  

n2

) ⇒ Xn:n ≥lr Yn:n.
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Proof. Suppose that the first set of conditions holds. Theweak supermajorization order gives that λ1 ≤ δ1 and n1λ1+rλ2 ≤
n1δ1 + rδ2, for r = 1, 2, . . . , n2. If n1λ1 + n2λ2 = n1δ1 + n2δ2 then the result follows from Theorem 4.7. Suppose that

n1λ1 + n2λ2 < n1δ1 + n2δ2. Then there exists some λ such that n1λ + n2λ2 = n1δ1 + n2δ2 and λ1 < λ ≤ δ1. Let X
∗
n:n be

the lifetime of a parallel system formed by n components X∗
1 , X

∗
2 , . . . , X

∗
n where X∗

i ∼ GE(λ, θ1), for i = 1, 2, . . . , n1 and

X∗
j ∼ GE(λ2, θ2), for j = n1 +1, n1 +2, . . . , n1 +n2 (=n). Then, on using Lemma 4.4, X∗

n:n ≥lr Yn:n follows from Theorem 4.7.

Further, note that λ1 ≤ λ ≤ λ2 and

(λ1, λ1, . . . , λ1,
  

n1

λ2, λ2, . . . , λ2
  

n2

)
w
≽ (λ, λ, . . . , λ,

  

n1

λ2, λ2, . . . , λ2
  

n2

).

Thus, Xn:n ≥lr X
∗
n:n follows from Theorem 4.9. Hence Xn:n ≥lr Yn:n. The proof follows in a similar way under the second set of

conditions.

Corollary 4.5. If Xi and Yi follow GE distributions with parameters (λi, θi) and (δi, θi) respectively, for i = 1, 2. Suppose that

the set of conditions {λ1 ≤ δ1 ≤ δ2 ≤ λ2, θ1 ≥ θ2} or {λ1 ≥ δ1 ≥ δ2 ≥ λ2, θ1 ≤ θ2} holds. Then

(λ1, λ2)
w
≽ (δ1, δ2) implies X2:2 ≥lr Y2:2.

4.2. Application with gamma model

A random variable X is said to have gamma distribution with parameters (λ, α) if the density function of X is given by

fX (x) =
λα

Γ (α)
xα−1e−λx, x > 0, λ > 0, α > 0,

where α is the shape parameter and λ is the scale parameter. As mentioned in the introduction, the comparison of parallel

systems formed by gamma components with respect to different stochastic orders have been well studied in the literature

(cf. [14,18], and the references therein). Here we consider series system in place of parallel system. We show that one

series system dominates the other with respect to the hazard rate order whenever their scale parameters are ordered with

respect toweakmajorization order (which isweaker thanmajorization order). Belowwe give three lemmas. The first lemma

may be obtained in [4, p. 92], whereas the second lemma is borrowed from [6, p. 116]. The proof of the third lemma is

straightforward.

Lemma 4.5. Let I ⊆ R be an interval, and let g : I → R be convex (resp. concave). Then

ϕ(x) =

n

i=1

g(xi)

is Schur-convex (resp. Schur-concave) on In.

Lemma 4.6. Let Z be a random variable having IFRA (resp. DFRA) distribution. Then

E(Z2) ≤ (resp. ≥) 2[E(Z)]2.

Lemma 4.7. Let Z be a random variable having probability density function given by

fZ (t) =
(1 + t)α−1e−ty

∞

0
(1 + u)α−1e−uydu

, for t ∈ (0,∞),

where α and y are positive constants. Then Z is DLR for α ∈ [0, 1], and is ILR for α ∈ [1,∞). �

In the following theorem we compare X1:n and Y1:n with respect to the hazard rate order.

Theorem 4.11. Let X1, X2, . . . , Xn be independent gamma random variables with respective scale parameters λ1, λ2, . . . , λn,
and the same shape parameter α. Further, let Y1, Y2, . . . , Yn be another set of independent gamma random variables with

respective scale parameters µ1, µ2, . . . , µn, and the same shape parameter α. Suppose Xi’s and Yi’s are independent. Then

(λ1, λ2, . . . , λn)
w

≽ (µ1, µ2, . . . , µn) ⇒ X1:n ≥hr Y1:n, for α ∈ [0, 1],

and

(λ1, λ2, . . . , λn) ≽w (µ1, µ2, . . . , µn) ⇒ X1:n ≤hr Y1:n, for α ∈ [1,∞).
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Proof. The hazard rate function of X1:n is given by rX1:n(x) =
n

i=1 ξ(λix)


/x, where ξ(y) =
∞

0
(1 + u)α−1e−uydu

−1
=

1/ϑ(y), say. This gives that ξ ′(y) = −ϑ ′(y)/ϑ2(y), and ϑ(y)ξ ′′(y) = 2 [E(Z)]2 − E(Z2), where Z , as defined in Lemma 4.7,

is DFRA for α ∈ [0, 1], and IFRA for α ∈ [1,∞) (cf. [11]). Thus, on using Lemma 4.6, we get ξ ′′(y) ≤ 0 for α ∈ [0, 1], and
ξ ′′(y) ≥ 0 for α ∈ [1,∞). Hence, ξ(y) is concave in y, for α ∈ [0, 1], and is convex in y, for α ∈ [1,∞). So, by Lemma 4.5 we

have that rX1:n(x) is Schur-concave in (λ1, λ2, . . . , λn), forα ∈ [0, 1], and is Schur-convex in (λ1, λ2, . . . , λn), forα ∈ [1,∞).
Further, note that ξ ′(y) ≥ 0 for all y > 0, which implies that rX1:n(x) is increasing in each λi, for all α ∈ (0,∞). Thus, the
result follows from Lemma 4.3. �

Because weak supermajorization order is superior to p-larger order, one may wonder whether weak supermajorization

order given in Theorem 4.11 can be replaced by p-larger order. The following counterexample answers this question in

negative.

Counterexample 4.6. Let Xi (resp. Yi) be independent gamma random variables with parameters (λi, α) (resp. (µi, α)), i = 1, 2,

where (λ1, λ2) = (1, 5) ∈ E+, (µ1, µ2) = (2, 3.9) ∈ E+, and α = 0.1. Clearly, (λ1, λ2)
p

≽ (µ1, µ2) but (λ1, λ2)
w

⋡ (µ1, µ2).
Now,

k7(x)
def
= rX1:2(x)− rY1:2(x)

=
1

x
[ξ(x)+ ξ(5x)− ξ(2x)− ξ(3.9x)] ,

where ξ(y) is as defined in Theorem 4.11. It can be shown that k7(x) changes sign. Thus, X1:2 ≱hr Y1:2. �

The following theorem shows that the above result also holds for the dispersive order.

Theorem 4.12. Let X1, X2, . . . , Xn be independent gamma random variables with respective scale parameters λ1, λ2, . . . , λn,
and the same shape parameter α. Further, let Y1, Y2, . . . , Yn be another set of independent gamma random variables with

respective scale parameters µ1, µ2, . . . , µn and the same shape parameter α. Suppose Xi’s and Yi’s are independent. Then

(λ1, λ2, . . . , λn)
w

≽ (µ1, µ2, . . . , µn) ⇒ X1:n ≥disp Y1:n, for α ∈ [0, 1].

Proof. Note that rX1:n(x) is decreasing in x > 0, for α ∈ [0, 1]. Thus, on using Theorem 3.B.20(a) of Shaked and Shanthiku-

mar [8], the result follows from Theorem 4.11. �

In the following theorem we show that Theorem 4.11 holds for the up shifted and the down shifted hazard rate orders.

Theorem 4.13. Let X1, X2, . . . , Xn be independent gamma random variables with respective scale parameters λ1, λ2, . . . , λn,
and the same shape parameter α. Further, let Y1, Y2, . . . , Yn be another set of independent gamma random variables with

respective scale parameters µ1, µ2, . . . , µn, and the same shape parameter α. Suppose Xi’s and Yi’s are independent. Then

(λ1, λ2, . . . , λn)
w

≽ (µ1, µ2, . . . , µn) ⇒ X1:n ≥hr↓ Y1:n, for α ∈ [0, 1],

and

(λ1, λ2, . . . , λn) ≽w (µ1, µ2, . . . , µn) ⇒ X1:n ≤hr↑ Y1:n, for α ∈ [1,∞).

Proof. Note that rX1:n(x) is decreasing in x > 0, for α ∈ [0, 1] and is increasing in x > 0, for α ∈ [1,∞). Thus, on using

Theorem 4.11, the result follows from Theorem 6.26 and Theorem 6.19 of Lillo et al. [9].

5. Conclusions

Although the concept of majorization started in order to compare the income inequalities, now-a-days one can

find application of majorization in different branches of economics, reliability, engineering and many others. We have

developed some useful results on majorization, viz. we have given answer to the question—what can we say about Schur-

convexity/concavity of the function ϕ(·) defined by ϕ(x) =
n

i=1 uig(xi) if g : I → R is increasing/decreasing and

convex/concave, where I is an interval of R? These results, which correct a typographical error in the book by Marshall

et al. [4], also fill up some gap in the theory of majorization up to certain extent. We have also reported the cases when

nothing can be said about Schur-convexity/concavity of ϕ. As an application of the results so developed, we have taken

help of GE and gamma distributions. Here, we compare the lifetimes of two parallel systems formed by components having

heterogeneous generalized exponentially distributed lifetimes. It is shown that if the vectors of parameters of the underlying

distributions are ordered in the sense of p-larger order (resp. weak supermajorization order), then the life of one parallel

system will be more than that of the other in usual stochastic order (resp. reversed hazard rate order). We also show, with

the help of counterexample, that this result cannot be extended to likelihood ratio order. However, we have shown that,

under certain restriction on the parameters, the result can be extended to the likelihood ratio order. Further, we prove that,
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in the multiple-outlier GE model, if one set of parameters majorizes another, a parallel system formed by the former will

dominate that formed by the latter in the likelihood ratio order.While giving applications of the proven results in the gamma

population, we compare two series systems formed by gamma components with respect to the hazard rate order, the up

shifted hazard rate order, the down shifted hazard rate order and the dispersive order. Stochastic comparisons of series

systems with heterogeneous GE components may be undertaken as a future research project.
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