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ABSTRACT: Repeat expansion has been implicated in 10

out of 17 candidate genes identified for autosomal

dominant cerebellar ataxias (ADCAs)—commonly referred

as spinocerebellar ataxias (SCAs). Though genetically

distinct, the SCAs share a large number of features that

confound their clinical classification. In addition, there is a

difference in the prevalence and phenotypic expression of

ataxias between different ethnic groups. We have created a

new SCA-locus-specific variation database (LSVD) that

aims to catalog and integrate information on SCAs

associated with trinucleotide repeat expansion (SCA1,

SCA 2, SCA 3, SCA 6, SCA 7, SCA 8, SCA 12, SCA 17,

Friedreich’s ataxia [FRDA], and dentatorubral-pallidoluy-

sian atrophy [DRPLA]) from all over the world. The

database has been developed using the Leiden Open

(source) Variation Database (LOVD) software (Leiden

University Medical Center, Leiden, the Netherlands). The

database houses detailed information on clinical features,

such as age and symptom at onset, mode of inheritance,

and genotype information, pertaining to the SCA patients

from more than 400 families across India. All the compiled

genotype data conforms to the HGVS Nomenclature

guidelines. This would be a very useful starting point for

understanding the molecular correlates of phenotypes in

ataxia—a multilocus disease in which related molecular

mechanisms converge to overlapping phenotypes. The

database is accessible online at http://miracle.igib.res.in/

ataxia.
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Introduction

Spinocerebellar ataxias (SCAs) are a group of neurodegenerative

disorders presenting with progressive cerebellar ataxia and associated

subtle signs [Cummings and Zoghbi, 2000]. Nearly 30 loci have been

identified to be associated with ataxia, including candidate linkage

regions and characterized genes (Table 1). SCAs have been broadly

grouped into three categories, as proposed by Harding based on

cerebellar ataxia, ophthalmoplegia, and associated clinical symptoms

[Harding, 1993; Duenas et al., 2006; Everett and Wood, 2004].

Autosomal dominant cerebellar ataxia (ADCA)-I, a more hetero-

geneous group that includes SCA1, SCA2, SCA3, SCA4, SCA8,

SCA12, SCA13, SCA18-25, SCA27-29, and dentatorubral-pallido-

luysian atrophy (DRPLA), presents with pyramidal features,

extrapyramidal signs, and amyotrophy [Orr et al., 1993; Imbert

et al., 1996; Pulst et al., 1996; Kawaguchi et al., 1994; Flanigan et al.,

1996; Koob et al., 1999; Holmes et al., 1999; Waters et al., 2006;

Devos et al., 2001; Verbeek et al., 2004; Knight et al., 2004; Vuillaume

et al., 2002; Chung et al., 2003; Schelhaas et al., 2004; Swartz et al.,

2002; Stevanin et al., 2005; Yu et al., 2005; van Swieten et al., 2003;

Cagnoli et al., 2006; Koide et al., 1994]. Additionally, pigmentary

retinal degeneration and seizures are observed in ADCA-II (SCA7)

and ADCA-IV (SCA10 and SCA17), respectively [David et al., 1997;

Matsuura et al., 2000; Nakamura et al., 2001]. Only ADCA-III

(SCA6, SCA5, SCA11, SCA14-16, and SCA26) has pure cerebellar

syndrome [Zhuchenko et al., 1997; Ikeda et al., 2006; Worth et al.,

1999; Chen et al., 2003; Hara et al., 2004; Miyoshi et al., 2001]. In the

initial stage of the disease, each of the SCAs to some extent can be

clinically distinguished. However, as the disease progresses, there is a

significant overlap of clinical features between members of ADCA.

Among the ADCAs, 10 loci have been associated with repeat

instability. The repeats of these loci, the majority of which are

triplets, especially CNG (N is any nucleotide), are located either in

coding or noncoding regions of respective disease genes (Table 1).

SCA10 is an exception, in which there is a pentanucleotide repeat

expansion in the noncoding (intronic) region of the ATXN10 gene.

These repeats become unstable once they cross a particular

threshold leading to disease manifestation [Cummings and

Zoghbi, 2000; Zoghbi, 2000]. The trinucleotide repeats are

polymorphic with respect to both length and interruption pattern

in the normal population. However, the extent of polymorphism

differs between loci (Table 1). In some cases, there is an overlap

between normal and expanded alleles whereas in some there is a

transition range between normal and expanded (mutated) alleles,

being either unstable normal alleles or premutation alleles

[Hellenbroich et al., 2004; Katayama et al., 2000; Matsuura et al.,

2006; Nardacchione et al., 1999; Ranum et al., 1999; Rolfs et al.,

2003; Zuhlke et al., 2002). The pathological threshold varies

depending on whether the repeat is coding or noncoding. In

polyglutamine (polyQ) disorders (caused by expansion of CAG
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repeats encoding glutamine), the repeat expansions are generally

small (30–40 triplets). In SCA6, repeats as small as 20 triplets are

sufficient to cause the disease. In contrast, massive expansions of

over thousands are observed in the repeats present in the

noncoding regions. The relative frequencies of different subtypes

of SCAs also vary between populations of different ethnic

backgrounds and geographical locations. Though the majority of

SCAs are prevalent in most of the studied populations, a few are

restricted to specific populations. For example, SCA3/Machado-

Joseph Disease (MJD) seems to be the major subtype worldwide,

representing more than 70% of the cases in Portugal [Gaspar et al.,

2001]. On other hand, DRPLA is mostly reported from Japan

[Sasaki, 2007], and SCA12 from India [Bahl et al., 2005; Srivastava

et al., 2001]. The prevalence is probably accounted for by regional

founder effects, as evidenced through linkage disequilibrium

studies using flanking markers at various loci like SCA1, SCA2,

SCA3, SCA6, SCA12, DRPLA, and FRAXA in different populations

[Bahl et al., 2005; Basu et al., 2000; Chakravarty and Mukherjee,

2002; Choudhry et al., 2001; Cossee et al., 1997; Eichler et al., 1994;

Gaspar et al., 2001; Imbert et al., 1996; Mittal et al., 2005a, 2005b;

Rubinsztein et al., 1994; Saleem et al., 2000; Terasawa et al., 2004].

In a few ataxias, disease prevalence correlates with the frequency of

repeats in the higher range of normal alleles (LNs) and occurrence

of stabilizing interruptions in the repeat stretch [Cossee et al., 1997;

Takano et al., 1998; Saleem et al., 2000; Mittal et al., 2005b].

Besides differences in prevalence, there is also variation across

different ethnic groups in clinical features, which confound clinical

classification of SCAs. Heterogeneity in clinical phenotype also

indicates the existence of disease-modifying factors in these

disorders. It is therefore imperative to develop an integrated

database cataloging variations with clinical features of ataxia from

different global populations. Over the last 10 years our group has

been involved in genetic studies of various hereditary ataxias and

has built up the largest resource of ataxia in India. We have reported

differences in their prevalence and have also identified founders for

various SCAs in the Indian population [Bahl et al., 2005; Choudhry

et al., 2001; Mittal et al., 2005a, 2005b; Padiath et al., 2005;

Srivastava et al., 2001]. All the ataxias are not prevalent in India

(Fig. 1) and their frequencies vary across different ethnic

populations of India [Basu et al., 2000; Krishna et al., 2007; Mittal

et al., 2005b]. Keeping this objective in mind, we have built a locus-

specific variation database (LSVD) for ataxia (named SCA-LSVD),

which is specifically focused toward genes that have repeat

involvement. We initiated the LSVD activity with the clinical and

genetic information on nearly 400 families of ataxia reported from

various parts of Northern India of Indo-European origin.
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Figure 1. Frequency of different SCAs in the North Indian
population. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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Data Source and Organization

The database has information on probands of 400 SCA families

from the All India Institute of Medical Sciences (AIIMS), a

premier tertiary referral center in north India, in which we

screened for various SCAs from 1998 to 2007. These samples have

been collected following the ethical guidelines of India Council of

Medical Research (ICMR) with prior consent of the patients.

Screening has been carried out for repeat expansions at SCA1,

SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, Friedreich’s

Figure 2. An example of a complete variant listing for an individual patient in SCA-LSVD. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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ataxia (FRDA), and DRPLA in patients and affected and

unaffected family members. Repeat sizes were estimated by PCR

amplification using fluorescently-labeled primers. The size of the

fluorescently-labeled amplicon was determined by GeneScan

analysis on an ABI Prism 3130xl Genetic Analyzer (Applied

Biosystems [ABI], Foster City, CA). Sequencing was carried out

using dideoxy chain terminator chemistry on an ABI Prism 3130

Automated Genetic Analyzer to confirm the repeat size and

interruption pattern. The repeat-related data generated for all the

probands in eight SCA genes, excluding SCA8 and SCA17, from

400 families is registered in the database. Since FRDA shares

clinical features with SCA and is also associated with repeat

expansion we have included variations at the FRDA locus in the

database. In addition, related phenotypic information, e.g., age

gender, age at onset, symptom at onset, mode of inheritance, and

ethnic and geographic origin of the patient, for all 400 patients are

available for future genotype–phenotype correlation analyses.

Genotype data was compiled and transformed according to the

HGVS Nomenclature guidelines for reporting genomic variations.

SCA-LSVD

The SCA-LSVD was developed based on the Leiden Open

Variation Database (LOVD; Leiden University Medical Center,

Leiden, the Netherlands), which is a commonly used tool for

organizing locus-centric variation data [Fokkema et al., 2005].

The database is supported on the back end by a MySQL relational

database management system. The resource is linked to various

other gene databases, which would assist the user to accrue

detailed information related to the gene. In addition, plug-ins

have been created to export the data to a standard meta-tagged

format to aid future integration of data with various resources.

This would help the user to have a genome-centered and holistic

view of the variation, which would be useful in providing

biologically meaningful insights on the variation.

The database (Fig. 2) provides, at each SCA loci, information

on gene name, chromosomal location link to the reference

sequence, advance search option, variant submission link, and

registration guidelines for a new submitter (http://miracle.igib.

res.in/ataxia).

Analysis of the Variations in SCA-LSVD

SCA-LSVD currently contains information on genetic testing

carried out for repeat-containing loci implicated in SCA

pathogenesis in 400 probands of Indian origin. SCA2 is the most

represented type, with a frequency of 16%, followed by SCA12

(12%), SCA1 (7%), SCA3 (3%), FRDA (4%), and SCA7 (1%). A

total of 57% of both inherited and sporadic cases do not show

identifiable expansion at any of the loci. So far we have not

observed SCA6, SCA8, SCA17, or DRPLA in our cohort. In SCA1,

SCA2, and SCA3, gait ataxia is the most common symptom at

onset. For SCA12, hand tremor is the earliest feature of the disease

but there are a few cases in which gait ataxia is the presenting

symptom, a feature which has not been observed in previous

studies [Bahl et al., 2005; Fujigasaki et al., 2001; Holmes et al.,

1999; Srivastava et al., 2001].

Future Perspectives

At present, the SCA-LSVD houses data generated in-house. We

intend to make it a central database for locus-specific variation

information on SCA genes for community participation. We are in

the process of curating variations on all ataxia-related genes. In

addition, we are working toward making the data interoperable

with various genomics databases and workflows, which would

allow users to look at the variations from a genomics perspective.

We have initiated this by porting the variations as a University of

California, Santa Cruz (UCSC; http://genome.ucsc.edu) track and

would in the future be integrating this database with other

population variation resources such as the Haplotype Map of the

Human Genome (International HapMap Project; www.hapmap.

org) and the Indian Genome Variation Resources [Indian Genome

Variation Consortium, 2008]. We aim to update this database with

associated haplotypes in disease gene region, additional micro-

phenotypic information in concordance with the international

cooperative ataxia rating scale (ICARS), and data from other

research groups working in ataxia. This would facilitate research-

ers in genotype-to-phenotype (G2P) studies and provide a helpful

resource for tracing founder chromosomes and for discovery of

novel mutations. SCA-LSVD would also allow cross-comparisons

between different cohorts of SCA patients and help in under-

standing the molecular correlates of phenotypes in ataxia, a

multilocus disease that converges to overlapping phenotypes,

probably due to related molecular mechanisms.
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