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Quantum non-Markovianity of channels can be produced by mixing Markovian channels, as ob-
served recently by various authors. We consider an analogous question of whether singularities of
the channel can be produced by mixing non-singular channels, i.e., ones that lack them. Here we
answer the question in the negative in the context of qubit Pauli channels. On the other hand, mix-
ing channels with a singularity can lead to the elimination of singularities in the resultant channel.
We distinguish between two types of singular channels, which lead under mixing to broadly quite
different properties of the singularity in the resultant channel. The connection to non-Markovianity
(in the sense of completely positive indivisibility) is pointed out. These results impose nontriv-
ial restrictions on the experimental realization of non-invertible quantum channels by a process of
channel mixing.

I. Introduction

Open quantum systems, which are systems in inter-
action with an ambient environment [1], experience an
evolution with a rich structure showing the absence or
presence of memory effects [2–9], unital or non-unital fea-
tures [10–13]. Open system effects have profound ram-
ifications in areas such as those in quantum thermody-
namics [14–16], quantum cryptography [17, 18], quantum
walks [19, 20], quantum correlations and coherence [21–
23], among others (cf. [24]).

An open quantum system evolution, under quite gen-
eral conditions, is known to be described by the general
master equation

ρ̇(t) = − i

~
[HS(t), ρ(t)] +

∑

j

γj(t)
(

Lj(t)ρ(t)L
†
j(t)

−1

2
{L†

j(t)Lj(t), ρ(t)}
)

≡ L(t)[ρ(t)], (1)

where γj(t) are the time-dependent decay rates, and {Lj}
are the set of orthonormal trace-less operators. The time-
independent version of Eq. (1), was studied in the pio-
neering works [25, 26].

Equivalently, an open quantum system evolution can
be described by a channel, i.e., a completely positive
(CP) dynamical map, which is given by operator-sum
(or Kraus) representation:

ρ(t) = E(t)[ρ(0)] =
∑

j

Kj(t)ρK
†
j (t), (2)

where Kj(t) are the Kraus operators. The dynami-
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cal map E(t) itself obeys the master equation [7, 27]

Ė(t) = L(t)[E(t)], so that the time-dependent map has
the solution

E(t, ti) = T exp

{
∫ t

ti

L(s)ds
}

, (3)

for all ti ≤ s ≤ t, where T is the time-ordering operator.
And furthermore,

L(t) = Ė(t)E−1(t), (4)

showing that non-invertibility of the map E(t) corre-
sponds to a singularity in the generator L(t).

Complete positivity of E(t, ti) is the requirement that
not only is E(t, ti) positive, but so is any extension
E(t, ti) ⊗ Id, where Id is the identity operator in the
Hilbert space of a d-dimensional ancilla. The map E(t, ti)
is CP if and only if the Choi matrix χ = (E(t, ti) ⊗
I)[|ψ+〉〈ψ+|] ≥ 0 for all t ≥ ti, where |ψ+〉 = |00〉+ |11〉
is an unnormalized maximally entangled state. Consider
the two-parameter composition of a CP map E(tf , ti)
given by

E(tf , ti) = E(tf , t)E(t, ti). (5)

If for all tf ≥ t ≥ ti, the intermediate map E(tf , t) is CP,
then the map E(tf , ti) is called CP-divisible [5, 28]. Oth-
erwise, it is CP-indivisible. CP-indivisibility has been
proposed as one of the criteria for non-Markovian evo-
lution, among a plethora of others [6, 8, 29–33]. In this
work, we consider the concept of non-Markovianity of a
channel in the sense of CP-indivisibility, as defined above.

Important for our purpose, in this work, are the notions
of singular points of the map and of singular channels.

Definition 1. If there is a time t = t∗ such that the
composition Eq. (5) fails, because the map E(t∗, ti) is
non-invertible and thus E(tf , t∗) ≡ E(tf , ti)E(t∗, ti)−1 is
undefined, then the point t∗ is called the singularity (or,
singular point) of the channel E(tf , ti) [34]. Furthermore,
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the channel is called “singular”. If no such singular points
t∗ exist, then the channel is said to be non-singular (or,
regular).

Note that the singularity of the channel can be ac-
companied by perfectly regular dynamics, i.e., the map
E(t∗, ti) itself is well-defined (albeit non-invertible) [27,
35].

Ref. [36] discusses a method for making singularities
tractable in the context of the definition of CP-divisibility
of maps [5]. Building thereon, a measure of singularities
of the maps is presented in [34]. An account of handling
the singularities was reviewed in [29, Sec. 4.3]. These
measures based on CP-indivisibility are equivalent to the
one based on decay rate [7] up to a constant factor.

The effect of mixing different quantum evolutions has
attracted attention of late. References. [37, 38] show
that a convex combination of semigroup dynamical maps
can lead to a deviation from the semigroup structure.
Quite interestingly, the convex combination E ′ = (1 −
p)E1 + pE2 of two semigroup (hence, CP-divisible) maps
E1 = exp{tL1} and E2 = exp(tL2) may give rise to CP-
indivisible (even eternally CP-indivisible) evolution [39].
More recently various authors have shown that it is pos-
sible to obtain a CP-indivisible Pauli channel by mixing
CP-divisible Pauli channels [39–41], implying that the set
of CP-divisible channels is not convex.

For almost all relevant works in the literature, includ-
ing those cited above [29, 34–36, 42], instances of sin-
gularity of a channel are always accompanied by non-
Markovianity in the sense of CP-indivisibility (though
the converse is not true). In this light, our above ob-
servation concerning the mixing of Markovian channels
prompts the question of whether an analogous behavior
holds with respect to mixing singular channels. This will
be important for understanding the geometry of quantum
channels.

In particular, restricting to the context of mixing Pauli
channels, we ask whether singular channels can be pro-
duced by mixing non-singular ones, and answer the ques-
tion in the negative. This negative result implies that
non-singular channels form a convex set. On the other
hand, mixing singular channels does not necessarily re-
sult in a singularity of the resultant channel, showing
that singular channels do not form a convex set. Finally,
we explain why in the context of mixing Pauli channels,
singularities of the channel imply CP-indivisibility, but
the converse is not true. This connection between sin-
gularity and CP-indivisibility does not hold in general.

This work is organized as follows. In Sec. II, we show
that it is not possible to produce singularities of the chan-
nel by mixing non-singular channels. In Sec. III and
IV, we discuss the results pertaining to mixing singular
channels of two broad types. The interplay of singulari-
ties and non-Markovianity is discussed in Sec. V. In all
cases, the results are illustrated with examples. Finally,
we conclude in Sec. VI.

II. Mixing non-singular Pauli channels

A general Pauli dynamical map is given by

E(t)[ρ] =
3

∑

i=0

ki(t)σiρσ
†
i , (6)

where σ0 = I, and σi, i ∈ {1, 2, 3} are Pauli X, Y, Z op-

erators respectively, and
∑3

i=0 ki(t) = 1. The canonical
form of master equation corresponding to the map (6)
has the form

ρ̇(t) = L(t)[ρ(t)] =
3

∑

j=1

γj(t)(σjρ(t)σ
†
j − ρ(t)) (7)

where γj(t) are the rates.

The decay rates may be readily obtained using Eq. (4)
[43]. Noting that

E(t)[σj ] = λj(t)σj . (8)

we have

Ė(t)[σj ] = λ̇j(t)σj ; E−1(t)[σj ] =
1

λj
σj , (9)

showing that the vanishing of a λj at some time t∗ cor-
responds to non-invertibility of the map at that instant,
and thus to a singularity of the Pauli channel, per the
argument following Eq. (4). This is made more explicit
below.

Now, from (9) and (4), we readily obtain the rates in
the master equation Eq. (7):

γ1(t) =
1

4

(

λ̇1(t)

λ1(t)
− λ̇2(t)

λ2(t)
− λ̇3(t)

λ3(t)

)

,

γ2(t) =
1

4

(

λ̇2(t)

λ2(t)
− λ̇1(t)

λ1(t)
− λ̇3(t)

λ3(t)

)

,

γ3(t) =
1

4

(

λ̇3(t)

λ3(t)
− λ̇1(t)

λ1(t)
− λ̇2(t)

λ2(t)

)

. (10)

Note in particular that the γj ’s have a singular point
when any of the λi vanishes. Our first result, below, es-
sentially asserts the convexity of non-singular Pauli chan-
nels.

Lemma 1. It is impossible to produce a singular Pauli
channel by mixing only non-singular Pauli channels.

Proof. Let the Pauli channels that are being mixed be
given by

E1(ρ) ≡ (1− p(t))ρ(0) + p(t)σ1ρσ1,

E2(ρ) ≡ (1− q(t))ρ(0) + q(t)σ2ρσ2,

E3(ρ) ≡ (1− r(t))ρ(0) + r(t)σ3ρσ3, (11)

where the functions p, q, and r quantify the degree of de-
coherence of the channels and must satisfy 0 ≤ p, q, r ≤ 1
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to ensure complete positivity of the maps. The corre-
sponding individual Lindblad rates are

γη =
−η̇

1− 2η
, (12)

where η ∈ {p(t), q(t), r(t)}. Let the three channels in
Eq. (11) be mixed with probabilities a, b and c, where
0 ≤ a, b, c ≤ 1 and a + b + c = 1. This gives rise to the
channel:

Ẽ(ρ) = aE1(ρ) + bE2(ρ) + cE3(ρ)
= (1− ap− bq − cr)ρ+ apσ1ρσ1 + bqσ2ρσ2

+ crσ3ρσ3. (13)

By assumption, the mixing maps E1, E2 and E3 are non-
singular. In view of Eq. (12), this implies that

0 ≤ p(t), q(t), r(t) <
1

2
(14)

for finite time t. The time-dependent eigenvalues of the
map Ẽ from Eq. (13) read

λ1(t) = 1− 2(bq + cr), (15a)

λ2(t) = 1− 2(ap+ cr), (15b)

λ3(t) = 1− 2(ap+ bq). (15c)

The condition for a singularity in the resultant channel
is that one or more of λj in Eq. (15) should vanish at
a certain finite time(s) ts. For example, consider λ1 in
Eq. (15a). Given the range restriction Eq. (14) on the
decoherence functions p(t) and q(t), we have

λ1(t) > 1− (b + c) ≥ 0 (16)

for finite t. Repeating the argument for λ2 and λ3, we
conclude that there can be no singularity in the mixed
channel. �

It follows from Eq. (16) and analogous results for λ2
and λ3 that the non-singular mixing channels necessar-
ily have positive decay rates γj , and therefore are CP-
divisible. Thus, as a corollary of Lemma 1, we find that
it is impossible to produce a singularity by mixing CP-
divisible Pauli channels.

Lemma 1 does not address the question of whether
mixing singular channels produces a singularity in the
resultant channel. To address this question, it is conve-
nient to distinguish two types of singular channels. It is
clear from Eq. (12) that for a Pauli channel to be sin-
gular, the decoherence function p(t), q(t) or r(t), as the
case may be, should attain the value of 1

2 at some finite
time t. Accordingly, the two types of Pauli singular chan-
nels are those where the value 1

2 is the maximum or is
exceeded. It turns out that they evince quite different
behaviors under mixing.

Definition 2. Channels of Type I: Those in which the
maximum value attained by the decoherence function

p(t), q(t) or r(t) in Eq. (11) is 1
2 .

In this case, the occurrence of non-Markovianity (CP-
indivisibility) can be attributed to the non-monotonicity
of the decoherence functions p(t) etc., leading to reco-
herence in the negative slope region of the functions.
Typical instances of interest here would be channels for
which the decoherence function is non-monotonic, oscil-
lating between 0 and 1

2 . In Sec. III, we shall show that:
(a) mixing two such channels with singular points tp∗ and
t
q
∗ produces a singularity only if their singularities are

simultaneous (tp∗ = t
q
∗), and moreover the resultant sin-

gularity occurs at the same time; and furthermore, (b)
three-way mixing of such channels can never produce a
singularity.

Definition 3. Channels of type II: Those in which
the maximum value attained by the decoherence func-
tion p(t), q(t) or r(t) in Eq. (11) can exceed 1

2 .
Typical instances of interest here would be channels for

which the decoherence function is monotonic, reaching an
asymptotic value in the interval (12 , 1]. The positive slope
region of the decoherence function p(t) etc., when they
exceed half, corresponds to recoherence of the system,
leading to non-Markovianity. Unlike in the case of Type
I channels, we will find, in Sec. IV, that the features
(a) and (b) do not hold in this case, i.e., singularities
need not be simultaneous, and the restriction to two-way
mixing is not needed.

We shall find below that the conditions under which
mixing of channels leads to a singularity in the resultant
channel depends on the type of the channels being mixed.

We may note that Type I is a more usual occurrence,
and can for example result when a qubit system and
its qubit environment evolve according to a Hamiltonian
given by ω(|01〉 〈10|+ |10〉 〈01|) acting on the initial state
|01〉, where ω is a real number. The joint system remains
in the subspace spanned by {|01〉 , |10〉}, and the reduced
state of the system is cos2(ωt) |0〉 〈0|+ sin2(ωt) |1〉 〈1|.

III. Mixing of Type I channels

In Eq. (15), suppose λ1(t) vanishes at some finite time
t∗. Observe that this can happen only if q(t∗) = r(t∗) =
1
2 . In other words, the mixing channels E2 and E3 must
each possess a singularity such that these singularities
occur simultaneously at t∗, which coincides with the sin-
gularity in the resultant channel. Moreover, we require
that the mixing parameter a = 0, meaning that only two
of three channels should be mixed. A similar argument
holds for λ2(t) and λ3(t).

To summarize, in the context of mixing Type I chan-
nels to produce a singularity, precisely two channels
should be mixed, and they should be synchronized in
the occurrence of their singularities. If they are not syn-
chronized, then the singularity will be eliminated in the
resultant channel.

The fact that the mixing of two singular channels can
produce a non-singular channel can be compared to the
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situation that mixing CP-indivisible channels can result
in a CP-divisible channel - even a semigroup [39, 40].
A consequence is that, like CP-indivisible channels,
singular ones also form a nonconvex set.

Example 1. Let the mixing channels be E1 and E2,
with p(t) = 1

2 [1 − cos2(µt)] and q(t) = 1
2 [1 − cos2(νt)],

a, b > 0 and a + b = 1 in Eq. (13). In view of Eq. (10),
the eigenvalues λi(t) of the resultant channel read

λ1(t) = 1− b sin2(νt),

λ2(t) = 1− a sin2(µt),

λ3(t) = 1− a sin2(µt)− b sin2(νt), (17)

showing that there is a singularity only from the zeros of
λ3(t), and furthermore this happens if and only if the two
trigonometric terms attain 1 at the same time t∗, which
will also be the singular point of the resultant channel.
A simple way to ensure this is by having µ = ν, in which
case singularities occur in the resultant channel for t =
nπ

2 . �

It is not hard to show that this behavior, of the sin-
gularities of the mixing channels to be simultaneous at
some time t∗, and leading to a singularity at the same
time tR∗ = t∗ in the resultant channel, is general for Type
I channels.

The following example illustrates the idea that the
number of mixing channels should not exceed 2. Other-
wise the singularity is eliminated.

Example 2. A depolarizing colored noise is the Random
telegraph noise (RTN) non-Markovian depolarizing

channel E [ρ] = ∑

iAiρA
†
i , with the Kraus operators [44]

Ai =
√
Piσi, where σ0 = I, σx = σ1, σy = σ2, σz = σ3

are Pauli operators. Here,

P0 =
1

4
[1 + Λ1 + Λ2 + Λ3],

P1 =
1

4
[1 + Λ1 − Λ2 − Λ3],

P2 =
1

4
[1− Λ1 + Λ2 − Λ3],

P3 =
1

4
[1− Λ1 − Λ2 + Λ3], (18)

where

Λi = exp(−wt)
[

sin(wtµi)

µi

+ cos(wtµi)

]

, (19)

The quantity w = 1
2τ is the spectral bandwidth while τ

is the rate of fluctuation of the environment affecting the

qubit, and µi =

√

(

2di

w

)2 − 1, with di representing the

coupling strengths corresponding to the ith Pauli chan-
nel. For the present purpose, let all di’s in Eq. (19) be
taken to be equal, given by d. This corresponds to equal

mixing of theX,Y, and Z Pauli RTN channels, as a result
of which we obtain an isotropic RTN Pauli channel.

Now consider individual RTN Pauli channels of Type
I with their respective decoherence function being

p(t) = q(t) = r(t) =
1− Λ(t)

2
, (20)

where Λ(t) is given by Eq. (19) with µ1 = µ2 = µ3.
We now consider the question of whether the above RTN
non-Markovian depolarizing channel can be reproduced
by mixing the individual RTN Pauli channels of Type I.
For d ≫ w, the zeros of Λ occur periodically, making
the channel possess an infinite number of singularities.
For d < w, Λ(t) attains zero only at t = ∞, making the
channel non-singular.

Eq. (15) yields the following eigenvalues of the resul-
tant channel:

λ1(t) = 1− (b+ c)(1 − Λ),

λ2(t) = 1− (a+ c)(1 − Λ),

λ3(t) = 1− (a+ b)(1 − Λ). (21)

Whilst in general Λ takes values in the range (−1,+1],
but to conform to Type I, the parameters d and w must
be so chosen that Λ(t) is confined in the range [0, 1], with
the singularity occurring when Λ(t) = 0. If a, b, c > 0,
then the sum of any two of them is strictly less than
1. It follows from Eq. (21) and the Type I restriction
(requiring that Λ is bounded below by 0) that each λj in
Eq. (21) never vanishes. �

We now consider an analogous result when type II
channels are mixed, and show how it contrasts with the
above two examples.

IV. Mixing of Type II channels

In Equation (15), if we relax the requirement that
p, q and r are bounded by 1

2 , then we obtain Type II
channels. In this case, we will find that neither the
synchronization nor restriction of the mixing channels
to two, is required, for producing a singular channel.

Example 3. Consider the same system as in Ex-
ample 2, but letting p, q, and r to exceed 1

2 . Accordingly,
Λ takes values in the range (−1,+1]. For simplicity, let
a = b = c = 1

3 , in which case the eigenvalues become

λ1,2,3 =
1

3
[1 + 2Λ(t)]. (22)

The singularity of the resulting RTN depolarizing chan-
nel occurs when Λ(t) = − 1

2 . From Eq. (20), we find that

this singularity happens when p(t) = q(t) = r(t) = 3
4 ,

which is permissible for mixing channels of type II. �

As a final example, consider the three mixing channels
to be of type II, having possibly different functional
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forms, but all reaching an asymptotic value greater than
(say) 4

5 .

Example 4. At some time tR∗ , let q(tR∗ ) = 3
5 and

r(tR∗ ) = 4
5 . The singularities of EY and EZ occur,

respectively, at t2∗ and t3∗, where q(t2∗) = r(t3∗) =
1
2 , where

in general we don’t require t2∗ = t3∗, i.e., the singularities
of the mixing channels are not necessarily synchronized.
Furthermore let the mixing fraction b = 1

6 and c = 1
2 , so

that a = 1 − b − c = 1
3 , implying that there is a finite

fraction of the channel EX in the mixing. It follows from
Eq. (15a) that λ1 = 0 at tR∗ , meaning that this is a
singularity of the resultant channel. Note that tR∗ need

not coincide with either tj∗ (j = 2, 3). �

V. Interplay of singularities and non-Markovianity

It turns out that for the resultant channels considered
here, singular channels are necessarily non-Markovian (in
the CP-indivisible sense). In Eq. (15), consider the point
t∗ where the first singularity is encountered, i.e., one of
the λj(t∗) vanish, say λ1(t∗) = 0. From Eq. (15a), we

have λ̇1(t) ≡ −2(bq̇+ cṙ). In the case of Type I channels,
both q(t) and r(t) reach 1

2 and fall off at the same time.

Therefore, λ̇1(t) is negative just before t∗, and flips sign
to positive just after t∗. On the other hand, λ1 remains
positive for all time. Thus:

lim
t→t

±
∗

λ̇1

λ1
= ±∞. (23)

This implies that γ2 and γ3 flip the sign from positive to
negative at the singularity, and γ1 the other way.

For Type II channels, by virtue of monotonic increase
of q(t) and r(t), λ̇1(t) ≡ −2(bq̇+ cṙ) < 0 for all time. On
the other hand, λ1 flips its sign from positive to negative
at the singularity. Thus, Eqs. (23) and the attendant
consequences for the decay rates hold here too. There-
fore, curiously, despite the contrasting behavior in the
eigenvalues and the rate of change, yet in both Type I and
Type II channels, singularities signal CP-indivisibility in
a similar way.

It may be worth pointing out that singularities do
not necessarily imply CP-indivisibility. For illustration,
consider a CP-indivisible dephasing channel described
by L[ρ] ≡ γ(t)(σ3ρσ3 − ρ) with the decay rate γ(t) =
tan(ωt), where ω is some real number. The channel has

an infinitely many singularities at t∗ = (2n+1)π
2ω for inte-

ger n, which will flip the sign of the rate, and thus signal
CP-indivisibility in a similar manner as discussed above.
By contrast, consider the same channel, but with decay
rate γ(t) = tan2(ωt). This channel contains singularities
at the same instants as the above channel, but the sign
of the rate never flips from positive to negative at any of
these singularities and thus corresponds to a CP-divisible
process.

VI. Discussions and Conclusions

This work discusses the problem of producing a sin-
gular general Pauli dynamical map by the mixing non-
singular (or, regular) Pauli channels. We point out that
it is impossible to do so. Different conditions on the
classes of mixing singular channels are considered in or-
der to guarantee that the resultant channel is singular.
In particular, we show that: (i) for Type I channels it
is possible to produce a singular channel by mixing two
singular Pauli channels, provided the occurrence of their
singularities is synchronized; (ii) mixing three Type I sin-
gular channels results in the elimination of singularities
i.e., such a convex combination results in a regular chan-
nel; and (iii) by contrast, in the case of Type II channels,
we have shown that mixing two or three singular chan-
nels can result in a singular channel, and the singularities
need not be synchronized in their occurrence.

A further question that may be considered here is
the power of mixing weaker forms of non-Markovianity
than CP-indivisibility (cf. Reference [8] and references
therein), in terms of generating singularities and/or
stronger forms of non-Markovianity. An aspect of this for
the measure of CP-indivisible maps produced by mixing
a class of Pauli maps was considered in Reference [41].
A future direction would be to explore the results of this
paper from a geometric point of view [45–47], in particu-
lar to quantify the measure of non-singular channels pro-
duced by mixing singular ones, analogous to results for
CP-divisible channels in References [40, 41]. Reference
[48] shows how an operation of coarse-graining in time
while transforming a master equation from a nonlocal
integro-differential form to a time-local one can modify
the CP-indivisibility property of the dynamics [48]. An
interesting question here would be whether this approx-
imation procedure can also modify the (non-)singular
property of the dynamics.

Ref. [49] reports on an experimental implementation of
producing non-Markovianity by two-way mixing of Pauli
semigroups in a linear quantum optical platform, an ex-
tension of which to three-way mixing of more general CP-
divisible maps has recently been proposed [41]. This idea
may be adapted for mixing singular channels, which can
be produced by suitable bath engineering, possibly with
appropriate modifications to the experimental implemen-
tation in Ref. [50] in the case of a photonic realization, or
in Reference [51], in the case of a semiconductor quantum
optical realization.

Our result here, that singularities cannot be produced
by mixing non-singular channels, is shown only for qubit
Pauli channels. We expect that this is true quite gener-
ally, and in particular, applicable to non-Pauli maps.
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