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Abstract—This paper investigates the secrecy performance of
the classical Wyner’s wiretap model, where the main channel
and eavesdropper channel experience correlated α-µ fading.
Novel and exact expressions for the average secrecy capacity and
secrecy outage probability are derived for the considered realistic
scenario. The effect of correlation has been studied on the secrecy
performance. Useful insights into the system performance are
obtained through the asymptotic analysis.
Index Terms—Fading correlation, α-µ fading, physical layer
security, average secrecy capacity, secrecy outage probability.

I. INTRODUCTION

P
HYSICAL LAYER SECURITY (PLS) has been widely

considered as a complementary technique to the con-

ventional upper layer cryptography to enhance the commu-

nication secrecy against eavesdropping in the fifth genera-

tion (5G) mobile networks [1]. In real radio environments,

correlations between channels are frequently observed due

to antenna deployments, proximity of the legitimate receiver

and eavesdropper, and scatterers around them [2], [3]. For

example, antenna deployments at high altitude in rural or

suburban area generate dominant line-of-sight paths, which

results in high correlation between the received signals at

two receivers. Intuitively, correlated channel conditions will

lead to some level of degradation of secrecy performance,

therefore it is also possible that the eavesdropper intentionally

places itself close to the legitimate receiver (especially when

the eavesdropper has no information on the whereabouts of

the transmitter) to induce the correlation of the corresponding

channels. Therefore, it is important to quantify rigorously the

effects of correlation in real-life practical scenarios. Due to

the frequent occurrences of correlated fading scenarios in real-

life scenarios, the investigations on secrecy performance over

correlated fading channels has recently attracted attention of

the researchers [3], [4].

The recently proposed α-µ fading model is a general and

flexible instrument for channel characterization and perfor-

mance evaluation of communication systems. The α-µ model

encompasses some important distributions such as exponential,

Nakagami-m, Gamma, Weibull, Rayleigh, log-normal and

Generalized-K (used in free space optical communication)

fading, [5]–[7]; and the characterization of PLS over α-µ
wiretap fading channels is decisively important. Revisiting

all existing work on secrecy analysis of α-µ fading channels

[6], [7], the correlation between the α-µ fading links has
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never been considered to the best of the authors’ knowledge.

Motivated by the latest advances in PLS analysis on α-µ fading

channels [6], [7] and the importance of conducting secrecy

analysis under realistic correlated fading scenarios, we study

the secrecy performance of the Wyner’s model over correlated

α-µ fading channels in this paper. The main contributions of

this letter are summarized as follows:

1) A novel and exact expression for the average secrecy

capacity (ASC) is derived in terms of the extended

generalized bivariate Fox H-function (EGBFHF) for the

classical Wyner’s model under the realistic correlated α-

µ fading scenario contrary to [7], where the effect of

correlation was ignored.

2) Exact expression for the secure outage probability (SOP)

is obtained taking into account the correlation between

the main wiretap channels contrary to [6], where only

bounds on SOP were provided and correlation was ig-

nored.

3) We obtain useful insights into the impact of correlation

on the secrecy performance through asymptotic analysis

of the ASC and SOP.

4) The asymptotic SOP results are instrumental in investi-

gating the impact of physical channel phenomena such as

channel nonlinearity and multipath clustering on secrecy

diversity.

5) The effect of correlation dependent power penalty is also

studied in this letter.

Notations: [x]+ = max(x, 0). E(·) denotes the expectation

operator, Lnm(·) is the Laguerre polynomial [8, Eq. (8.970.1)],

Γ(·) is the Gamma function [8, Eq. (8.310)], Υ(·, ·) is

the lower incomplete Gamma function [8, Eq. (8.350.1)],

∆(k, a) = a
k ,

a+1
k , ..., a+k−1

k , Hm,n:r,s:v,u
p,q:t,u:w,x (·) denotes the

EGBFHF [7], Gm,n
p,q

(

x
∣

∣

a1,...,ap
b1,...,bq

)

is the Meijer G-function

[8, Eq. (9.343)], and (·)k is the Pochhammer’s symbol [9,

Eq. (6.1.22)].
II. CHANNEL AND SYSTEM MODELS

Considering the classic Wyner’s wiretap model [10], the

legitimate source S transmits confidential information signal

to the legitimate destination node D over the main channel.

The eavesdropper E attempts to intercept the information by

decoding its received signal from the eavesdropper channel.

It is assumed that the main and eavesdropper channels ex-

perience correlated α-µ fading due to antenna deployments,

proximity or similarity of scatterers around them [2], [3]. The

channel coefficients are assumed to remain constant during a

block period.

The received signal at node X, X ∈ {D, E}, is expressed as

yX = hXx+ w, (1)

where x is the transmitted signal with energy Es, hX denotes

the channel between node S and X, w represents the additive

white Gaussian noise (AWGN) with power spectral density

N0, which, without loss of generality, is assumed to be the

same for both channel links.
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From (1), the instantaneous signal-to-noise ratio (SNR), γX ,

received at node X, X ∈ {D,E}, can be expressed as

γX =
|hX |2Es
N0

. (2)

The joint α-µ probability density function (PDF) of the

correlated SNR can be written using [11, Eq. (28)] with L = 2
and C12 = ρ2 [11, Eq. (6) and Eq. (10)]:

fγD,γE (γD, γE) =
αDαEψ

′
D
µDψ′

E
µEγ

αDµD
2 −1

D γ
αEµE

2 −1

E
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(ψ′
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E

γ̄
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2
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. (3)

In (3), ρ ∈ (0, 1] is the correlation coefficient between

the SNRs γD and γE ; αX is the nonlinearity parameter

due to the propagation of clusters of multipath waves in a

nonhomogeneous environment and µX denotes the number

of multipath clusters [5]. The parameter γ̄X = E(|hX |2)·Es

N0

denotes the average SNR of the corresponding link and

ψ′
X =

(Γ(µX+2/αX )
Γ(µX )

)

αX
2 .

Remark 1: When ρ = 0, the PDF in (3) reduces to the

product of marginal PDFs of D and E using [11, Eq. (33)] as

g(β1, β2) = 1 [11, Eq. (6)] and Cij = 0 [11, Eq. (10)]. The

ASC and SOP results of [6], [7] will apply.

III. AVERAGE SECRECY CAPACITY ANALYSIS

Under active eavesdropping, the node S has full channel

state information (CSI) of both the main and eavesdropper

channels, from which S can adapt the achievable secrecy

rate accordingly [12]. In this case, the instantaneous secrecy

capacity of the considered system is defined as Cs(γD, γE) =
[ln(1 + γD)− ln(1 + γE), 0]

+
[13]. The ASC, Cs, over the

correlated α-µ fading channels can be evaluated as [4]

Cs =

∫ ∞

0

∫ ∞

0

Cs(γD, γE) · fγD,γE (γD, γE) dγDdγE

=

∫ ∞

0

ln(1 + γD)

∫ γD

0

fγD,γE (γD, γE)dγEdγD

−

∫ ∞

0

ln(1 + γE)

∫ ∞

γE

fγD,γE (γD, γE)dγDdγE

=C1 − C2. (4)

On substituting (3) in the expression for C1, utilizing the se-

ries expansion for the Laguerre polynomial [8, Eq. (8.970.1)],

and then applying the transformation γ
αE/2
E = t, C1 can be

re-written using [8, Eq. (3.381.1)] as

C1 =
αDψ

′µD

D

2Γ(µD)Γ(µE)γ̄
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2
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dγD. (5)

Now, utilizing [8, Eq. (8.970.1)] and the Meijer G represen-

tation of ln(·), exp(·), and Υ(·, ·) from [14, Eqs. (8.4.6.4),

(8.4.3.1), and (8.4.16.1)], respectively, the integral in (5) is

converted to the following form using [15, Eq. (6.2.8)]:

C1 =
αDψ
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D
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∣
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(0, 1)
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(

γD

∣

∣

∣
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(1, 1), (1, 1)
(1, 1), (0, 1)

)

dγD.(6)

The integral in (6) can be simplified with the aid of [16,

Eq. (2.3)] and is given by (7) at the top of the page. The

closed-form expression for C2 can be obtained in a similar

manner and is given by (8) at the top of the page. The ASC

can, thus, be evaluated by substituting (7) and (8) in (4). The

EGBFHF in (7) and (8) can be efficiently implemented in

Mathematica [7] and MATLAB [17].
IV. SECRECY OUTAGE PROBABILITY ANALYSIS

The SOP is a useful secrecy performance metric for the

passive eavesdropping scenario, where node S does not have

CSI on the eavesdropper’s channel. The SOP is defined as the

probability that the instantaneous secrecy capacity is below a

predefined secrecy rate Rs [12], i.e.,

Po =Pr [Cs(γD, γE) ≤ Rs] = Pr [γD ≤ ΘγE +Θ− 1]

=

∫ ∞

0

∫ (1+γE)Θ−1

0

fγD,γE (γD, γE) dγDdγE , (9)
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where Θ = exp(Rs) ≥ 1. In order to solve (9), we substitute

the joint PDF of γD and γE from (3) into (9). Further, using

[8, Eq. (8.970.1)] and applying the transformation γ
(αD/2)
D =

u, the inner integral in (9) is solved with the aid of [8,

Eq. (3.381.1)] to yield
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Now, using [8, Eq. (8.354.1)] and [8, Eq. (8.970.1)], (10)

can be written after some manipulations as
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Depending on the value of αD(µD + n + r)/2, Eq. (11) is

solved in the following two ways:

1) αD(µD + n + r)/2 is not an integer: For this case,

utilizing [18, Eq. (10)] and substituting γ
αE/2
E = u, the integral

in (11) is converted to a form similar to [14, Eq. (2.24.1.1)].

Hence, the closed-form expression for the SOP is written as

(12) at the top of the page.

2) αD(µD + n + r)/2 is an integer: In this case, we

expand (1+ΘγE/(Θ− 1))αD(µD+n+r)/2 using the Binomial

Theorem [9, Eq. (3.1.1)] and then apply the transformation

γ
αE/2
E = v to get a form similar to [8, Eq. (3.381.4)]. After

some simplifications, Po is given by (13) at the top of the

page.

V. ASYMPTOTIC SECRECY PERFORMANCE ANALYSIS

A. Asymptotic ASC Analysis

For the asymptotic ASC analysis, let us assume that γ̄D =
γ̄E = γ̄ → ∞. Using [7, Eq. (6)] and applying the trans-

formation γD = xγ̄ and γE = yγ̄, the asymptotic ASC is

approximated after some simplifications as
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where tj and wj are the abscissas and weight factors of

the Gauss Laguerre integration [9, Eq. (25.4.45], respectively,

and f1(t) = tµD−1 ln
(
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Similarly, I2 can be solved utilizing [8, Eqs. (8.970.1) and

(3.381.3)] to get
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On substituting (15) and (16) into (14), the asymptotic ASC

is obtained.

Remark 2: The asymptotic ASC depends on the correlation

coefficient, ρ, but is independent of the average SNR, γ̄.

B. Asymptotic SOP Analysis
For the asymptotic analysis, let us observe (12) and (13) at

high values of γ̄D for a constant γ̄E . It is noted that for high

γ̄D, the dominant term in the expression for Po corresponds

to the smallest power of γ̄D. This occurs for n = r = 0. As a

result, the asymptotic slope of the SOP curves is
αDµD

2 , which

indicates that the secrecy diversity order of the considered
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Fig. 1. Comparison of simulated, analytical (4), and asymptotic (14) ASC
versus average SNR for different values of ρ.
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Fig. 2. Comparison of asymptotic ASC performance penalty versus ρ for
different values of α and µ.
system depends only on the non-linearity and the multipath

clusters of the main channel for a given γ̄E .

Remark 3: The asymptotic SOP performance will improve

for a channel with less severe nonlinearity and more scattering

clusters (i.e., greater values of α and µ). Using the asymptotic

SOP analysis, it is possible to obtain the exact value of

the correlation dependent horizontal shift or SNR penalty to

achieve a given Po which is elaborated in the description of

Fig. 3.

VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we plot the derived analytical results as-

suming that αD = αE = α and µD = µE = µ. Although

the derived exact expressions for ASC and SOP are expressed

in terms of infinite series, these infinite summations converge

quickly for finitely small values of k and r. To numerically

evaluate the infinite series in (7), (8), (12), and (13), we

have truncated the series in each expression to the same finite

number of terms N = 10, which results in a sufficiently small

truncation error. and the simulation results match with the

analytical results upto fourth significant digit. The convergence

of the infinite series can also be proved analytically using

Cauchy Ratio test [19].

Fig. 1 shows a comparison of ASC for different values of ρ
with α = 2 and µ = 1. It is seen from the figure that the ASC

is better for lower ρ compared to the ASC for higher ρ. This

is because a larger value of ρ represents a stronger correlation

between the main and eavesdropper channels indicating that

the eavesdropper is very close to the legitimate receiver. We

also note from Fig. 1 that at high SNR, the ASC saturates

and there is no further improvement in ASC, which is also

corroborated by the asymptotic ASC analysis presented in

Section V-A.
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Fig. 3. Comparison of simulated, analytical (12), and asymptotic SOP versus
γ̄D for different values of ρ and γ̄E=10 dB.

The asymptotic ASC performance penalty due to correlation

shown in 2 can be quantified by computing the difference be-

tween the asymptotic ASC using (14) and the asymptotic ASC

using [7, Eq. (7)] for the uncorrelated main and eavesdropper

channels. As seen from the figure, the ASC performance

penalty increases with ρ. Moreover, the ASC performance

penalty is lesser for higher values of α and µ which indicate

better channel conditions.

A comparison of SOP for different values of ρ as a function

of γ̄D for γ̄E=10 dB with fixed Rs=1 is shown in Fig. 3. It is

observed that as the value of ρ increases, the SOP performance

improves for moderate to high γ̄D while the converse is true

for lower values of γ̄D . This observation is in line with the

results obtained in [20]. Further, we observe that for ρ=0.5,

the SOP is 0.03273 and 0.00977 at 40 dB and 50 dB SNR,

respectively. Thus, the slope of the curve is log10(0.03273)−
log10(0.00977) = 0.525051 ≈ 0.525 = αDµD/2, which

is also justified by the asymptotic SOP analysis in Section

V-B. Fig. 3 also highlights that the effect of correlation is

to introduce some sort of horizontal shift or SNR penalty

for a given SOP. For instance, for Po = 10−2, the required

γ̄D ≈ 46 dB for ρ = 1 while γ̄D ≈ 50 dB for ρ = 0.5. This

indicates an SNR penalty of around 4 dB. Moreover, this SNR

penalty significantly depends on the correlation between the

two channels because the penalty is low as ρ increases from

0.1 to 0.5 and and is higher when ρ increases from 0.5 to 1.
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