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Sliding Mode Control of Uncertain Fractional-Order Systems:

A Reaching Phase Free Approach

Shyam Kamal, Rahul Kumar Sharma, Thach Ngoc Dinh†, Harikrishnan M S, Bijnan Bandyopadhyay

ABSTRACT

This paper proposes a sliding surface which renders the system dynamics

to start directly from itself without a reaching phase. More specifically,

the system dynamics is insensitive to matched disturbances/uncertainties

throughout the entire system response. The controller design based on reduced-

order subsystem is still preserved. It is different from integral sliding mode

in which the design is based on the full order of the system to reach the

same objective. The simulation results of its application to a fractional inverted

pendulum system is demonstrated.

Key Words: Fractional-Order System, Sliding Mode Control, Reduced-Order

Design.

I. Introduction

The idea of fractional calculus was discussed for

the first time over a letter from Leibniz to L’Hôpital

in 1695. Fractional differential equations have been in

use to model physical phenomena in the last couple of

decades. The history of fractional-order calculus can be

found in [8] [9]. The state space description is given

in [16]. In [1], the authors instilled interest into the

research community. New paths have been paved in

the fractional calculus theory in [2]. Due to its wide

advantages, in recent years, the study of fractional-order

controllers has witnessed considerable interest [12]-

[19]. The discussions on stability of fractional-order

systems can be found in [20]-[22]. Some applications

of fractional calculus have been given in [5], [30]-[31].
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The control under heavy uncertainties is one of the

most challenging tasks. Sliding Mode Control (SMC) is

one of the most efficient control strategies to deal with

uncertainties [6]. Nowadays, it is used in control and

observation of several classes of problems such as that

related to power converters, vehicle motion control, etc.

The main objective of this class of controllers

is to force the system states to stay in a predefined

manifold (sliding surface) and maintain it there in

spite of the presence of uncertainties in the system.

Therefore, the sliding mode based design consists of

two phases (i) Reaching Phase in which the system

states are driven from the initial state to reach the sliding

manifold in finite time and (ii) Sliding Phase in which

the closed-loop system is induced into sliding motion.

However, when the system reaches sliding phase, the

consideration of robustness and order reduction come

into picture which are the most important aspects of the

sliding mode based design. It is worth noting that during

the reaching phase, there is no guarantee of robustness

[11]. In order to address robustness issue throughout

the entire space, Integral Sliding Mode Control (ISMC)

has been proposed in the SMC literature [11] but its

design methodology has been based on full order of

the system. However, the system exhibits a reduced-

order dynamics after it has reached the sliding surface

i.e. the system order gets reduced by one due to the

introduction of the sliding variable, s such that s = 0
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in finite time. As a consequence, the simplicity and

flexibility of the design procedure which is provided

by reduced-order subsystem in classical SMC is lost in

ISMC. The motivation behind this work is to preserve

the robustness in the system by eliminating the reaching

phase such that the system remains on the sliding

manifold from the very initial time.

For the fractional-order systems, sliding mode

approach and its variants have been quite recently

pursued in the literature (e.g. the work in [3] [5] [32]

[33] aims at finite-time stability and at the rejection of

matched uncertainties/perturbations).

The main aim of the present paper is to address

robustness from the very initial time and also maintain

the design methodology based on order reduction for

uncertain fractional-order systems. In order to achieve

this, two different methodologies have been adopted:

• An integer reaching law approach is used

proposing a sliding surface which eliminates the

reaching phase and also, its stability is proved.

• Secondly, a sliding surface using fractional

reaching law approach is proposed followed by

the same procedure as in the case of integer

reaching law approach.

The approach used in this work is based

on Reimann-Liouville (R-L) and Caputo definitions

of fractional derivatives. However, there are other

definitions also. In [27], a frequency-distributed model

is used which results into different transient response

of the system. For a certain fractional-order system,

if the model as described in [27] is used, then in that

case the approach used in this paper may fail to give

the desired results. In [34], non-smooth type control

is used while adaptive SMC is used to stabilize the

system in [35] [36]. Adaptive SMC has its own beauty

of reducing the magnitude of control which further

decreases the amplitude of chattering. However, in

each of the work, there is no guarantee of robustness

in the reaching phase. In the approach used in this

paper, the system remains on the sliding surface from

time, t = t0. So, robustness is achieved from the very

initial time. Another advantage of this approach is that

the control design based on reduced-order subsystem

is preserved. The rest of this note is organized as

follows. In Section II, a brief summary of fractional-

order calculus, fractional-order systems and the related

Lyapunov stability extension for stability analysis are

presented. A brief review of fractional-order sliding

mode controller is introduced in Section III. The main

results of this paper are reported in Section IV. Section

V discusses the simulation results followed by the

concluding remarks in Section VI.

II. Preliminaries

2.1. Fractional-Order Calculus

Fractional-order integration and differentiation

constitute the fractional calculus. They are generaliza-

tion of their integer-order counterparts. The theorems

and rules in fractional-order calculus are applicable to

their integer-order counterparts in a more generalized

representation but not always in a straightforward

manner. Two of the most common definitions of

fractional-order calculus are the R-L definition and

Caputo definition which are inspired by the definition of

Cauchy generalized n ∈ N−fold integral of function by

replacing the factorial function by the more generalized

Gamma function [2] [39].

Definition 1 The αth-order fractional integration of

the function f : (0,∞) → R with respect to t > 0 and

terminal value t0 > 0 is given by

t0I
α
t f(t) :=

1

Γ(α)

∫ t

t0

f(τ)

(t− τ)(1−α)
dτ, (1)

where Γ : (0,∞) → R is the Euler’s Gamma function:

Γ(α) :=

∫ ∞

0

xα−1e−xdx

Definition 2 The R-L definition of the αth-order

fractional derivative is given by:

RL
t0 Dα

t f(t) :=
1

Γ(m− α)

dm

dtm

∫ t

t0

f(τ)

(t− τ)(α−m+1)
dτ,

(2)

where m ∈ N such that m ≥ ⌈α⌉, where ⌈α⌉ is the

smallest integer greater than or equal to α where 0 <

α < 1.

Definition 3 The Caputo definition of the αth-

order fractional derivative of the m times

continuously differentiable function f : (0,∞) → R or

f ∈ Cm ((0,∞),R) is given by:

c
t0D

α
t f(t) :=

1

Γ(m− α)

∫ t

t0

f (m)(τ)

(t− τ)(α−m+1)
dτ. (3)

A few important properties of fractional derivatives

and integrals are as follows [26] :

• For α = n, where n is an integer, the operation
c
t0D

α
t f(t) gives the same result as the classical

differentiation of integer order n.
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• For α = 0, the operation c
t0D

α
t f(t) is the identity

operation:

c
t0D

α
t f(t) = f(t). (4)

• Fractional differentiation is a linear operation:

c
t0D

α
t (af(t) + bg(t)) = act0D

α
t f(t) +

c
t0D

α
t g(t).

(5)

• The additive index law (semigroup property)

c
t0D

α
t
c
t0D

β
t f(t) =

c
t0D

β
t
c
t0D

α
t f(t) =

c
t0D

α+β
t f(t),

(6)

holds for f(t) ∈ C1[0, T ] for some T > 0 where,

α, β ∈ R
+ and α+ β ≤ 1 [10].

Remark 1 Caputo derivative and R-L are the two

mostly used definitions in fractional calculus [39].

Since the initial value of fractional differential equation

with Caputo derivative is the same as the initial

value of integer differential equation, it is the most

acceptable one. For example, the initial value of the

fractional differential equation c
t0D

α
t x(t) = f(t, x) with

α ∈ (0, 1), t > 0 is assumed as x(0) ≡ x0.

However, for the same fractional differential

equation with R-L in place of Caputo, RL
0 Dα

t x(t) =
f(t, x) with α ∈ (0, 1), t > 0, the initial value of x(t)
involves fractional integral (and/or derivative). Here,

the initial condition is given as [RL
0 Dα−1

t x(t)]t=0 = x′
0.

On the other hand there is a limitation in case

of Caputo definition. It is not able to capture the

exact physical behavior of the system as illustrated in

[24]. When the initial condition is non-zero, the system

trajectories generated by Caputo definition differ from

the actual ones. An account of physical and geometrical

interpretations for initial condition value and fractional

derivatives can be found in [23], [24] and [25].

Given a control system, the first and the most

important question is whether it is stable, because

an unstable control system is typically useless and

potentially dangerous. Qualitatively, a system is

described as stable if by starting the system somewhere

near its desired operating point, it will stay around the

point ever after. The most useful and general approach

for studying the stability of linear and nonlinear control

systems is the theory introduced by Lyapunov. In the

next subsection we are going to review the fractional

extension of Lyapunov stability which has been recently

proposed in [17] [20].

2.2. Fractional Extension of Lyapunov Stability

Using Caputo definition, an n−dimensional

fractional-order system can be defined as,

c
t0D

α
t x(t) = f(x, t); ∀t ≥ t0 (7)

where, α ∈ (0, 1) and f(x, t) is locally bounded in x

and piecewise continuous in t for all t ≥ t0 and x ∈ D,

where D ⊂ R
n is a domain that contains the origin x =

0. For stability analysis of systems in (7), a fractional

extension of Lyapunov’s direct method was proposed in

[20] which is based on the following definition:

Definition 4 A continuous function γ : [0, t) → [0,∞)
is a class-K function if it is strictly increasing and

γ(0) = 0.

Theorem 1 Let x = 0 be an equilibrium point for

the non-autonomous fractional-order system i.e.,

f(x, t) = 0, ∀t ≥ t0. If there exists a Lyapunov function

V (t, x(t)) : [t0,∞)×D → R and a class-K function

γi(i = 1, 2, 3) such that, γ1(||x||) ≤ V (t, x(t)) ≤
γ2(||x||) and c

t0D
α
t V (t, x(t)) ≤ −γ3(||x||) where,

α ∈ (0, 1) then, the system (7) is asymptotically stable.

Theorem 2 Let x ∈ R
n be a continuously differen-

tiable vector-valued function. Then, for any time instant

t ≥ t0 and ∀α ∈ (0, 1),

1

2
c
t0D

α
t x

⊺(t)x(t) ≤ x⊺(t)ct0D
α
t x(t). (8)

It will be used in the later sections for the Lyapunov

analysis of fractional-order systems with the proposed

control input. Since this result was derived using Caputo

derivatives, the same definition will be used throughout

this paper unless mentioned otherwise.

III. Fractional-Order Sliding Mode Controller

Consider a controllable∗commensurate fractional-

order linear time-invariant system given by,

c
t0D

α
t x̄(t) = Āx̄(t) + B̄

(

u(t) + d(t)
)

(9)

where, x̄(·) ∈ R
n , Ā ∈ R

n×n, B̄ ∈ R
n×m, u(·) ∈

R
m , d(·) ∈ R

m are pseudo states†, system matrix,

∗Controllability test for the commensurate fractional- order linear
time-invariant system (LTI) is the same as for the integer-order LTI
system [3].

†For a fractional order system, the knowledge of x(t0) (t0 being the
initial time) is not sufficient to determine the future behavior of the
system. Consequently, the collection of physical variables in a vector
x does not strictly represent the state of the system. This is why the
term, “Pseudo State” is coined in the literature in order to represent
the physical variables of the fractional order systems [27] [28]. In this
manuscript same terminology has been used.
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input matrix, control input, disturbance input respec-

tively. It is assumed that exact evolution of disturbance

with respect to time is not known but it is bounded.

There always exists an invertible non-singular

matrix T ∈ R
n×n such that using a linear transfor-

mation z(t) = Tx(t), (9) can be transformed into the

regular form,

c
t0D

α
t z1(t) = A11z1(t) +A12z2(t)

c
t0D

α
t z2(t) = A21z1(t) +A22z2(t) +B2(u(t) + d(t))

(10)

where,

[

z1(t)
z2(t)

]

= z(t), z1(·) ∈ R
n−m, z2(·) ∈ R

m.

Since the pair (Ā, B̄) is controllable, the pair

(A11, A12) will also be controllable. The above system

of equations can be represented as,

c
t0D

α
t z(t) = Az(t) +B(u(t) + d(t)) (11)

where, A =

[

A11 A12

A21 A22

]

, B =

[

0

B2

]

.

Now, the main aim is to design SMC such that

sliding takes place from the very initial time t ≥ t0
and z(t) approaches towards the origin as t → ∞ in

the presence of bounded matched disturbance d(t). So,

x(t) approaches asymptotically towards the origin as

T is invertible. For the simplicity of presentation, it

is assumed that u ∈ R and B2 ∈ R. However, similar

results can be extended for the multi-input case in a

straightforward manner. It is important to mention that

the present work is based on the following assumption:

Assumption 1 For a non-smooth controller, the exis-

tence and uniqueness of solutions of the system are

defined in the Filippov sense [3] i.e., letting x denote

the pseudo states of the entire system c
t0D

α
t x(t) =

f(x(t), d(t)), α > 0, disturbance d ∈ R
m and assuming

f : Rn ×R
m → R

n to be locally bounded, then the

solutions are defined with the differential inclusion,

c
t0D

α
t x(t) ∈

⋂

δ>0

⋂

µN=0

cl(co(ζ(Bδ(x) \N)))

where, cl and co denote the closure and the convex hull

respectively. Bδ(x) is the unit ball and the sets N are all

sets of zero Lebesgue measure. Here, δ represents the

small ball around the discontinuity point on the state

trajectories when the system is on the sliding surface.

µN represents the factor by which the trajectories are

scaled so that the deviation of the sliding variable from

s = 0 is minimized.

In [3], the sliding surface has been designed using

fractional reaching law and integer reaching law. The

sliding surface for (10) using integer reaching law is,

s(z, t) = t0I
1−α
t (c1z1(t) + z2(t)) (12)

where, s : Rn × (t0,∞) → R, c1 ∈ R
1×(n−1) and for,

u(t) = B−1
2 (v − c1{(A11 −A12c1)z1(t)}+A12t0I

1−α
t s

−A21z1(t)−A22z2(t))

where, v = −k1sign(s), it has been proved in [3] that

for s to be zero in finite time, k1 > |B2||d|.
In case of fractional reaching law,

s(z, t) = c1z1(t) + z2(t) (13)

Using fractional derivative of s in (13), (10) becomes,

c
t0D

α
t z1(t) = (A11 −A12c1)z1(t) +A12s
c
t0D

α
t s = c1

c
t0D

α
t z1(t) +

c
t0D

α
t z2(t)

= c1{(A11 −A12c1)z1(t) +A12s}
+A21z1(t) +A22z2(t) +B2u(t) +B2d

Here, the control u(t) is chosen as, u(t) = B−1
2 (v −

c1(A11 −A12c1)z1(t) +A12s−A21z1(t)−A22z2(t))
where, v = −k1sign(s). After applying the control, the

closed-loop system becomes,

c
t0D

α
t z1(t) = (A11 −A12c1)z1(t) +A12s,
c
t0D

α
t s = −k1sign(s) +B2d

(14)

Now, the following theorem is important:

Theorem 3 The sliding surface s in (13) becomes zero

in finite time if k1 > |B2||d|.

Proof. The Lyapunov function is chosen as V =
1
2s

2. Then, c
t0D

α
t V = 1

2
c
t0D

α
t s

2. Using (8),

c
t0D

α
t V ≤ sct0D

α
t s = s(−k1sign(s) +B2d)

≤ −k1|s|+ |s||B2d| = −|s|(k1 − |B2d|)
= −(2V )

1

2 (k1 − |B2d|) ≤ −η(2V )
1

2

where, η = k1 − |B2||d| > 0. Using the above inequal-

ity, s = 0 results in finite time [3] which can be derived

as follows:

Putting t0 = 0 in (14), c
0D

α
t s = −k1sign(s) +B2d.

Taking fractional integral of order α on both sides,

0I
α
t

c
0D

α
t s = k1 0I

α
t sign(s) +B2 0I

α
t d (15)
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Since, 0I
α
t

c
0D

α
t s = s(t)− c

0D
α−1
t s(0) t

α−1

Γ(α) and 0I
α
t c =

c tα

Γ(α+1) , Eq. (15) becomes after finite time t = T ,

s(T )− c
0D

α−1
t s(0)

tα−1

Γ(α)
= −k1sign(s(0))

Tα

Γ(α+ 1)

+B2 0I
α
t d

Multiplying with sign(s(0)) and using s(T ) = 0,

− c
0D

α−1
t s(0)sign(s(0))

Tα−1

Γ(α)
= −k1

Tα

Γ(α+ 1)

+B2 0I
α
t (sign(s(0))d)

Using the inequality,

0I
α
t (sign(s(0))d) ≤ t0I

α
t |d| ≤ 0I

α
t d0 = d0

Tα

Γ(α+ 1)

Eq. (16) becomes,

−c
0D

α−1
t s(0)sign(s(0))

Tα−1

Γ(α)
≤ −(k1 −B2d0)

Tα

Γ(α+ 1)

which further results into,

T ≤ Γ(α+ 1)c0D
α−1
t s(0)sign(s(0))

Γ(α)(k1 −B2d0)
(16)

which is always finite.

Remark 2 It is clear that sliding mode has taken place

after a finite time t ≥ T where, T is such that s(z, T ) =
0. Further, a modified sliding surface is proposed in

which sliding mode starts from t ≥ t0 such that the

reduced-order design methodology is preserved.

IV. Main Results

Consider the same system as in equation (10). The

sliding surface for integer reaching law is,

s = t0I
1−α
t

{(

c1z1(t) + z2(t)
)

−
(

c1z1(t0)

+z2(t0)
)

e−λ(t−t0)
}

where λ > 0 and c1 ∈ R
1×n−1 are the design param-

eters. Note that s = 0 at initial time t = t0. Then, the

system (10) is transformed as,

c
t0D

α
t z1(t) = (A11 −A12c1)z1(t)

+A12

{

c
t0D

1−α
t s+

(

c1z1(t0)

+ z2(t0)
)

e−λ(t−t0)
}

ṡ = c
t0D

α
t

{(

c1z1(t) + z2(t)
)

−
(

c1z1(t0) + z2(t0)
)

e−λ(t−t0)
}

= c1

[

(A11 −A12c1)z1(t)

+A12

{

c
t0D

1−α
t s+

(

c1z1(t0)

+ z2(t0)
)

e−λ(t−t0)
}]

+A21z1(t) +A22z1(t) +B2u(t) +B2f

− (−λ)α
(

c1z1(t0) + z2(t0)
)

e−λ(t−t0)

The control input is selected as,

u(t) = B−1
2

[

v − c1

{

(A11 −A12c1)z1(t) +A12

×
{

c
t0D

1−α
t s+ (c1z1(t0) + z2(t0))e

−λ(t−t0)
}}]

−B−1
2

(

A21z1(t) +A22z1(t)
)

(17)

where, v = −k1sign(s). Hence, ṡ = −k1sign(s) +
B2d+ Ξ, where Ξ = B−1

2 [(−λ)α((c1z1(t0) +
z2(t0))e

−λ(t−t0)]. It is important to note that |Ξ|
is always bounded for any initial condition z(t0).

Further, it is proved that the trajectories remain on

the sliding surface s once they start from it at t = t0 and

then, asymptotically converge to z1(t) = z2(t) = 0.

Lemma 1 If k1 > |B2d|+ |Ξ|, then the trajectories are

maintained on the sliding surface s = 0, ∀t ≥ t0.

Proof. Consider the Lyapunov function, V = 1
2s

2. By

taking the time derivative of Lyapunov function along

closed-loop subsystem ṡ = −k1sign(s) +B2d+ Ξ,

V̇ = sṡ = s(− k1 sign(s) +B2d+ Ξ)

= − k1 |s|+ sB2 d+ sΞ

≤ − k1 |s|+ |s| |B2 d|+ |s| |Ξ|
= −(2V )

1

2 (k1 − |B2 d| − |Ξ|)
≤ −η(2V )

1

2

where, η = k1 − |B2d| − Ξ. When η = k1 − |B2d| −
Ξ > 0, Lyapunov stability theory (V = 0 and V̇ ≤
0) ⇒ V = 0, ∀t ≥ t0 implies s = 0, ∀t ≥ t0. This

completes the proof. The expression for the finite time,

T can be derived as follows:

dV

dt
≤ −η

√
2V 1/2

∫ T

0

dt ≤ −
∫ 0

V0

dV

η
√
2(V )1/2

T ≤ −
∫ 0

V0

dV

η
√
2(V )1/2

=

√
2V (0)

η
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Lemma 2 If the matrix (A11 −A12c1) is negative

definite‡, then the closed-loop system is asymptotically

stable.

Proof. Take the Lyapunov function, V = 1
2z

⊤
1 (t)z1(t).

Then, c
t0D

α
t V = 1

2
c
t0D

α
t z

⊤
1 (t)z1(t). Using (8),

c
t0D

α
t V ≤ z⊤1 (t)ct0D

α
t z1(t) ≤ z⊤1 (t)(A11 −A12c1)z1(t)

+ z⊤1 (t)A12

{

c
t0D

1−α
t s+

(

c1z1(t0) + z2(t0)
)

e−λ(t−t0)
}

As s = 0 from time t = t0, the term (c1z1(t0) +
z2(t0))e

−λ(t−t0) → 0 as t → ∞, z1(t) and hence, the

system is asymptotically stable if the matrix (A11 −
A12c1) is negative definite. This completes the proof.

Remark 3 It is important to note that if we select v =

−λ|s| 12 sign(s)− α
∫ t

t0
sign(s)dτ , where α = 1.1∆ and

λ = 1.5
√
∆ such that B2|ḋ(t)| ≤ ∆, where ∆ is some a

priori known constant, then the proposed control (17)

generates continuous signal and it is also better for the

chattering minimization problem, which is commonly

encountered during the practical implementation of

discontinuous control. The above suggested controller

is known as Super-Twisting in the literature. Again,

the trajectories once start from the sliding surface, will

remain there for the subsequent time (for more detailed

explanation, see [15] and the references cited therein).

Now, using fractional reaching law approach, the

sliding surface is defined as,

s = c1z1(t) + z2(t)− (c1z1(t0) + z2(t0))e
−λ(t−t0)

(18)

Note that s = 0 when t = t0. Using (18), (10) becomes,

c
t0D

α
t z1(t) = (A11 −A12c1)z1(t)

+A12

{

s+ (c1z1(t0) + z2(t0))e
−λ(t−t0)

}

c
t0D

α
t s =

c
t0D

α
t z1(t) +

c
t0D

α
t z2(t)

− (c1z1(t0) + z2(t0))
c
t0D

α
t (e

−λ(t−t0))

= c1

[

(A11 −A12c1)z1(t)

+A12

{

s+ (c1z1(t0) + z2(t0))e
−λ(t−t0)

}]

+A21z1(t) +A22z2(t) +B2(u(t) + d(t))

− (−λ)α((c1z1(t0) + z2(t0))e
−λ(t−t0)

(19)

‡For negative definiteness, the leading principle minors of −(A11 −
A12c1) should be positive i.e. the leading principle minors of (A11 −
A12c1) should have alternating signs, with the odd-numbered minors
being negative and the even-numbered minors being positive [7].

The control input is designed as,

u(t) = B−1
2

[

v − c1

{

(A11 −A12c1)z1(t) +A12

×
(

s+ (c1z1(t0) + z2(t0))e
−λ(t−t0)

)}]

−B−1
2

(

A21z1(t) +A22z2(t)
)

(20)

where, v = −k1sign(s). From (19) and (20),
c
t0D

α
t s = −k1sign(s) +B2d+ Ξ where, Ξ =

B−1
2 (−λ)α((c1z1(t0) + z2(t0))e

−λ(t−t0). Agian, the

trajectories remain on the sliding surface s = 0 from the

very initial time t = t0, provided k1 > |B2||d|+ |Ξ|.
This can be shown as follows:

Consider the Lyapunov function, V =
1
2z

⊤
1 (t)z1(t). Taking the fractional derivative,

c
t0D

α
t V ≤ z⊤1 (t)ct0D

α
t z1(t) ≤ z⊤1 (t)(A11 −A12c1)z1(t)

+ z⊤1 (t)A12

{

s+ (c1z1(t0) + z2(t0))e
−λ(t−t0)

}

As s = 0 from time t = t0, the term (c1z1(t0) +
z2(t0))e

−λ(t−t0) → 0 as t → ∞. Further, z1(t) and

hence the system is asymptotically stable if (A11 −
A12c1) is negative definite.

V. Illustrative Example

A commensurate fractional-order uncertain system

is considered to illustrate the theoretical results obtained

in the paper. The example of a fractional inverted

pendulum system is taken. In this system, an inverted

pendulum is mounted on the top of a cart such that

the pendulum is attached to an extension immersed in a

viscoelastic solution [40]. The cart is able to move back

and forth. The whole system can be represented by,

ẍ =
1

(mc +mp)

(

1

2
mpl(θ̈cosθ − (θ̇)2sinθ)− fẋ+ F

)

θ̈ =
1

(J + 1
4mpl2)

(

1

2
mpl(ẍcosθ + gsinθ) + τ

)

dατ

dtα
= −ωα

l τ − kωα
l θ̇ − k

(

ωl

ωh

)α
d(α+1)θ

dt(α+1)

where, x is the position of the cart, θ is the angle of

deflection of the pendulum, mc is the mass of the

cart, mp is the mass of the pendulum, f is the friction

coefficient of the cart, τ is the applied torque, k is the

damping coefficient of the viscoelastic solution, α is

the derivation order of the damper, ωl and ωh are the

lower and higher frequencies of the bandwidth of the

c© 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
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fractional derivative. The state vector is chosen as,

X =
[

x d0.5x
dt0.5

dx
dt

d1.5x
dt1.5 θ d0.5θ

dt0.5
dθ
dt

d1.5θ
dt1.5 τ

]T

The above equations can be linearized about the

equilibrium point of the system resulting in pseudo

state-space form having commensurate order, α = 0.5,

dαX(t)

dtα
= AX(t) +B(u(t) + d(t)) (21)

where,

A = α





































0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 a43 0 a45 0 0 0 a49

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 a83 0 a85 0 0 0 a89

0 0 0 0 0 0 a97 a98 a99





































B = α
[

0 0 0 0.116 0 0 0 0.338 0
]T

where, α = 1
4J(mc+mp)+mcmpl2

, a43 = −4fJ −
fmpl

2, a45 = m2
pl

2g, a49 = 2mpl, a83 = −2fmpl,

a85 = 2mpgl(mc +mp), a89 = 4(mc +mp), a97 =
−kα(ωl)

0.5, a98 = −kα( ωl

ωh
)0.5, a99 = −α(ω)0.5,

b4 = J +mpl
2, b8 = 2mpl. Here, J is the moment of

inertia of the pendulum and l is its length. The values

taken are mp = 0.53 kg, mc = 3.2 kg, l = 0.36 m, f = 6.2

kg.sec−1, J = 0.065 kg.m2, k = 0.1 N.m.sec.αrad−1, ωl

= 0.1 rad.sec.−1, ωh = 10 rad.sec.−1, g = 9.81 m.sec.−2,

d(t) = 0.1 sin(t). The sliding surface is chosen as,

s(t) = ([c1 c2 c3 c3 c4 c5 c6 c7 c8 1]X(t))

−([c1 c2 c3 c3 c4 c5 c6 c7 c8 1]X0)e
−λ(t−t0)

where, c1 to c8 are the gain values selected such that

the reduced-order dynamics is stable. The controller

parameter k1 has to be selected such that k1 > |B2d|+
|Ξ|. We know that |B2d| = 0.1 and |Ξ| is also small.

Hence, we choose k1 = 10 and λ = 0.4. The evolution

of states, sliding surface and control input with time

are shown in Figs. 1., 2. and 3. respectively. In Fig.

1., the state trajectories are shown to converge to the

equilibrium point in finite time in the presence of

matched disturbance/uncertainties. From Fig. 2., it is

clear that starting from t = 0, the trajectories are always

maintained on the sliding surface.

VI. Conclusion

The work presented in the paper proposes a new

sliding surface based controller for uncertain fractional-

order systems. Two different control schemes, one

based on integer reaching law and the other on

fractional reaching law have been used in order to

maintain the trajectories on the sliding surface from the

very initial time preserving robustness. The simplicity

of the technique lies in the control design being based

on the reduced order subsystem as in the case of

classical sliding mode control. The effectiveness of

the proposed approach is verified through numerical

simulation for the case of a fractional inverted

pendulum system.
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Fig. 1. Evolution of States (x1 to x9) w.r.t. time
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