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Abstract

Recent advancements in deep learning have enabled 3D human body reconstruction from a monoc-
ular image, which has broad applications in multiple domains. In this paper, we propose SHARP
(SHape Aware Reconstruction of People in loose clothing), a novel end-to-end trainable network
that accurately recovers the 3D geometry and appearance of humans in loose clothing from a monoc-
ular image. SHARP uses a sparse and efficient fusion strategy to combine parametric body prior with
a non-parametric 2D representation of clothed humans. The parametric body prior enforces geomet-
rical consistency on the body shape and pose, while the non-parametric representation models loose
clothing and handles self-occlusions as well. We also leverage the sparseness of the non-parametric
representation for faster training of our network while using losses on 2D maps. Another key con-
tribution is 3DHumans, our new life-like dataset of 3D human body scans with rich geometrical
and textural details. We evaluate SHARP on 3DHumans and other publicly available datasets,
and show superior qualitative and quantitative performance than existing state-of-the-art methods.

Keywords: 3D human body reconstruction, parametric and non-parametric methods, monocular image,
deep learning

1 Introduction

Image-based 3D reconstruction of humans in
loose clothing is an interesting and challenging
open problem in computer vision. It has several
applications in the domains of fashion, AR/VR,
sports and healthcare. Traditional stereo/multi-
view (including RGB and depth sensor) based
reconstruction solutions (Gall et al, 2009; Shot-
ton et al, 2011; Wei et al, 2012; Baak et al,
2011; Newcombe et al, 2015; Dou et al, 2016;
Bogo et al, 2017) typically require studio envi-
ronments with controlled lighting and multiple

synchronized and calibrated cameras. Thus, recent
approaches have shifted their focus on in-the-wild
3D reconstruction of humans.

With the advent of deep learning models,
significant interest has garnered around 3D recon-
struction from a monocular image (Kanazawa
et al, 2018; Varol et al, 2018; Habermann et al,
2020), which is an ill-posed problem. Chal-
lenges like self-occlusions, arbitrary viewpoints
and clothing occlusions make the scenario more
complicated. One class of existing deep learn-
ing solutions attempts to fit a parametric body
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Fig. 1: Results of our method on in-the-wild images. Point cloud, uncolored and colored mesh is shown
in (a), (b) & (c), respectively.

model like SMPL (Loper et al, 2015) to a monoc-
ular input image by learning from image features
(Kanazawa et al, 2018; Güler et al, 2018; Omran
et al, 2018; Lin et al, 2021; Kolotouros et al, 2021).
SMPL prediction is improved when Multi-view
input images are provided as shown in (Liang et al,
2019). However, such parametric SMPL mesh does
not capture geometrical details owing to person-
specific appearance and clothing. The other class
of non-parametric reconstruction techniques pose
no such body prior constraints (Saito et al, 2019,
2020; Natsume et al, 2019; Varol et al, 2018; Bhat-
nagar et al, 2020; Venkat et al, 2018) and hence
can potentially handle loose clothing scenarios.

In particular, the recent implicit function
learning models, like PIFu (Saito et al, 2019) and
PIFuHD (Saito et al, 2020), estimate voxel occu-
pancy by utilizing pixel-aligned RGB image fea-
tures computed by projecting 3D points onto the
input image. However, the pixel-aligned features
suffer from depth ambiguity as multiple 3D points
are projected to the same pixel. Another interest-
ing work, Geo-PIFu (He et al, 2020) attempted
to refine implicit function estimation by combin-
ing volumetric features and pixel-aligned features

together to resolve local feature ambiguity. As
an alternate representation for 3D objects/scenes,
some of the recent works model scenes as multiple
(depth) plane images (MPIs) (Tucker and Snavely,
2020) in camera frustum. 3D human body recon-
struction has also been attempted in the same
vein by predicting front and back depth maps in
(Gabeur et al, 2019; Smith et al, 2019). How-
ever, the front-back representation fails to handle
self-occlusions caused by body parts.

In our recent work peeledhuman (Jinka et al,
2020), we introduced PeeledHuman; a novel non-
parametric shape representation of the human
body to address the self-occlusion problem.
PeeledHuman representation encodes the 3D
human body shape as a set of depth and RGB
peel maps. Depth (and RGB) peeling is per-
formed by ray-tracing on the 3D body mesh and
extending each ray beyond its first intersection
to obtain the peel maps. This provides an ele-
gant, sparse 2D encoding of body shape, which
inherently addresses the self-occlusion problem.
However, the non-parametric approaches do not
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explicitly seek to impose global body shape consis-
tency and hence, produces implausible body shape
and pose.

The aforementioned problems can be
addressed by introducing a body shape prior while
reconstructing humans in loose clothing. The
volume-to-volume translation network proposed
in DeepHuman (Zheng et al, 2019) attempts to
combine image features with the SMPL prior
in a volumetric representation. ARCH (Huang
et al, 2020; He et al, 2021) proposed to induce
a human body prior by sampling points around
a template SMPL mesh before evaluating occu-
pancy labels for each point. However, sampling
around the canonical SMPL surface is insufficient
to reconstruct humans with articulated poses in
loose clothing. Similarly, PaMIR (Zheng et al,
2021) proposes to voxelize SMPL body and feed
it as an input to the network, which conditions
the implicit function around the SMPL feature
volume. However, volumetric feature estimation
is still computationally expensive and is limited
by the resolution. Moreover, in PaMIR, texture
and geometry cannot be inferred in an end-to-
end fashion and require two separate networks.
Additionally, all these existing SMPL prior-based
methods do not effectively exploit the rich surface
representation as they either voxelize or sample
points around the SMPL surface.

The continuous surface representation pro-
vided by SMPL prior is valuable as it models
the natural curvature of body parts which cannot
be easily recovered with non-parametric methods.
Some of the existing methods have been success-
fully shown to deform SMPL surfaces locally to
accommodate relatively tight clothing scenarios
(Alldieck et al, 2019a; Bhatnagar et al, 2019; Patel
et al, 2020; Alldieck et al, 2019b; Lahner et al,
2018; Zhu et al, 2019). Nevertheless, they fail
to handle loose clothing scenarios, as the surface
of garments can also have complex geometrical
structures that are only partially dependent on
the underlying body shape and pose, where non-
parametric methods have mainly been successful.
Interestingly, we can retain the best of these two
approaches by deforming SMPL surface locally
while reconstructing the remaining surface details
(loose clothing) with no body prior constraints.
More specifically, one can decouple the recon-
struction of 3D clothed body surface into two

complementary partial reconstruction tasks: (a) to
recover the person-specific body surface details by
locally deforming the SMPL prior, (b) to recover
the remaining surface details of the loose clothing
that cannot be recovered by just deforming the
SMPL prior.

In regard to the representation of the 3D sur-
face, while implementing the above two tasks,
PeeledHuman representation seems to be a good
choice owing to its sparse encoding of a 3D
surface into 2D maps. More importantly, such
representation also enables a seamless fusion of
the two partial reconstructions due to the spa-
tially aligned nature of these maps. 3D geometry
can be extracted from PeeledHuman representa-
tion by simply back-projecting the peel maps to
generate point cloud. Recent works (Ma et al,
2021a,b) have shown that point clouds are a good
way to model clothing deformations arising from
articulated pose.

Thus, this work proposes SHARP, a novel 3D
body reconstruction method that can successfully
handle significantly loose clothing, self-occlusions
and arbitrary viewpoints. SHARP takes SMPL
body encoded in PeeledHuman representation
(Jinka et al, 2020), aligned to the input image
as a prior to the reconstruction framework. The
SMPL prior peel maps, along with the monoc-
ular RGB image, is fed as the input to our
framework, which initially predicts residual peel

maps, auxiliary peel maps, along with RGB peel

maps. Here, the residual peel maps represent the
pixel-wise depth offsets from SMPL prior peel
maps in the view direction. On the other hand,
auxiliary peel maps model the complementary
geometrical details of the surface, which are not
handled by residual peel maps. Subsequently, pre-
dicted residual and auxiliary peel maps are fused
to obtain fused peel maps, capturing the geome-
try of the unified clothed body. The final fused
peel maps, along with predicted RGB peel maps
are back-projected to obtain the colored point
cloud. We finally recover the mesh after minimal
post-processing of the corresponding point cloud
followed by meshification using Poisson Surface
Reconstruction(Kazhdan et al, 2006). The fused
peel maps can model arbitrarily loose clothing
and can handle accessories (e.g., bags) as well, as
shown in Figure 1. Unlike other existing meth-
ods that use adversarial loss and 3D Chamfer loss,
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the proposed problem formulation enables our net-
work to learn only with L1 losses on 2D maps,
which reduces the training time. Since, the clothed
human body can be recovered in the form of point
cloud directly from the back-projection of final
fused peel maps, the inference time is also sig-
nificantly reduced. We have described layerwise
back-projection in greater detail in section 2 of
the supplementary draft.

Additionally, many state-of-the-art methods
for reconstructing 3D human bodies (Saito et al,
2019, 2020; Zheng et al, 2021; Natsume et al, 2019;
Huang et al, 2020) train their models on expensive
commercial datasets which are not publicly avail-
able. These datasets have 3D human body scans
which resemble real humans. This data helps the
learning-based models to generalize well on unseen
real-world scenarios. Unfortunately, the majority
of existing datasets available in the public domain
(Bhatnagar et al, 2019; Zheng et al, 2019; Bertiche
et al, 2020; Tiwari et al, 2020) either consist of
3D body models in relatively tighter clothing,
lack high-frequency geometrical & texture details,
or are synthetic in nature. Recently, THUman2.0
(Yu et al, 2021) dataset released in the public
domain has high-quality 3D body scans captured
using a dense DSLR rig. Although they provide
human scans with relatively loose clothing styles,
their data lacks significantly loose garment types
which occlude the lower body completely, e.g.,
long-skirt/tunic/saree. Moreover, the dataset is
reconstructed with the multi-camera setup which
has its known limitations. To bridge these gaps,
we collected 3DHumans, a dataset of 3D human
body scans with a wide variety of clothing styles
and varied poses using a commercial structured-
light sensor (accurate up to 0.5mm). We are able
to retain high-frequency geometrical and textural
details, as shown in Figure 6. We also benchmark
some of the SOTA methods on this dataset and
report superior performance of our method. To
summarize, our contributions are:

1. We propose SHARP, a novel approach to fuse
parametric and non-parametric shape represen-
tations for reconstructing 3D body model in
loose clothing from an input monocular (RGB)
image.

2. Our proposed end-to-end learnable encoder-
decoder framework infers color and geometrical
details of body shape in a single forward pass

at a lower inference time as compare to SOTA
methods.

3. We collected 3DHumans, a dataset of 3D
human body scans that has a wide variety
of clothing and body poses with rich textu-
ral and geometrical details. The dataset will
be released in the public domain to further
accelerate the research.

2 Related Work

Parametric Body Fitting. Estimating the
3D parametric human body models, like SMPL
(Loper et al, 2015), SMPL-X (Pavlakos et al,
2019), SCAPE (Anguelov et al, 2005) etc., from
a monocular image using deep learning meth-
ods (Bogo et al, 2016; Kanazawa et al, 2018)
has achieved a great success with robust per-
formance. In particular, HMR (Kanazawa et al,
2018) proposes to regress SMPL parameters
while minimizing re-projection loss with the
known 2D joints. Different priors have been used
to refine the parametric estimates as in (Varol
et al, 2017; Omran et al, 2018; Kolotouros et al,
2019a; Kanazawa et al, 2019; Kolotouros et al,
2021; Lin et al, 2021). Despite these approaches
being computationally efficient, they lack realistic
human appearance and clothing details. Meth-
ods for modelling details like hair/cloth/skin by
estimating offsets from SMPL vertex have been
proposed, but they work on very tight clothing
and can not model the loose clothing deformation
arising from pose . (Bhatnagar et al, 2019; Venkat
et al, 2019; Kolotouros et al, 2019b).

Non-parametric Body Reconstruction:
Recovering 3D human body from multi-camera
setup requires traditional techniques like voxel
carving, triangulation, multi-view stereo, shape-
from-X (Azevedo et al, 2009; Dou et al, 2016;
Bogo et al, 2017; Mulayim et al, 2003). Stereo
cameras and consumer RGBD sensors are highly
susceptible to noise. In the domain of deep learn-
ing, initially, voxel methods gained popularity as
3D voxels are a natural extension to 2D pixels
(Venkat et al, 2018; Varol et al, 2018; Zheng et al,
2019). SiCloPe (Natsume et al, 2019) estimates
human body silhouettes in novel views to recover
underlying 3D shape from 2D contours. Recently,
implicit function learning methods for human
body reconstruction became popular, which use
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pixel-aligned features to learn neural implicit
function over a discrete occupancy grid (Saito
et al, 2019, 2020). However, these methods suffer
from sampling redundancy as they have to sample
points in a grid to infer the surface, majority of
which do not lie on the actual surface. They also
suffer from depth ambiguity as multiple 3D points
map to the same pixel-aligned feature. Animat-
ing clothed humans with template garments is
proposed in (Corona et al, 2020). However, this
method cannot produce the textural details of the
garments. In our recent work peeledhuman (Jinka
et al, 2020), we proposed a sparse 2D representa-
tion of 3D surface by estimating and storing the
intersection of the surface with ray.(Mildenhall
et al, 2020) where it samples points along the
camera ray to evaluate RGBσ on these samples.

Prior-based Non-Parametric Body Recon-
struction: ARCH (Huang et al, 2020; He et al,
2021) learns a deep implicit function by sam-
pling points around the 3D clothed body in the
canonical space. But, the transformation of the
clothed mesh from canonical space to arbitrary
space is done by learning SMPL-based skinning
weights which can not handle the deformation of
the loose clothing. These methods rely on large
scale dataset of 3D human scans to train the
model, and suffer from reconstruction errors and
weak generalization capability although demon-
strating good results. (Bhatnagar et al, 2020) also
proposes to combine strengths of parametric and
non-parametric models. However, it takes input
as sparse point cloud which is difficult to obtain
in-the-wild settings. Geo-PIFu (He et al, 2020)
utilizes structure-aware latent voxel features,
along with pixel-aligned features to learn a neu-
ral implicit function. PaMIR (Zheng et al, 2021)
learns a deep implicit function conditioned on the
features which are a combination of 2D features
obtained from image and 3D features obtained
from the SMPL body volume. However, voxel
features are computationally expensive and of low
resolution. DeepHuman (Zheng et al, 2019) lever-
ages dense semantic representations from SMPL
as an additional input. Nevertheless, similar to
Geo-PIFu, DeepHuman is also a volumetric-
regression based approach and hence, incurs a
high computational cost. Moreover, similar to
PIFu, these deep implicit methods require sepa-
rate networks for learning geometry and texture.

3D Human Body Datasets: Deep-Learning
based 3D human body reconstruction solutions
rely on the data available at hand. Not only the
shear amount of samples, but the quality of geom-
etry and texture is also important in order to
drive the learning. Many 3D human body datasets
have been proposed, some of which only contain
body-shape information, while some also include
clothing details on top of it. TOSCA (Bronstein
et al, 2008) dataset contains synthetic meshes of
fixed topology with artist-defined deformations.
SHREC (Li et al, 2012) and FAUST (Bogo et al,
2014) provide meshes and deformation models
created by an artist that cannot reproduce what
we find in the real world. BUFF (Zhang et al,
2017) contains 3D scans with relatively richer
geometry details, but the number of subjects,
poses and clothing style is very limited and not
sufficient to generalize deep learning models.
Another synthetic dataset CLOTH3D (Bertiche
et al, 2020) incorporates loose clothing by drap-
ing 3D modeled garments on SMPL in Blender.
It has a wide variety of clothing styles, but due
to the nature of SMPL body model, details like
hair and skin are absent. THUman1.0 (Zheng
et al, 2019) dataset provides a large number of
human meshes with varied poses and subjects.
However, the texture quality is low and cannot
mimic real-world subjects. SIZER (Tiwari et al,
2020) dataset provides real scans of 100 subjects,
wearing garments in 4 different sizes of 10 fixed
garments classes. But all the scans are in A-pose
which is insufficient for a deep learning model
to generalize to different poses. THUman2.0 (Yu
et al, 2021) dataset provides a large number of
high-quality textured meshes of different subjects
in various poses. It also incorporates varied cloth-
ing styles and high-frequency geometrical details
like hair and wrinkles etc. However, loose wrapped
clothing styles, which completely occlude the full
body, are still absent.

3 Method

In this section, we first outline PeeledHuman rep-
resentation for encoding 3D shapes and discuss
briefly about SMPL, followed by the details of our
proposed framework.
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Fig. 2: PeeledHuman representation to encode 3D human body into 2D maps.

3.1 Background

3.1.1 PeeledHuman Representation

Our PeeledHuman representation is a sparse, non-
parametric, multi-layered encoding of 3D shapes
(Jinka et al, 2020). The human body mesh is
placed in a virtual scene and a set of rays are
emanated from the camera center through each
pixel towards the mesh. The first set of ray-
intersections with the mesh are recorded as the
first layer depth peel map d1 and RGB peel map
r1, capturing visible surface details nearest to the
camera. This is similar to RGBD images captured
from sensors, like Kinect. Subsequently, the rays
are extended beyond the first intersection point
(piercing through the intersecting surface) to hit
the surface behind it. The corresponding depth
and RGB values are recorded in the next layer
peel maps, represented by di and ri respectively,
as shown in Figure 2. We use total i = 4 lay-
ers of peeled representation in this work. This
representation is efficient, as it only stores ray-
surface intersection in the form of sparse 2D maps,
unlike voxels and implicit function representa-
tions, which are redundant in their representation.

3.1.2 SMPL Parametric Body Model

Skinned Multi-Person Linear (SMPL) (Loper
et al, 2015) is a parametric 3D model of the human

body that is based on vertex-based skinning and
blend shapes and is learned from thousands of 3D
body scans. SMPL factors the full human body
mesh into the pose (θ ∈ R

72) and shape (β ∈ R
10)

parameters. θ for each joint is defined as the axis
angle rotation relative to its parent in the kine-
matic tree, while β represents the shape PCA
coefficients learned from various body scans.

SMPL starts with an artist-created mean tem-
plate mesh T ∈ R

6890×3 and blend skinning
weights W ∈ R

6890×24. Template mesh, based
on its skeleton joints, J (·) is deformed through
two blend functions Bs(β) and Bp(θ). Shape
blend-shape function Bs(β) performs the per-
vertex displacements, sculpting the person’s iden-
tity, whereas pose-dependent blend-shape func-
tion Bp(θ) takes a vector of pose parameters θ as
input and maps them to another set of additive
per-vertex displacements. Pose-dependent blend-
shape function accounts for dynamic soft tissue
deformation caused by the pose deviation from
the rest-pose. Finally, the deformed template mesh
T (θ + Bs(β) + Bp(θ)) is transferred to the final
mesh M(θ, β) through a linear blend skinning
(LBS) function W (·) as:

M(θ, β) = W (T (θ+Bs(β)+Bp(θ),J (β),W) (1)
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Fig. 3: Pipeline: We use an off-the-shelf method to estimate SMPL prior from the input image I, and
encode it into peeled representation (Dsmpl). This, along with image I, is fed to an encoder. Subsequently,

three separate decoders branches predict RGB peel maps (R̂), auxiliary peel maps (D̂aux) and residual

peel maps (D̂rd), respectively. Finally, a layer-wise fusion of D̂aux, D̂rd and Dsmpl is performed to obtain

fused peel maps D̂fused, which is then back-projected along with R̂ to obtain a vertex colored point-cloud.
(The ground truth mesh is shown for comparison only.)

3.2 Overview

We aim to reconstruct a 3D textured human body
model of a person in arbitrary pose and clothing
from a given monocular input image I, as shown
in Figure 3.

Here, we discuss the steps involved in our
proposed method.

1. SMPL shape and pose parameters (i.e., β ∈
R

10, θ ∈ R
72) along with parameters of

weak perspective camera (s, tx, ty) are esti-
mated from ProHMR (Kolotouros et al, 2021).
We convert the estimated SMPL to depth
peel maps which acts as a shape prior Dsmpl

(Figure 3) as outlined in subsubsection 3.3.1.
2. Later, input image I (with background

removed) is concatenated with Dsmpl and is
fed as an input to the shared encoder in our
network.

3. Subsequently, three decoders predict different
outputs through separate branches, namely,

RGB peel maps R̂, auxiliary peel maps D̂aux

and residual peel maps D̂rd, as shown in
Figure 3 (c)-(e). The topmost decoder branch
predicts only three RGB peel maps as the input
I naturally acts as the first RGB peel map.

4. The SMPL prior peel maps Dsmpl, residual peel

maps D̂rd and auxiliary peel maps D̂aux are fur-
ther combined using SMPL mask Γi (estimated
using Equation 3) to obtain the final fused peel

maps D̂fused.
5. Finally, a colored point-cloud is obtained by

back-projecting D̂fused and R̂ to camera coor-
dinate system, as shown in Figure 3 (g). This
point-cloud is further post-processed, and then
meshified using Poisson Surface Reconstruction
(PSR) (Kazhdan et al, 2006).

To illustrate the importance of a shape prior in
the prediction of peel maps, we compare SHARP
with peeledhuman (Jinka et al, 2020). The peeled-
human network predicts inconsistent body parts
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as shown in Figure 5 (a). This is because of the fact
that there are no geometrical constraints imposed
on the structure of predicted body parts. The
introduction of prior enables SHARP to recon-
struct the human body with plausible body parts
and accurate pose as shown in Figure 5 (b).

3.3 Pipeline Details

Here, we discuss in detail about our pipeline,
which involves peeled shape prior, residual & aux-
iliary peel maps and finally, peel map fusion. We
also explain in detail the loss functions used to
train SHARP.

3.3.1 Peeled Shape (SMPL) Prior

We initially use (Kolotouros et al, 2021) to esti-
mate the SMPL pose and shape parameters (β,
θ), along with weak-perspective camera parame-
ters (s, tx, ty). The SMPL mesh is brought into
the camera coordinate system using (s, tx, ty), and
then encoded into depth peel maps by passing
camera rays through each pixel, as explained in
subsubsection 3.1.1, i.e., for every pixel p in layer i,
depth value of the point intersected by the camera
ray is stored:

Dsmpl = {(dip) : ∀p ∈ I, i ∈ {1, 2, 3, 4}, d ∈ R}
(2)

We initialize a layer-wise binary SMPL mask Γi

by applying thresholding on SMPL prior peel
maps. Additionally, we condition this mask on
a pre-estimated binary foreground mask F . The
foreground mask F covers only the clothed human
in the input image and can be obtained using off-
the-shelf background segmentation methods e.g.
PGN (Gong et al, 2018) . We use Di

smpl and F to
estimate the per-layer SMPL mask Γi as :

Γi =

{
1, if Di

smpl ⊙F > 0 and

0, otherwise.
(3)

In essence, Γi for each layer is estimated by retain-
ing only the overlapping regions in corresponding
SMPL prior peel map and the foreground mask.
This helps refine the initial SMPL mask Γi by
eliminating parts of the SMPL prior peel maps
that falls outside the human body & clothing
silhouette, thereby enabling our method to par-
tially overcome the misalignment of SMPL prior

with the input image. Note that, F is common
across all the layers. The refined SMPL mask
Γi is subsequently used for peel map fusion in
Equation 3.3.3.

3.3.2 Residual and Auxiliary Peel
Maps

To estimate view specific deformations from the
SMPL prior input, we propose to predict residual
peel maps D̂rd by computing additive pixel-wise
offsets from the input SMPL depth peel maps
Dsmpl. For every pixel p in layer i of peeled SMPL
prior, we predict offset along z-axis 1:

D̂rd = {(δ̂ip) : ∀p ∈ I, i ∈ {1, 2, 3, 4}, δ̂ ∈ R} (4)

For pixels, which depict the projection of
bare body parts, network predicts minimal off-
sets (D̂rd), thereby capturing the person-specific
appearance features like hairline and facial details
while preserving overall structure of the body
parts.

Thus, each layer of the residual peel maps
provides pixel-wise displacements of the corre-
sponding layer of peeled SMPL prior maps along
the view-direction (z-axis). These residual defor-
mations only cover the pixels in the input image
for which SMPL prior is present. For the remain-
ing pixels of clothed body, we propose to learn
their depth values using a separate branch in the
form of auxiliary peel maps.

D̂aux = {(d̂iaux) : ∀p ∈ I, i ∈ {1, 2, 3, 4}, d̂ ∈ R}
(5)

Figure 4 provide 3D visualization of (Dsmpl

+ D̂rd) and D̂aux by back-projecting respective
partial depth peel maps. We can observe that
these two capture the complementary geometrical
details of 3D body and clothing.

3.3.3 Peel Map Fusion

The predicted residual and auxiliary peel maps
independently capture complimentary surface
details and are subsequently fused to obtain the
geometry of unified clothed body. We propose to
obtain final fused peel depth maps by layer-wise
fusion of Dsmpl, D̂rd and D̂aux expressed as:

1The camera is placed at (0, 0, 10), Y axis is up and -Z axis
is forward, while meshes are placed at origin.
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Fig. 4: (a) SMPL prior overlayed on the input image: The residual peel maps recover depth along
the pixels over which SMPL prior is present across all the layers. For the remaining pixels, auxiliary peel
maps are used to recover depth. (b) 3D representation of fusion: (i) Point cloud obtained Dsmpl is

shown in red. (ii) Point cloud obtained from (Dsmpl + D̂rd) is shown from two views in red. (iii) Point

cloud obtained from D̂aux is shown from two views in green. (iv) Final point cloud obtained from D̂fused.

Fig. 5: (a) Distorted body parts in the predic-
tion from peeledhuman (Jinka et al, 2020). (b)
Reconstruction obtained from SHARP.

D̂fused = (Dsmpl + D̂rd)⊗ D̂aux (6)

where ⊗ is the proposed layer-wise fusion operator
as explained below. Here,

D̂i
fused = Γi⊙(D̂i

rd+Di
smpl)+(1−Γi)⊙D̂i

aux (7)

here, ⊙ is element-wise multiplication and for
each ith layer D̂i

aux ∈ D̂aux, D̂i
rd ∈ D̂rd and

Di
smpl ∈ Dsmpl.

In summary, we have decoupled the task of
recovering the clothed 3D human body surface
into predicting residual and auxiliary peel maps.
We later fused these partial reconstructions into
a single unified 3D surface. Our approach ensures
geometrically consistent body parts as the resid-
ual peel maps predict minimal offsets on the pixels
belonging to the bare body where there is no cloth-
ing, thereby retaining body-specific geometry.

3.4 Loss Functions

We use encoder-decoder architecture for our pre-
dictions in SHARP. We train our network with
losses on 2D peel map predictions. Our final
learning objective is defined as:

L = Lfuse + λrdLrd + λrgbLrgb + λsmLsm (8)

where λrd, λrgb and λsm are regularization param-
eters for Lrd, Lrgb, Lsm, respectively. We provide
the formulation for the individual loss terms
below.

Lfuse =

4∑

i=1

∥∥∥D̂i
fused −Di

fused

∥∥∥
1

(9)

Lfuse is the sum of L1 norm between ground
truth depth peel maps Dfused and predicted fused

peel maps D̂fused for each ith layer.

Lrd =

4∑

i=1

∥∥∥D̂i
rd −Di

rd

∥∥∥
1

(10)
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Lrd constraints the residual peel map predic-
tions to that of ground truth offsets. Note that we
are training auxiliary peel maps branch without
any explicit loss on D̂aux. The gradients through
auxiliary peel map branch back-propagates using
Lrd and Lfuse.

We also enforce per layer first order gradient
smoothness of the predicted (D̂i

rd + Di
smpl) and

ground truth (Di
rd + Di

smpl) as well as between

ground truth and predicted D̂fused maps. Lfuse
sm

ensures smoothness between the two predicted
surfaces.

Lsm = Lrd
sm + Lfuse

sm (11)
where,

Lrd
sm =

4∑

i=1

∥∥∥▽(Di
rd +Di

smpl)−▽(D̂i
rd +Di

smpl)
∥∥∥
1

Lfuse
sm =

4∑

i=1

∥∥∥▽Di
fused −▽D̂i

fused

∥∥∥
1

(12)
Additionally, We also train our network with L1

loss between predicted and ground truth RGB peel
maps (Lrgb).

4 3DHumans Dataset

As mentioned in section 1, one of the key bot-
tlenecks that hinder progress in the field of 3D
human body reconstruction is the lack of pub-
lically available real-world datasets that contain
high-frequency texture and geometrical details.

To this end, we present 3DHumans, a dataset
of around 250 scans containing people in diverse
body shapes in various garments styles and sizes.
We cover a wide variety of clothing styles rang-
ing from loose robed clothing like saree (a typical
South-Asian dress) to relatively tight-fitting shirt
and trousers, as shown in Figure 6. The dataset
consists of around 150 male and 50 unique female
subjects. Total male scans are about 180 and
female scans are around 70. In terms of regional
diversity, for the first time, we capture body shape,
appearance and clothing styles for the South-
Asian population. We will release this data in the
public domain for academic use.2

2http://cvit.iiit.ac.in/research/projects/cvit-
projects/sharp-3dhumans-a-rich-3d-dataset-of-scanned-
humans

The 3DHumans dataset is created using the
Artec3D Eva hand-held structured light scanner.
The scanner has a 3D point accuracy of up to
0.1mm and 3D resolution is 0.5mm. For each 3D
human scan, we also provide the SMPL body
aligned to it, using (Zheng et al, 2021; Pavlakos
et al, 2019).

5 Experiments & Results

In this section, we present the experimental
details, datasets and training protocol for SHARP.
We also show qualitative and quantitative com-
parisons with current state-of-the-art methods.

5.1 Implementation Details

We employ a multi-branch encoder-decoder net-
work for SHARP, which is trained in an end-to-
end fashion. The network takes the input image
concatenated with SMPL peel maps in 512× 512
resolution. The shared encoder is consist of a
convolutional layer and 2 downsampling layers
which have 64, 128, 256 kernels of size 7×7, 3×3
and 3×3, respectively. This is followed by ResNet
blocks which take downsampled feature maps of
size 128×128×256. The decoders for predicting
D̂fused, D̂rd and R̂, consist of two upsampling lay-
ers followed by a convolutional layer, having same
kernel sizes as of the shared encoder. Sigmoid acti-
vation is used in D̂fused and D̂rd decoder branches,

while a tanh activation is used for the R̂ decoder
branch. The D̂rd output values are scaled to a
[−1, 0.5] range which is found empirically.

We use the Adam optimizer with an expo-
nentially decaying learning rate starting from 5×
10−4. Our network takes around 18 hrs to train
for 20 epochs on 4 Nvidia GTX 1080Ti GPUs with
a batch size of 8 and λrd, λfuse, λrgb and λsm

are set to 1, 1, 0.1 and 0.001, respectively, found
empirically. We use trimesh (Dawson-Haggerty et
al., 2019) library for rendering the peel maps.

5.2 Other Datasets

In addition to our 3DHumans dataset (section 4),
we perform both qualitative and quantitative
evaluations on the following publicly available
datasets.

CLOTH3D (Bertiche et al, 2020) is a collection
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Fig. 6: High-frequency geometrical and textural details present in our 3DHumans dataset.

of 6500 synthetic sequences of SMPL meshes
with garments draped onto them, simulated with
MoCap data. Each frame of a sequence contains
garment and corresponding SMPL body. The gar-
ment styles range from skirts to very loose robes.
We augment this data by capturing SMPL texture
maps with minimal clothing to simulate realistic
body textures using (Alldieck et al, 2019a). For
each sequence, five frames are randomly sampled.
Please refer to the supplementary draft (section
1) for understanding the data preparation step
and results of SHARP on CLOTH3D.

THUman1.0 (Zheng et al, 2019) consists of
6800 human meshes registered with SMPL body
in varying poses and garments. The dataset
was obtained using consumer RGBD sensors.
Although the dataset has diverse poses and
shapes, it has relatively tight clothing examples
with low-quality textures. Please refer supple-
mentary for results on this dataset. Note that
the dataset is originally called the THUman
dataset, we refer it to as THUman1.0 to avoid
the confusion.

THUman2.0 (Yu et al, 2021) is a collection of
500 high quality 3D scans captured using dense
DSLR rig. The ataset offers wide variety of poses.
However, very loose clothing styles like robed
skirts are still lacking. Each mesh in the provided
dataset is in different scale. We have brought all
the meshes in the same scale by registering SMPL
to the scans and performed our experiments.

5.3 Evaluation Metrics

To quantitatively evaluate performance of
SHARP, we use the following evaluation metrics:

Point-to-Surface (P2S) Distance: Given
a set of points and a surface, P2S measures
the average L2 distance between each point
and the nearest point to it on the given sur-
face. We use P2S to measure the deviation of
the point cloud (back-projected from predicted
fused peel maps) from the ground truth mesh.

Chamfer Distance (CD): Given two sets of
points S1 and S2, Chamfer distance measures the
discrepancy between them as follows:
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Our Dataset THUman2.0 Dataset

Method CD (×10−5) ↓ P2S ↓ Normal ↓ CD (×10−5) ↓ P2S ↓ Normal ↓
PIFu 20.79 0.00826 0.054 23.72 0.0091 0.036

Geo-PIFu 15.73 0.0092 0.058 17.01 0.0092 0.041
PaMIR 12.54 0.00714 0.054 6.05 0.0049 0.038

PeeledHuman 20.88 0.0094 0.061 23.34 0.0094 0.054
Ours 7.718 0.0051 0.045 6.044 0.00529 0.034

Table 1: Quantitative comparison on 3DHumans and THUman2.0 datasets.

Fig. 7: Results on 3DHumans (a, b) and THUman2.0 datasets (c, d).
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Fig. 8: Results on in-the-wild images.

Method CD ↓ P2S ↓

JumpSuit 0.00031 0.00872
Dress 0.0012 0.021
Top+Trousers 0.00057 0.0118

Table 2: Performance of our method on clothing
styles of CLOTH3D dataset.

dCD(S1, S2) =
∑

xǫS1

minyǫS2
‖x− y‖22

+
∑

yǫS2

minxǫS1
‖x− y‖22

(13)

Normal Re-projection Loss: To evaluate the
fineness of reconstructed quality, we compute
normal reprojection loss introduced in (Saito
et al, 2019). We render the predicted and ground
truth normal maps in the image space from the
input viewpoint. We then calculate the L2 error
between these two normal maps.

5.4 Quantitative Evaluation

We evaluate the aforementioned metrics on 3DHu-
mans & THUman2.0 datasets and comapred the
results with PIFu (Saito et al, 2019), PaMIR
(Zheng et al, 2021), Geo-PIFu (He et al, 2020)
and PeeledHuman (Jinka et al, 2020). We trained
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Fig. 9: Qualitative comparison of SOTA methods. (a) and (b) are in-the-wild images, (c) and (d) are
from 3DHumans and THUman2.0 datasets respectively, shown in two different views.
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Fig. 10: P2S Plot: Point-to-surface plots on the
reconstructed outputs from (a) PaMIR, (b) Geo-
PIFu, (c) PIFu and (d) SHARP.

all the models from scratch on these datasets
under the same train/test split. We transform
all the predicted models from different methods
to the canonical coordinates of the ground truth
mesh and report metrices in Table 1. The quan-
titative comparison concludes that our method
outperforms the SOTA methods.

Unlike peeledhuman (Jinka et al, 2020) that
uses a generative network, we use a simple
encoder-decoder architecture. We trained PaMIR
with approximately thrice the amount of data
(SHARP is trained on 70 views per mesh, while for
PaMIR, 200 views per mesh are used). Geo-PIFu
needs to be trained for coarse and query networks
separately and complete training takes three days
to train on 3DHumans in our setup.

Additionally, Table 2 summarizes quantita-
tive analysis on the CLOTH3D dataset where
we evaluate CD and P2S metrics on different
styles of clothing to indicate the generalization
of our method across various clothing styles. We
also provide comparisons with THUman1.0 and
CLOTH3D datasets in the supplementary.

5.5 Qualitative Evaluation

We show the reconstructions obtained by our
method using THUman2.0 and 3DHumans
datasets (Figure 7), where we also show point
clouds obtained by back-projecting residual and
auxiliary peel maps. Figure 7 (a) and (b) are
samples from our dataset, (c) and (d) are from
THUman2.0 dataset. Please refer supplementary
for additional results on CLOTH3D dataset. One

can observe that our model can handle various
styles of clothing (including tunic) covering the
lower body parts and with a wide variety of
poses. Residual and auxiliary peel maps captured
the complimentary surface details as visualized in
red and green in Figure 7. In order to test the
generalizability of our method on unseen in-the-
wild images, we show results on random internet
images using our method in Figure 8. Similar
to PIFu (Saito et al, 2019), we use an off-the-
shelf method to remove the background from these
images before passing them to our network. It can
be noted that our method is able to reconstruct
the human body with self-occlusions and tackle a
wide variety of clothing styles, ranging from tight
to loose clothing with diverse poses. Notably, our
method is able to generalize well on unseen, very
loose clothing styles present in Figure 8 (a) & (b).

In Figure 9, we show qualitative comparison
with SOTA methods. PIFu and PIFuHD do not
use body prior, which leads to missing and dis-
torted body parts. Geo-PIFu predicts a volumetric
prior before performing implicit reconstruction.
On the other hand, PaMIR uses SMPL prior as
input. Hence, both methods tends to produce
smoother geometry as they use voxelized repre-
sentation, which is known to smooth out the geo-
metrical details. It can be noted that our method
retains high-frequency surface details as shown in
Figure 9. Additionally, we also show comparison
with our previous work peeledhuman (Jinka et al,
2020) in Figure 11. We observed that our formu-
lation yielded superior results over peeledhuman
which also uses the PeeledHuman representation
sans SMPL prior.

All the aforementioned methods have been
trained on our 3DHumans dataset except for
PIFuHD. Since the training code for PIFuHD
is not yet available, we use the model provided
by the authors. In order to fairly compare with
other methods, we selected a body with tight
clothing and generated plots of P2S error of all
methods trained on our dataset as visualized in
Figure 10. One can infer from these plots that our
approach yields superior performance in terms of
distribution of P2S error over the reconstructed
surface.
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Fig. 11: Qualitative comparison of peeledhuman and SHARP.

Method No. of parameters Execution Time

PaMIR(Geo+Tex) 40M(27M+13M) 4.03s(3.9s+0.13s)
Geo-PIFu(coarse+fine) 30.6M (14.9M+15.7M) 16.32s(0.32s+16s)
Ours 22M 0.09s

Table 3: Comparison of complexity analysis.

Method CD ↓ P2S ↓

Ours w.o. Lsm 8.3652 0.0053
Ours w.o. fusion 9.98 0.0054
Ours 7.718 0.0051

Table 4: Ablation Study: Effect of loss func-
tions.

5.6 Network Complexity

We report a detailed analysis of the execution time
of SOTA methods in Table 3. All the numbers
are computed on a single NVIDIA GTX 1080Ti
GPU with a single input image. PaMIR needs
feed-forward of two networks to infer shape and
geometry. On the other hand, Geo-PIFu needs
to infer coarse volumetric shape followed by fine
shape. We calculate the feed-forward execution
time for the complete forward pass of Geo-PIFu
and PaMIR as these methods need multiple for-
ward passes while inferring. Note that ours is an
end-to-end inference model which predicts both
shape and color in a single forward pass efficiently
with 0.09 seconds, which is significantly faster
when compared to the aforementioned methods.
Additionally, our network is lightweight, consist-
ing of 22 million parameters, while PaMIR and
Geo-PIFu has 40 and 30.6 million parameters,
respectively.

Network CD ↓ P2S ↓

U-Net 8.417 0.0052
Hourglass 15.6 0.0068
ResNet(ours) 7.71 0.0051

Table 5: Ablation Study: Effect of different
architectures.

Blocks parameters CD ↓ P2S ↓

6 8.26M 22.81 0.0073
9 12.17M 8.9 0.0053
18 22M 7.71 0.0051

Table 6: Ablation Study: Effect of ResNet
blocks.

6 Discussion

In this section, We perform ablative studies on
various components of the network. We run all
experiments on our proposed 3DHumans dataset.
We also discuss in detail about the post-processing
steps, along with the limitations and failure cases
of our method.
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Network CD ↓ P2S ↓

Addition 8.24 0.0052
Average 8.82 0.0058
Concat 7.57 0.0049

Ours* 7.71 0.0051

Table 7: Ablation Study: Comparison of var-
ious Fusion Strategies. Ours is only end-to-end
trainable mechanism as opposed to Addition,
Average and Concat fusion.

Fig. 12:Handling noisy shape prior: (a) Input
image, (b) SMPL prior misaligned with the input
image, (c) Point cloud output from SHARP.

6.1 Ablation Study: Architectural

Choices

Impact of loss functions: In Table 4, we
demonstrate the impact of various loss functions
on the output point cloud. First, we evaluate
SHARP without smoothness loss (Lsm) and
observe that it leads to an increase in Chamfer
distance and P2S error, which is caused by the
noise in prediction of fused peel maps.
Secondly, to evaluate the importance of the
peel map fusion, we train our network without
fusion. In this setting, we used only two decoder
branches, one for predicting RGB peel maps and
the other for predicting depth peel maps. This
lead to smooth, predictions, which misses out
body-specific geometrical details, further increas-
ing CD and P2S values.

Impact of various backbone networks: We
evaluate the performance of SHARP on various
backbone network architectures. In particular,
we used U-Net (Ronneberger et al, 2015) and
stacked hourglass network (Newell et al, 2016) as
backbone networks along with residual networks.

All the backbone networks are trained with same
loss functions as described in subsection 3.4.
We report the performance of these networks
in Table 5. Residual network outperforms both
Unet and hourglass networks in this multi-branch
prediction task. We also observed that hourglass
network was not able to predict four layer RGB
peel maps.

Impact of number of ResNet blocks: We also
evaluate the performance of SHARP by varying
the number of ResNet blocks as shown in Table 6.
We train our network on 3DHumans with 6, 9 and
18 blocks. Using only 6 ResNet blocks, which is
almost one-third of the original network, SHARP
is able to achieve similar performance as PIFu
(please refer Table 1). Using 9 ResNet blocks, we
are able to achieve closer numbers to majority of
existing SOTA methods. We observed that the
further increase in the number of ResNet blocks
did not yield any significant improvement.

Fusion Strategies We analyse the performance
of SHARP with various fusion strategies of peel
maps. In this experiment, we perform feature
level fusion instead of auxiliary and residual
depth peel map fusion. We train this fusion net-
work in a coarse-to-fine strategy where initially
we replace the auxiliary peel map branch with
predicting complete depth peel maps D̂peel. We
train this network with losses Lrd, Lsm and L1

loss on predicted and ground truth peel maps.
We then, take this network as initialization to
train fusion module where we take intermediate
features of D̂peel and D̂rd branches respectively.
Refer supplementary (Figure 4) for the architec-
ture diagram. We fuse them using three strategies
(a) addition, (b) average and (c) concatena-
tion. These fused features are then passed to
upsampling and convolutional layers to predict
final fused depth peel maps. Here, we freeze the
weights of the network except the layers after the
feature fusion. We call it as Late Fusion as it
requires pre-trained network.

We report the performance in Table 7 and
learn that late fusion with concatenation results in
better performance. However, we note the train-
ing for late fusion is not end-to-end as described
and we adopt end-to-end trainable network with
fusion proposed in Equation 6 as our final choice.
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6.2 Handling Noisy Shape Prior

The shape prior based reconstruction methods
are susceptible to noisy initialization from incor-
rect prior. Generally, this leads to incorrect pose
conditioning, which further deteriorates the final
reconstruction. Our method can partially han-
dle such noisy prior as we use refined per-layer
SMPL mask Γi (introduced in subsubsection 3.3.1,
Equation 3) to mask out the regions of the SMPL
prior peel maps which fall outside the clothed
human silhouette in input image. Thus, resid-
ual deformation D̂rd predicted for the misaligned
regions of the SMPL prior is not considered during
fusion, and we are able to avoid the errors in recon-
struction due to such misalignments. Figure 12
shows a case of noisy SMPL prior for an in-the-
wild image and the final reconstruction output of
SHARP, where it is able to recover from incorrect
prior in the leg and hand region.

6.3 Peeled Representation Layers

In this work, we used four layers of peeled repre-
sentation for human body recovery. However, our
formulation is generalizable to arbitrary number
of layers. In Figure 13, we show the performance
of SHARP on real images (not included in train-
ing data distribution) where six layers are needed
to capture the geometry. Note that SHARP is able
to recover geometry under the case of severe self-
occlusion and with skewed viewpoints. To train
this network, we initially train network with four
layers and then using this model to initialize
weights for model with six layers.

6.4 Post-processing

The output of our network is prone to slight noise
in the predicted peel maps, resulting in sparse out-
liers in the back-projected point cloud, as shown
in Figure 15 (a). These outliers are removed by
density-based filtering, where we fit spheres with
16 neighbours on each point. The points, which
are inside the spheres having a radius greater than
the threshold (0.01 in our case), are removed to
obtain a clean point cloud, as shown in Figure 15
(b). Finally, the filtered point cloud might have
some small holes which are subsequently filled by

meshification using Poisson Surface Reconstruc-
tion (PSR) Figure 15 (c).

6.5 Limitations

Ambiguity due to textural edges: 3D recon-
struction from a monocular RGB image, being
an ill-posed problem, is susceptible to interpret-
ing the textural edges as geometrical details.
In Figure 14, we show reconstructions from
our method and PaMIR, where both the meth-
ods incorrectly interpret textural details of a
flat clothing surface as geometrical details and
hallucinate geometrical structures, which are
non-existent.

Failure cases: One of the key challenges faced
by majority of existing prior-based methods is
self-intersection of body parts in the prior, mainly
due to challenging poses. In Figure 16, a failure
case of our approach is shown where the network
reconstructs the occluded regions accurately,
but fails to recover from interpenetrating body
parts, present in the input SMPL prior (hands
penetrating the legs).

7 Conclusion

Reconstructing 3D clothed human body from a
monocular RGB image is an extremely ill-posed
problem due to skewed viewpoints, depth ambigu-
ities, complex poses and arbitrary clothing styles.
Although many solutions exist which can recover
clothed human body in relatively tighter clothing,
they fail to generalize when it comes to in-the-
wild loose clothing scenarios. To this end, we have
contributed a novel end-to-end trainable deep
learning framework, SHARP, which uses a sparse
and efficient fusion of parametric body prior with
non-parametric PeeledHuman representation, and
is able to reconstruct human body in arbitrarily
loose clothing.

In more general perspective, we built on our
sparse non-parametric 2D shape representation
and proposed an efficient strategy to fuse it with
parametric shape prior. We train a compact,
encode-decoder based network using a set of L1
losses on 2D maps, while reconstructing com-
plex 3D geometry. The proposed formulation is
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Fig. 13: Performance of our method on six peel layer representation. We show the predicted final fused
depth peel maps (with corresponding color coding) along with backprojected point cloud (points from
a layer is color coded with the same color as indicated in depth peel maps) and reconstructed mesh
respectively.

Fig. 14: Texture-Geometry Ambiguity:
High-frequency textural details can be interpreted
as geometrical details by monocular deep recon-
struction techniques. (a) Input image, (b) PaMIR
and (c) SHARP.

sparse in terms of representation, resulting in low
inference time of the network.

Fig. 15: Effect of post-processing.

We evaluated our framework on various pub-
licly available datasets and reported superior qual-
itative and quantitative performance as compared
to state-of-the-art methods. Since, data is a key
bottleneck in the field of deep learning based
3D human body reconstruction, we contributed
3DHumans dataset and intend to release it in the
public domain to further accelerate the research.
Our dataset contains 3D human body scans of
high-frequency textural and geometrical details,
with a wide variety of the body shapes in various
clothing styles.
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Fig. 16: Failure Case : (a) Noisy SMPL esti-
mation (hands are intersecting with the legs)
due to highly complex pose. (b) Artifacts in the
predicted point cloud.

Although per-frame reconstruction of SHARP
yields reasonable intra-frame consistency with-
out any explicit temporal conditioning (as shown
in the supplementary video), it will be inter-
esting to explore extension of our method to
learn over video sequences where it is difficult
to get high quality ground-truth data. Another
interesting direction is to incorporate learning
from multi-view images for better reconstruc-
tion results. Additionally, performance of our
method can be further improved by addressing
the texture-geometry ambiguity and recovering
from challenging scenarios such as self-intersecting
body parts.
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