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Sliding mode control for slosh-free motion using a

nonlinear sliding surface
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Abstract—A new nonlinear switching surface is proposed for
the design of a sliding mode controller for a class of mismatched
uncertain systems. A control system for slosh-free motion of a
partially filled liquid container is sought. This is representative
of a broader class of systems to which the proposed methodology
is applicable. A fundamental mode of lateral slosh is considered.
A simple pendulum model is used to represent the lateral slosh.
Given the difficulty of measuring the slosh states directly, a sliding

mode observer is used for implementation of the resulting sliding
mode control. The effectiveness of the theoretical developments
is demonstrated via both simulation and experimental results.

Index Terms—Slosh; Sliding mode control; Nonlinear sliding
surface

I. INTRODUCTION

Any motion of a liquid in a partially filled container is called

slosh. Sloshing liquid induces additional forces and moments

which affect the performance. Control of liquid sloshing has

received sustained interest among researchers over the last

four decades. The interaction of the slosh dynamics with the

control system has a direct impact on both vehicle stability

and performance [1]. Detrimental effects of liquid sloshing are

experienced in several areas including space launch vehicles

and satellites. Liquid sloshing in packaging industries may

lead to improper sealing which further affects the shelf life.

Slosh induced forces and moments may result in dangerous

overturn of large liquid cargo. In space launch vehicles and

long range missiles, liquid fuel weight is more than 70% of the

total weight. The impact of liquid sloshing is therefore severe.

Inadequate slosh suppression has resulted several mission

failure. Control of slosh is thus an important problem of

practical significance.

Measurement of slosh states for feedback is difficult. Var-

ious sensors have been reported in the literature, but their

mounting, accuracy and cost are critical issues. Therefore

passive techniques are commonly used for slosh suppression.

Passive elements such as slosh absorbers and baffles are used
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to absorb slosh energy. Extensive analytical and experimental

studies have been reported. However, use of passive elements

adds weight, construction time and cost. This motivates control

researchers to seek a suitable, cost effective advanced control

implementation. Improved methods of prediction, analysis,

and control of slosh have been researched across the world

with each research group focussing on a particular application.

In [2], an IIR filter was used to preshape the acceleration

profile to obtain slosh-free motion of an open container.

Grundelius et al. [3] considered the slosh problem in the pack-

aging industry. The authors solved the problem by deriving

a simplified mathematical model of the slosh phenomenon

and applying optimal control techniques and iterative learning

control to determine the appropriate acceleration reference.

Yano et al. [4], [5] considered the slosh problem in the

casting and steel industries. They used H∞ control to follow a

trajectory which was designed using optimization techniques

subject to a number of constraints including minimum slosh.

Very few active control methods have been reported in

the literature see for example [6] and [7]. Venugopal and

Bernstein in [6] used active control. They used two methods to

investigate the slosh problem. In the first method they achieved

control of slosh by controlling the pressure on the surface of

liquid by speaker mounted on the top. The region above the

surface was considered as a closed acoustic duct. Feedback

control using LQG synthesis has been used to control slosh

by varying pressure. The second method includes the use of

a flap actuator on the surface. A flap was hinged at one end

of the tank. The fluid flap system was modeled in state space.

LQG synthesis was used. The slosh has been controlled by

controlling the angular velocity of the flap. The flap or the

speaker adds weight to the system. Moreover LQG synthesis

is not fully robust. In [7], Gandhi et al. developed an active

control strategy to stabilize slosh in a cylindrical tank using

translational excitation as the control input. The control law

was based on a Lyapunov approach and implemented using

force feedback.

Modeling of slosh is potentially complex. Much of the

aforementioned literature considers slosh modeled by a rel-

atively simple mechanical model to simplify the control

design. However, simpler models lead to inevitable plant-

model uncertainty and hence robustness issues. Sliding mode

control (SMC) is known to be robust [8] and can be used

to yield robust performance against model inaccuracy and

uncertainties. Adaptive control strategies are emerging but

require knowledge of the model structure whilst robust control

methods offer robust performance against model inaccuracies
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[9] [10] [11].

Sliding mode control is one of the best known effective

robust control methods for nonlinear uncertain systems. This

elegant approach has been intensively developed and applied

to a wide spectrum of system types, see for example [8], [12]–

[22] and the references therein. The ability to globally stabilize

the system, and inherent insensitivity to a class of disturbance

signals are core properties of the theory. The design of a SMC

involves two components. The first prescribes the design of

a sliding surface to ensure the nominal equivalent motion to

be asymptotically stable. The second is concerned with the

synthesis of the control law that drives the trajectory to the

sliding surface in finite time and ensures it remains on it

thereafter [8]. The surface parameters govern the behavior of

the closed loop system. Hence the surface must be designed

to ensure the system to exhibit desired dynamics in the

sliding mode. Coupled slosh-vehicle dynamics represents a

class of underactuated systems. Control of such systems via

sliding mode approaches have been investigated by many

researchers, (see for example [23] – [27] and the references

therein). Wang et al. in [23], considered linear surfaces for

the two subsystems corresponding to the actuated subsystem

and unactuated subsystem. A second level surface is further

designed as a linear combination of the two first level surfaces

to synthesize the control so as to ensure the total control

contains the equivalent control of both subsystems. The same

concept is presented in [24] along with a prediction approach

to design optimal surface. Stability analysis of this hierarchical

sliding mode approach was discussed by B.L. Ma.[25]. In [26]

the sliding surface is designed by considering virtually a fully

actuated system and the control is synthesized to ensure the

desired switching control in the two subsystems. The design

method is simple but the control is complex. Xu et al. proposed

a SMC approach to stabilize the indirectly controlled mode of

a class of underactuated systems which is in cascade form in

[27]. These methods consider the linear sliding surface. This

paper proposes a nonlinear sliding surface for improving the

damping in an unactuated subsystem for a class of systems.

A. Motivation :

Coupled vehicle-slosh dynamics constitutes a nonlinear un-

deractuated system. This nonlinear system can be represented

by linear system with bounded uncertainty. The corresponding

uncertain system representing the coupled slosh-vehicle dy-

namics contains unmatched uncertainty. Traditional methods

are available to design the sliding surface for uncertain systems

in the presence of matched uncertainties [8]. However, for

mismatched uncertain system very few results are available,

see for example [28] and [29]. Ackerman and Özguner [30]

considered a back-stepping technique to deal with the un-

matched uncertainties while designing a controller for the

slosh problem. In [31] a constrained sliding mode control

methodology has been developed. A set of initial conditions

from which the system can be operated without exceeding a

prescribed liquid level are included in a set of constraints.

The control challenge is to design a robust sliding surface

leading to a simple control structure. The method proposed in

[32]- [34] uses a linear sliding surface. A linear sliding surface

calls for a tradeoff between the performance parameters. In

this paper, a nonlinear sliding surface is proposed which

can offer better closed loop performance. Preliminary results

and illustration of the concept was presented in [35], and

here full experimental validation and theoretical analysis is

included. Also a new proof for the stability of the sliding

motion is proposed here. To implement the controller, all

the states are required. However, slosh states are difficult

to measure. Although various sensors have been reported in

the literature, their mounting, accuracy and associated cost

make their use questionable. Robust slosh state estimation is

therefore required.

B. Outline of Paper:

The brief outline of the paper is as follows:

In section 2, the system dynamics along with the problem

statement is described. Section 3 presents the main results

which includes design of the hyperplane, controller synthesis

and review of observer development for slosh state estimation.

Simulation results are presented in Section 4. Experimental

results are presented in Section 5. Finally Section 6 concludes

the research findings.

II. PROBLEM DESCRIPTION

The control objective is to move a partially filled liquid

container along a straight line with minimum slosh by applying

a control force in the lateral direction. A fundamental mode

of the lateral sloshing phenomenon in a moving container is

considered. Although Navier-Stokes equations (governing fun-

damental fluid dynamics) can accurately analyze the dynamic

behavior of a liquid, they are extremely complex especially

for viscous fluids with a free surface boundary condition [36].

Therefore consideration of such methods is not practicable. A

very extensive review of modeling liquid sloshing dynamics

can be found in [36]. It describes development of equivalent

mechanical models for slosh dynamics. One of the most

popular equivalent model approaches uses a pendulum model

in which forces and moments generated by the pendulum are

matched with those generated by an ideal inviscid fluid. We

consider this approach with additional damping for control

purposes. The model parameters used are obtained experi-

mentally and verified against this approach [37]. Theoretically

a complete mechanical analogy for lateral sloshing demands

an infinite number of pendulae, one for each of an infinite

number of sloshing modes. It is found that size of each of

these masses decreases rapidly with the increase in the mode

number [38]. Therefore, it is generally accepted to include

only one mass corresponding to a fundamental mode. Here

a simple pendulum is considered to represent the sloshing

liquid. The remainder of the liquid mass and mass of the tank

together form rigid mass. The system is therefore viewed as a

moving rigid mass coupled with a simple pendulum moving

with respect to fixed x− z reference frame as shown in Fig.1.

The system parameters are

Mr: Total rigid mass including mass of the tank, mass of the

base plate and mass of liquid that does not slosh. (kg),
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Fig. 1. Representation of slosh by a simple pendulum

m : mass of pendulum (slosh mass) (kg),

M : total mass (Mr + m) (kg),

Ml: total mass of the liquid (kg),

l : length of pendulum (meters),

f : force applied for translational motion (Newton),

x : displacement of rigid mass (meters) with reference to fixed

reference x − z frame,

X : displacement of m in horizontal direction (meters) with

reference to fixed reference x − z frame,

Z : displacement of m in vertical direction (meters),

φ : pendulum angle or slosh angle (radians),

c : damping coefficient, (kg m2/sec).

The tank is assumed to be rigid. The liquid is assumed

incompressible. Referring to Fig.1.

X = l sinφ + x and Z = l − l cosφ.

The kinetic energy of the system is

T =
1

2
M(ẋ)2 +

1

2
m(Ẋ)2 +

1

2
m(Ż)2.

The potential energy is, V = −mgl cosφ.
The Lagrangian of the system is L = T − V. The Euler-

Lagrange formulation is

d

dt

(
∂L

∂q̇

)
−

∂L

∂q
= f + D(q̇),

where q = [q1, q2, ..]
T represents generalized variables, one

for each degree of freedom (DOF). The term f = [f1, f2...]
T

denotes externally applied forces. D(q̇) represents Rayleigh’s

dissipation function. For the above system q = [x φ]T and

f = [f 0]T . The dynamic equations derived using the Euler-

Lagrange formulation are given below.

Mẍ + ml cosφφ̈ − mlφ̇2 sin φ = f (1a)

ml cosφẍ + ml2φ̈ + cφ̇ + mgl sin φ = 0. (1b)

These are nonlinear complex coupled equations. Feedback

linearization transforms the stabilization problem of nonlinear

system to a stabilization problem of a linear system and hence

simplifies the design and analysis. If the nonlinear system has

the structure ẋ = Ax + Bγ(x)[u − α(x)], where A ∈ ℜn×n,

B ∈ ℜn×q , (A, B) is controllable, the function α : ℜn → ℜq,

γ : ℜn → ℜq×q , and β(x) = γ−1(x), then the system can

be fully linearized [39], via a state feedback of the form

u = α(x) + β(x)v. Since the given system does not obey

the aforementioned condition, it can be partially linearized.

Considering

ẍ = u. (2)

Partially linearized system can be written as below [34].
⎡
⎢⎢⎣

ẋ
ẍ

φ̇

φ̈

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 −gξ/l −c/ml2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x
ẋ
φ

φ̇

⎤
⎥⎥⎦

+
[

0 1 0 −(cosφ)/l
]T

u, (3)

where ξ = sin φ

φ
.

The system considered is a 2 DOF slosh rig [40]. As

described in [33] and [26] (3) can be written as

ẋ = Ax + ∆A x + bu + ∆bu, (4)

The problem is to design a sliding mode control for the system

(4) to meet the control objective.

III. MAIN RESULTS

In (4), ∆A, ∆b are considered as parametric uncertainties.

These uncertainties are unmatched uncertainties i.e. they are

not implicit in the input channel.

A. Design of hyperplane and controller synthesis

Consider the sliding surface as given below

s = cT xe = 0, (5)

where cT ∈ ℜ1×4 and xe = [ex ėx eφ ėφ]T is the error state

vector. Define xd as the desired state vector so that

xe = x − xd (6)

Since the slosh states are to be regulated xd = [xd ẋd 0 0]T .

Therefore from (4), for a linear or step trajectory the following

is valid.

ẋd = Axd (7)

A nonlinear sliding surface is proposed which has the follow-

ing features:

• Unmatched uncertainties belong to the null space of the

sliding surface matrix.

• The damping injected in the slosh dynamics is nonlinear

and state dependent.

• cT b = I .

The proposed sliding surface matrix is

cT =

[
c1 1 c3

sin φ

φ
0

]
. (8)

The sliding surface is

s = c1ex + ėx + c3 sin φ = 0, (9)
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This is a nonlinear state dependent surface. Differentiating

ṡ = c1ėx + ëx + c3φ̇ cosφ (10)

Eqn. (10) can be rewritten as

ṡ = [c1 1 c3 cosφ 0] ẋe (11)

Gao’s power rate reaching law [15] is used.

ṡ = −k|s|αsign(s), (12)

In (12), k and α are tuning parameters used to ensure sliding

and minimize the time taken to reach the sliding mode. From

(6), (11) and (12)

[c1 1 c3 cosφ 0] (ẋ − ẋd) = −k|s|αsign(s).

Substituting (4) and (6)

[c1 1 c3 cosφ 0] (Axe + bu + ∆Ax + ∆bu)

= −k|s|αsign(s).

Note that cT ∆A = 0 and cT ∆b = 0. Therefore the aforemen-

tioned equation simplifies to give the control law

u = −k|s|αsign(s) − c1ėx − c3φ̇ cosφ. (13)

Remark 1: Since the control is synthesized from (12), the

existence of the sliding is guaranteed.

Remark 2: The control law in (13) ensures finite time reaching

to the sliding surface for the system (4). The surface is so

designed that it cancels the effects of unmatched uncertainties.

The switching gain is chosen to satisfy reaching condition.

The nonlinearities in the partial feedback linearized system

can be canceled if it is known exactly. In this situation the

control yields sliding modes if k > δ, where δ is an arbitrary

positive constant. However under parametric variations the

nonlinearities to be canceled are not known exactly. Hence

it can not be fully canceled by partial feedback lineariza-

tion technique. These nonlinearities can be considered as

uncertainties which are matched and bounded. To guaran-

tee the existence of sliding modes in presence of matched

uncertainties the switching gain of SMC must be greater

than the maximum bound of the uncertainty i.e. ρmax. This

satisfies the η reachability condition and hence ensures the

existence of sliding modes. It may be noted that the unmatched

uncertainties in (4). are taken care by the design of the sliding

surface. Eqn. (1a) can be written as

ẍ =
f

M
+ ∆nl,

where ∆nl is the nonlinear term which includes a quadratic

term. Considering the bounds of φ and the values of slosh

parameters,

mg sin 2φ

2M
∈ (−1.1, 1.1),

cφ̇ cosφ

Ml
∈ 9.7537e− 004φ̇(0, 1) ≈ 0 : neglected,

mlφ̇2 sin φ

M
∈ (−0.0115, 0.0115)φ̇2,

| ∆nlmax | = 3.7.

Further consideration of ±20% parametric uncertainties gives

| ∆nlmax | ≡ ρmax = 5.55.

The bounds on φ̇ were computed by considering maximum

slosh amplitude(π/2) and maximum slosh frequency (close to

resonant frequency 2.0 Hz) for the first mode in simulation

which is 15 rad/sec.

It may be noted that ∆nl lies in the input channel and hence

constitutes matched lumped disturbance. As is proved in the

η reachability condition [8], finite time reaching is assured if

the gain of the discontinuous control i.e. k > ρmax. Hence by

proper choice of gain k a finite time reaching is guaranteed

which means finite time escape is avoided.

It is a well known fact that low damping results in an

increase in speed of response, associated with large overshoot.

Increase in damping results in reduction in overshoot. In order

to get high speed of response together with low overshoot

it is essential to have low damping initially and increase it

subsequently as slosh angle decreases. From equation (18),

the slosh dynamics during sliding are

φ̈ = −20c2

1
cosφex − (188.2ξ + 20c1c3 cosφ) φ

+
(
20c3(cosφ)2 − 0.085

)
φ̇.

This is a second order slosh dynamics. Due to the assump-

tion of bounded φ, the characteristic polynomial describ-

ing the above slosh dynamics is an interval polynomial.

The term
(
20c3(cosφ)2 − 0.085

)
contributes damping which

varies nonlinearly.

Remark 3: The damping injected in the slosh dynamics

varies nonlinearly. For a large value of φ, damping is less and

this enhances the speed of response. As φ decreases, damping

increases which reduces the overshoot. The proposed nonlinear

sliding surface thus enhances the performance of the slosh

dynamics.

B. Stability Analysis

From (3), (6) and (7),

ẋe =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 −gξ/l −c/ml2

⎤
⎥⎥⎦ xe

+
[

0 1 0 −(cosφ)/l
]T

u, (14)

where xe = [ex ėx φ φ̇]T is the error state vector. Using the

transformation z = Trxe to get

z =
[
ex φ φ̇ ėx

]T

≡ [z1 z2]
T ,

z1 ∈ ℜ3 and z2 ∈ ℜ1.

Therefore (14) in z coordinates can be written as

[
ż1

ż2

]
=

[
A11 A12

A21 A22

] [
z1

z2

]
+

[
b1

b2

]
u,



5

where

A11 =

⎡

⎣
0 0 0
0 0 1
0 −gξ/l −c/ml2

⎤

⎦ , A12 =

⎡

⎣
1
0
0

⎤

⎦ ,

A21 =
[

0 0 0
]
, A22 = 0,

b1 =
[

0 0 − cosφ

l

]T
, b2 = 1.

The sliding variable in z coordinates is

s =

[
c1 c3

sin φ

φ
0 1

]
z = 0. ⇒ s = s1z1 + s2z2 = 0,

where s1 ∈ ℜ1×3 and s2 ∈ ℜ1×1. The reduced order dynamics

during sliding is obtained by substituting z2 = −s1z1 as

ż1 =

⎡
⎣

0 0 0
0 0 1
0 −gξ/l −c/ml2

⎤
⎦ z1 −

⎡
⎣

1
0
0

⎤
⎦ s1z1 + b1ueq

(15)

The equivalent control ueq is obtained from ṡ = 0.

ueq = −c1ėx − c3 cosφφ̇

From the equation of the surface, ėx = −c1ex − c3 sin φ.
Therefore ueq can be written as below.

ueq = c2

1
ex + c1c3ξφ − c3φ̇ cosφ

Substituting s1 and ueq in (15). to get equations governing the

dynamics of the sliding motion as below:

ėx = −c1ex − c3 sin φ (16)

φ̈ = −
c2

1
cosφ

l
ex −

(
g

l
+

c1c3 cosφ

l

)
sin φ

+

(
−

c

ml2
+

c3(cos φ)2

l

)
φ̇ (17)

The Eqns. (16) and (17) can be rewritten as below.

ėx = −c1ex − c3 sin φ (18)

φ̇ = −φ + φ + φ̇ (19)

φ̈ = −h1ex − h2φ + h3φ̇ (20)

where,

h1 =
c2

1

l
cosφ (21)

h2 =

(
g

l
+

c1c3 cosφ

l

)
sin φ

φ
(22)

h3 = −
c

ml2
+

c3 cos2 φ

l
= −0.09 +

c3 cos2 φ

l
. (23)

Define p = φ + φ̇, therefore ṗ = φ̈ + φ̇. The above equations

(18), (19) and (20) can be written as below

ėx = −c1ex − c3 sin φ (24)

φ̇ = −φ + p (25)

ṗ = (1 + h3)p − h1ex − h2φ − (1 + h3)φ. (26)

These equations represent interconnected system of the form

ėx = f1(ex) + g1(φ)

φ̇ = f2(φ) + g2(p)

ṗ = f3(p) + g3(ex, φ).

The interconnected system is decomposed into isolated sub-

systems ignoring the interconnections. The stability of each

subsystem is analyzed. By combining these results together

with the information of the interconnections, the conclusions

about the stability of the interconnected system can be drawn

[39].

We derive the conditions to ensure each of the isolated

subsystems is stable. Further a composite Lyapunov function is

considered to analyze the stability of the total interconnected

system. Considering the first isolated system neglecting the

interconnections

ėx = −c1ex. (27)

Consider a Lyapunov function candidate

V1 = 0.5e2

x.

Differentiating V1

V̇1 = exėx. (28)

Substituting for ėx to get

V̇1 = −c1e
2

x < 0. (29)

The aforementioned equation implies that the first isolated

subsystem is stable if c1 > 0.

The second isolated subsystem is

φ̇ = −φ. (30)

Consider a candidate Lyapunov function

V2 = 0.5φ2. (31)

Differentiating to get

V̇2 = −φ2.

This subsystem is stable. The third isolated subsystem is

ṗ = (1 + h3)p. (32)

Consider a candidate Lyapunov function

V3 = 0.5p2. (33)

Differentiating to get

V̇3 = pṗ = (1 + h3)p
2. (34)

For this system to be stable, (1 + h3) < 0

i.e. 1 +

(
−0.09 +

c3 cos2 φ

l

)
< 0.

With c3 < 0 the system is stable if

0.91 −
| c3 | cos2 φ

l
< 0

⇒ cos2 φ >
0.91

20 | c3 |

For the chosen c3 = −1, the range of φ for which the isolated

system is stable, is −77.6o ≤ φ ≤ 77.6o. This range can

be increased by choosing c3 more negative. It may be noted

that for practical systems the lateral slosh angle is such that

−75o ≤ φ ≤ 75o. Thus choice of c1 > 0 and c3 = −1 assures

the stability of all the isolated subsystems.
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Now to analyze the stability of the composite interconnected

system, a composite Lyapunov function is chosen as below.

V = V1 + V2 + V3 +
g(1 − cosφ)

l
−

| c1c3 | (1 − cos 2φ)

4l
.

Substituting for V1, V2, V3 in the above equation

V = 0.5e2

x+0.5φ2+0.5p2+
g(1 − cosφ)

l
−
| c1c3 | (1 − cos 2φ)

4l
.

(35)

For V in (35) to be positive definite

g(1 − cosφ)

l
−

| c1c3 | (1 − cos 2φ)

4l
> 0.

From the above V is positive definite if

| c1c3 |< g. (36)

Also note that selection of the sliding surface parameters that

satisfy the above conditions i.e. c1 > 0, c3 ≤ −1 and | c1c3 |<
g yield

h1 > 0
h2 > 0

(1 + h3) < 0

⎫
⎬

⎭ . (37)

Differentiating V to get

V̇ = exėx + φφ̇ + pṗ +

(
g

l
−

| c1c3 | cosφ

l

)
φ̇ sin φ.

Using (22) and c3 ≤ −1,

V̇ = exėx + φφ̇ + pṗ + h2φφ̇.

Using (24), (25) and (26) with the information of c3 < 0 and

φ̇ = p − φ,

V̇ = ex(−c1ex+ | c3 | sinφ) + φ(p − φ)

+p(1 + h3)p − ph2φ − ph1ex − p(1 + h3)φ

+ph2φ − h2φ
2.

Defining | c3 | sin φ

φ
= h4 and simplifying the above to

V̇ = −c1e
2

x + h4exφ − φ2(1 + h2)

+p2(1 + h3) − ph1ex − ph3φ.

Note that h4 > 0. Using (37) the above can be simplified

to

V̇ = −c1e
2

x + h4exφ − φ2 (1 + h2)

−p2 | (1 + h3) | −ph1ex + p | h3 | φ.

⇒ V̇ = −
[

ex φ p
]
Q

⎡
⎣

ex

φ
p

⎤
⎦ . (38)

where

Q =

⎛
⎝

c1 −h4 0
0 1 + h2 0
h1 − | h3 | | (1 + h3) |

⎞
⎠ .

It is obvious from (38)that the composite system is stable if Q
is positive definite. For Q to be positive definite the following

must hold

c1 > 0

c1 (1 + h2) > 0

c1 (1 + h2) | (1 + h3) | > 0.

For the chosen surface parameters c1 = 1 and c3 = −1, all

the above conditions are satisfied. Hence with the positive def-

inite matrix, the total interconnected system is asymptotically

stable.

Remark 4: The given interconnected system is stable if

the sliding surface parameters are such that c1 > 0, c3 < 0,

| c1c3 |< g.

The approach is based on partial feedback linearization

which requires perfect knowledge of the plant parameters for

canceling the effect via feedback. Nonlinearities which include

nominal parameters are compensated by feedback. However,

further variation of parameters and nonlinearities can be con-

sidered as uncertainties contributing matched uncertainties and

hence are compensated by SMC. Equation (1a) can be written

as

f = Mu + ∆nl ± ∆p,

where ∆nl = ml cosφD − mlφ̇2 sin φ are the nonlinear-

ities compensated in the feedback. These include nominal

parameters, as ±∆p represents uncertainties due to parameter

variations. It should be noted that these are matched. While

designing the nonlinear part of the sliding mode control, the

maximum bound of ∆p is considered. One can consider ∆nl

and ∆p together as lumped uncertainties, but this will increase

the total bound to be considered while designing the nonlinear

part of SMC.

C. Design of sliding mode observer

A sliding mode observer for the slosh state estimation using

the high gain approach proposed in [41] and [34], is used here.

The system in (1) can be written as below:

ẋa = fa (x) + bau, (39a)

ẋr = fr (x) + bru, (39b)

where, ẋa = [ẋ ẍ]
T

, ẋr = [φ̇ φ̈]T . The sliding mode

observer dynamics is

˙̂xa = fa ( x̂ ) + bau + Km sign (s) (40a)

˙̂xr = fr ( x̂ ) + bru + LrKm sign (s) , (40b)

where x̂ is a vector of state estimates and x̂a is estimate of mea-

surable states. Lr ∈ ℜ2×2. K, and sign (s) both ∈ ℜ2×2,
m = [ | s1 |α | s2 |α ]

T
and 0 < α < 1. The switching

function is defined as

s = xa − x̂a ≡ x̃a. (41)

Subtracting (40) from (39) gives the observer error dynamics

as below.

˙̃xa = ∆fa − Km sign(s), (42a)

˙̃xr = ∆fr − LrKm sign(s), (42b)

where ∆fa ≡ fa (x) − fa ( x̂ ) and ∆fr ≡ fr (x) − fr ( x̂ )
x̃r ≡ xr− x̂r. K is a diagonal matrix and is designed to ensure

sliding. The values of k1, k2 are chosen as k1 = k2 = 25.
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During sliding, x̃a = 0. From (42a) and (42b), the reduced

observer error subsystem obtained using the equivalent control

approach is
˙̃xr = ∆fr − Lr∆fa. (43)

Linearizing about x̃r = 0 to get

˙̃xr = [Ar − LrCr] x̃r + δr, (44)

The term δr represents parametric uncertainties and nonlin-

earities in the reduced subsystem. It is state dependent and

uniformly norm bounded.

Ar =

[
0 1
0 0.085

]
, Cr =

[
0 0
1 0

]
.

The pair (Ar, Cr) must be observable. Lr is designed to ensure

(Ar − LrCr) Hurtwitz. Further, to take care of uncertainties

and prescribe faster convergence of the observation error to

zero, Lr is chosen to be

Lr =

[
0 101.9150
0 191.3372

]
.

The closed loop poles of the reduced order observer system

are −2 and −100 and stable dynamics are therefore assured.

Remark5: It should be noted that the estimation error is

like a disturbance which decays. Therefore, by choosing the

switching gain k greater than that of the designed value for a

state based SMC will ensure finite time reaching to the surface

s even with a SMO based SMC.

IV. SIMULATION RESULTS

The validity of the proposed scheme was tested in simula-

tion. The states were estimated using the sliding mode observer

discussed in the previous section. The controller parameters

were k = 6; α = 0.5; δ = 0.005. A sigmoid function

was used to implement the SMC to alleviate chattering. The

problem of discontinuous injection is no longer pertinent in the

SMO context. Therefore signum function was used in SMO. A

step command of 100 mm was applied at time t = 0.615 sec.
Fig.2 shows that the container settles at the desired position

in about 4 seconds. The slosh is nicely regulated as shown

in Fig.3. The switching function in Fig. 4 illustrates the fast

reaching phase. Sliding commences in less that 0.5 seconds.

The control in Fig. 5 shows initial overshoot for a very short

period when there are step changes in the command signal.

For the remainder of the operating time the control signal is

smooth.

V. EXPERIMENTAL RESULTS

The proposed controller was implemented on an experimen-

tal setup developed for slosh parameter identification.

A. Experimental setup

The experimental set up is as shown in the Fig.(6). An

acrylic cylindrical tank is mounted on a platform. The di-

mensions of the tank are height = 450 mm and diameter

= 190 mm. Two degrees of actuation, one for translation and

the other for pitching are provided using separate permanent
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Fig. 2. Container position: simulated results
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Fig. 3. Slosh position: simulated results
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Fig. 4. Switching function: simulated results

magnet brush-less DC servomotors through a ball screw linear

slide arrangement. The motion control drives are configured to

run these motors in torque control mode from an analog input.

An incremental encoders are mounted on the motor shafts

to capture position data. This incremental shaft encoder in

combination with the DC servomotor is used for indication of

both, shaft positioning as well as velocity. The shaft is coupled

to ball screw to effect rotary to linear transformation. By

considering the pitch factor of the ball screw, measurements of

linear position (x) and velocity (ẋ ) are obtained. We make it
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Fig. 5. Control efforts: simulated results

.

Fig. 6. Moving container System

clear that only one motor was used in the experiments. A six

axis load cell is mounted directly beneath the tank to capture

force and moment data . A dSPACE ds 1104 card provides

the real time interface. Sensor signals are captured and the

actuators are controlled using Simulink and the dSPACE

interface. A real time interface (RTI) from Matlab enables

the simulink control model to link to the micro-controller

in the dSPACE card for real time implementation. we have

used only one motor (for lateral excitation) for implementing

the proposed controller. The sampling period has been chosen

as 1 msec, which is very small for the mechanical system

under consideration. Hence continuous algorithms can be

implemented as directly.

B. Implementation Scheme

The SMC was designed to control slosh in a container using

the acceleration of the container as the control. The necessary

force required to be applied to the plant is obtained from (14).

This force was applied to the plant model directly to study the

performance in simulation. In simulation, the PID control was

not used as the force to be applied was available for direct

implementation in simulation.

A stable PID controller to drive a servo system (drive

stage, actuator, ball screw etc.), to follow a reference trajectory

accurately (more that 95%) for slosh parameter identification

has been used. The PID provides position control but not slosh

suppression. The SMC law provides the plant acceleration

required to meet the desired objectives. The implementation

must ensure this acceleration and is achieved by ensuring the

plant follows a position reference which ensures this acceler-

ation. From the desired acceleration obtained from the SMC,

the necessary position reference for the PID was obtained by

integrating the acceleration twice. This is one way to generate

the command [42] –[45]. Alteratively one can consider the

model with actuator, ball-screw, sensor etc. and redesign the

control; the designed SMC would give some control input to

be applied directly to the actuator. However, this discontinuous

control, theoretically of infinite frequency required to achieve

ideal sliding may not be practically applied. Here the PID

mechanism has been used for implementing the SMC law in a

simple practical way thereby verifying the proposed scheme.

The methodology has the added advantage that the position

reference obtained from the discontinuous desired acceleration

reference is smooth. The schematic for implementation may

be referred from [34]. When the actual plant acceleration does

not equal to the desired acceleration, the equivalent force

fsm + ∆f is applied to the plant. Note that ∆f is a matched

disturbance hence is taken care of by the switching component

to ensure sliding assuming the switching component gain is

greater than the maximum value of ∆f . Thus the existence of

sliding is ensured. A properly tuned PID mechanism together

with sliding mode control to generate the desired reference

gives a stable closed-loop performance.

C. Slosh Estimator Validation

The slosh state estimator was validated using pressure

sensor data, the force sensor data and the images captured

from the camera. A force sensor mounted beneath the tank

measures forces and moments acting on the tank. Under the

lateral sinusoidal excitation, the force measured in the lateral

direction shows the trend of the slosh force. The trend of

the force sensor data matches closely with the trend of SMO

estimates

A pressure sensor was mounted on the top, close to the tank

wall. A sinusoidal excitation was applied. The SMO estimate

calibrated in terms of liquid level and the pressure sensor

measurements calibrated in terms of liquid level were closely

matching in steady state. It was observed that pressure sensor

measurements were noisy. Use of filter added delay. Further it

could not give accurate measurements during initial transient

period.

The camera was mounted on the stationary wooden stand. A

sinusoidal excitation was applied to the plant. The initial tran-

sients as well as the steady state performance were recorded by

the camera. The image frames were captured using virtual dub

software. The images at certain instants of time were processed

off line. The edge detection algorithm yields the instantaneous

level of the liquid from the image of the container. The slosh

angles calibrated in terms of liquid level were noted at those

instants of time during transient as well as steady state and

were found in close agreement with the camera data.
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D. SMC with SMO

The experimental results of the proposed scheme in Fig.7

to Fig. 10 correlate well with the simulation results. Noise

was present in the ẋ measurement which corrupted the slosh

state estimation. A properly tuned butterworth filter was used

to filter this noise. Use of a properly tuned filter has given

cleaned estimates. These estimates were used to implement

the controller.
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Fig. 7. Container position: experimental results
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Fig. 10. Control efforts: experimental results

E. PID control

A step command was applied for the container to move in

4 seconds to 100 mm. The SMC component was switched

off. The PID controller gains were tuned to Kp = 0.025,

Ki = 0.09 and Kd = 0.0022. Fig.11 and 12 show that the

desired x dynamics can be achieved but not the desired slosh

suppression. Comparison of the performance shown in Fig.8

and Fig.12 illustrates the strength of the SMC.
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0 2 4 6 8 10
−0.1

−0.05

0

0.05

0.1

0.15

Time(s)

φ
 (

ra
d
)

Fig. 12. Experimental Performance of PID controller and SMO



10

VI. CONCLUSIONS

In this paper, the problem of control of slosh has been con-

sidered. The plant dynamics is a second order underactuated

system. Partial feedback linearization was used. The partially

linearized system was represented as a linear uncertain plant

which has uncertainties in both the system and input matrices.

A method has been proposed to design a stable surface having

the additional feature of enhancing the damping of the slosh

dynamics. This surface yields a simple, implementable control

law. Slosh states have been estimated using a sliding mode

observer. The experimental results closely match with the

simulation results.

Noise due to electromagnetic interference was observed. Fil-

ters are used to filter the sensor signals. However filters

add delays. Sophisticated filters can be used to improve the

performance of the controller by minimizing the delays. If the

estimation of the uncertainties is also available along with the

states then the control will be less conservative. The controller

performance can be further improved by adaptive tuning of

the controller parameters. The proposed methodology has the

potential for application to a wide spectrum of problems.
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