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Among the large amount of genes presented inmicroarray gene expression data, only a small
fraction of them is effective for performing a certain diagnostic test. In this regard, a new
feature selection algorithm is presented based on rough set theory. It selects a set of genes
frommicroarray data by maximizing the relevance and significance of the selected genes. A
theoretical analysis is presented to justify the use of both relevance and significance criteria
for selecting a reduced gene set with high predictive accuracy. The importance of rough
set theory for computing both relevance and significance of the genes is also established.
The performance of the proposed algorithm, along with a comparison with other related
methods, is studied using the predictive accuracy of K-nearest neighbor rule and support
vectormachine on five cancer and two arthritismicroarray data sets. Among seven data sets,
the proposed algorithm attains 100% predictive accuracy for three cancer and two arthritis
data sets, while the rough set based two existing algorithms attain this accuracy only for
one cancer data set.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Recent advancement and wide use of high-throughput technology are producing an explosion in using gene expression
phenotype for identification and classification in a variety of diagnostic areas. An important application of gene expression
data in functional genomics is to classify samples according to their gene expression profiles such as to classify cancer versus
normal samples or to classify different types or subtypes of cancer [1,2].

A microarray gene expression data set can be represented by an expression table, T = {wij|i = 1, . . . ,m, j = 1, . . . , n},
where wij ∈ ℜ is the measured expression level of gene Ai in the jth sample, m and n represent the total number of
genes and samples, respectively. Each row in the expression table corresponds to one particular gene and each column to
a sample [1,2]. However, for most gene expression data, the number of training samples is still very small compared to
the large number of genes involved in the experiments. The number of samples is likely to remain small for many areas of
investigation, especially for human data, due to the difficulty of collecting and processingmicroarray samples [1]. When the
number of genes is significantly greater than the number of samples, it is possible to find biologically relevant correlations
of gene behavior with the sample categories [3,4].

However, among the large amount of genes, only a small fraction of them is effective for performing a certain task. Also,
a small subset of genes is desirable in developing gene expression based diagnostic tools for delivering precise, reliable, and
interpretable results. With the gene selection results, the cost of biological experiment and decision can be greatly reduced
by analyzing only the marker genes. Hence, identifying a reduced set of most relevant and significant genes is the goal of
gene selection. The small number of training samples and a large number of genes make gene selection a more relevant and
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challenging problem in gene expression based classification. This is an important problem in machine learning and referred
to as feature selection [5–7].

Conventional methods of feature selection involve evaluating different feature subsets using some index and selecting
the best among them. Depending on the way of computing the feature evaluation index, feature selection methods are
generally divided into two broad categories: filter approach [5,6,8–11] and wrapper approach [5,7,12–14]. Unlike wrapper
approach [5,7,12–15], in filter approach, the algorithms do not perform classification of the data in the process of feature
evaluation. Before applicationof the actual learning algorithm, thebest subset of features is selected in onepass by evaluating
some predefined criteria, which are independent of the actual generalization performance of the learning machine. Hence,
the filter approach is computationally less expensive and more general than that of wrapper approach. However, as the
wrapper approach uses the learning machine as a black box, it generally outperforms the filter approach in the aspect of
final predictive accuracy of the learning machine [5–15].

In feature selection process, an optimal feature subset is always relative to a certain criterion. In general, different criteria
may lead to different optimal feature subsets. However, every criterion tries to measure the discriminating ability of a
feature or a subset of features to distinguish different class labels. To measure the gene-class relevance, different statistical
and information theoretic measures such as the F-test, t-test [8,9], entropy, information gain, mutual information [8,10],
normalizedmutual information [11], and f -information [16] are typically used, and the sameor a differentmetric likemutual
information, f -information, the L1 distance, Euclidean distance, and Pearson’s correlation coefficient [8,10,17] is employed
to calculate the gene–gene redundancy. However, as the F-test, t-test, Euclidean distance, and Pearson’s correlation depend
on the actual gene expression values of the microarray data, they are very much sensitive to noise or outlier of the data set
[8,10,17,18]. On the other hand, as information measures depend only on the probability distribution of a random variable
rather than on its actual values, they are more effective to evaluate both gene-class relevance and gene–gene redundancy
[10,11,19–21].

Rough set theory [22,23] is a new paradigm to deal with uncertainty, vagueness, and incompleteness. It has been applied
to fuzzy rule extraction [24], reasoningwith uncertainty, fuzzymodeling, feature selection [25–28], microarray data analysis
[20,21,29,30], and so forth. It is proposed for indiscernibility in classification according to some similarity [22,31]. The rough
set theory has been applied successfully to feature selection of discrete valued data [25,26,32]. Given a data set with dis-
cretized attribute values, it is possible to find a subset of the original attributes using rough set theory that are themost infor-
mative; all other attributes can be removed from the data setwithminimal information loss. From the dimensionality reduc-
tion perspective, informative features are those that aremost useful in determining classifications from their values [33,34].

Oneof thepopular rough set based feature selectionalgorithms is quick reduct algorithm[24,35] inwhich thedependency
or quality of approximation of single attribute is first calculated with respect to the class labels or decision attribute. After
selecting the best attribute, other attributes are added to it to produce better quality. Additions of attributes are stopped
when the final subset of attributes has the same quality as that of maximum possible quality of the data set or the quality of
the selected attributes remains same. Other notable algorithms include discernibilitymatrix basedmethod [36,37], dynamic
reducts [38], and so forth. However, all these approaches are computationally very costly. The variable precision rough set
model [39–41], tolerance rough sets [42,43], and probabilistic rough sets [44–46] are the extensions of the original rough set
based knowledge representation. Different heuristic approaches based on rough set theory are also developed for feature
selection [47,48]. Combining rough sets and genetic algorithms, different algorithms have been proposed in [49–51] to
discover optimal or close to optimal subset of features.

In this paper, a new feature selection method is proposed to select a set of genes from microarray gene expression data
by maximizing both relevance and significance of the selected genes. It employs rough set theory to compute the relevance
and significance of the genes. Hence, the only information required in the proposed feature selection method is in the form
of equivalence partitions for each gene, which can be automatically derived from the given microarray data set. This avoids
the need for domain experts to provide information on the data involved and ties in with the advantage of rough sets is
that it requires no information other than the data set itself. The use of both relevance and significance criteria for selecting
genes with high predictive accuracy is theoretically justified based on the rough set theory. The importance of rough sets
over mutual information is also established. The performance of the proposed approach is compared with that of existing
approaches using the predictive accuracy of K-nearest neighbor rule and support vector machine on different microarray
data sets.

The structure of the rest of this paper is as follows: Section2 introduces thenecessarynotions of rough sets. The theoretical
analysis on the relationships of dependency, relevance, and significance is presented in Section 3 using rough set theory.
The proposed feature selectionmethod is described in Section 4 for selecting relevant and significant genes frommicroarray
data sets. Section 5 presents a methodology to compute rough set based relevance and significance criteria for continuous
valued gene expression data set. A few case studies and a comparison with other related methods are presented in Section
6. Concluding remarks are given in Section 7.

2. Rough sets

The theory of rough sets begins with the notion of an approximation space, which is a pair 〈U, A〉, where U be a non-
empty set, the universe of discourse, U = {x1, . . . , xi, . . . , xn} and A is a family of attributes, also called knowledge in the
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universe. V is the value domain of A and f is an information function f : U × A → V . An approximation space is also
called an information system [22]. Any subset P of knowledge A defines an equivalence, also called indiscernibility, relation
IND(P) on U

IND(P) = {(xi, xj) ∈ U × U|∀a ∈ P, f (xi, a) = f (xj, a)}.

If (xi, xj) ∈ IND(P), then xi and xj are indiscernible by attributes from P. The partition of U generated by IND(P) is
denoted as

U/IND(P) = {[xi]P : xi ∈ U}, (1)

where [xi]P is the equivalence class containing xi. The elements in [xi]P are indiscernible or equivalent with respect to
knowledge P. Equivalence classes, also termed as information granules, are used to characterize arbitrary subsets of U. The
equivalence classes of IND(P) and the empty set ∅ are the elementary sets in the approximation space 〈U, A〉.

Given an arbitrary set X ⊆ U, in general it may not be possible to describe X precisely in 〈U, A〉. One may characterize
X by a pair of lower and upper approximations defined as follows [22]:

P(X) =
⋃

{[xi]P|[xi]P ⊆ X} and P(X) =
⋃

{[xi]P|[xi]P ∩ X �= ∅}. (2)

Hence, the lower approximationP(X) is the union of all the elementary setswhich are subsets ofX , and the upper approx-

imation P(X) is the union of all the elementary sets which have a non-empty intersection with X . The tuple 〈P(X), P(X)〉
is the representation of an ordinary set X in the approximation space 〈U, A〉 or simply called the rough set of X . The lower

(respectively, upper) approximation P(X) (respectively, P(X)) is interpreted as the collection of those elements of U that
definitely (respectively, possibly) belong to X . The lower approximation is also called positive region sometimes, denoted

as POSP(X). A set X is said to be definable or exact in 〈U, A〉 iff P(X) = P(X). Otherwise X is indefinable and termed as a

rough set. BNP(X) = P(X) \ P(X) is called a boundary set.

Definition 1. An information system 〈U, A〉 is called a decision table if the attribute set A = C ∪ D, where C is the
condition attribute set and D is the decision attribute set. The dependency between C and D can be defined as [22]

γC(D) = |POSC(D)|
|U| , (3)

where POSC(D) = ∪CXi, Xi is the ith equivalence class induced by D and | · | denotes the cardinality of a set.

An important issue in data analysis is discovering dependency between attributes. Intuitively, a set of attributes D

depends totally on a set of attributesC, denoted asC ⇒ D, if all attribute values fromD are uniquely determined by values
of attributes from C. If there exists a functional dependency between values of D and C, then D depends totally on C. The
dependency can be defined in the following way:

Definition 2. Given C, D ⊆ A, it is said that D depends on C in a degree κ , denoted as C ⇒κ D, if

κ = γC(D) = |POSC(D)|
|U| , where 0 ≤ κ ≤ 1. (4)

If κ = 1, D depends totally on C, if 0 < κ < 1, D depends partially (in a degree κ) on C, and if κ = 0, then D does not
depend on C [22].

To what extent an attribute is contributing to calculate the dependency on decision attribute can be calculated by the
significance of that attribute. The change in dependency when an attribute is removed from the set of condition attributes,
is a measure of the significance of the attribute. The higher the change in dependency, the more significant the attribute is.
If the significance is 0, then the attribute is dispensable.

Definition 3. Given C, D and an attribute A ∈ C, the significance of the attribute A is defined as [22]:

σC(D,A) = γC(D) − γC−{A}(D). (5)

3. Relationships of Max-Dependency, Max-Relevance, and Max-Significance

This sectionestablishes the relationships amongMax-Dependency,Max-Relevance, andMax-Significanceusing the rough
set theory.
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3.1. Max-Dependency

Let C = {A1, . . . ,Ai, . . . ,Aj, . . . ,Am} denotes the set ofm condition attributes or features of a given data set. In terms
of rough sets, the task of attribute or feature selection is to find a feature subset S ⊆ C with d < m features {Ai}, which
jointly have the largest dependency on the target class or decision attribute set D. This scheme, called Max-Dependency,
has the following form:

maxD(S, D), D = γ{Ai,i=1,...,d}(D), (6)

where γ{Ai,i=1,...,d}(D) represents the dependency between the feature subset S = {Ai, i = 1, . . . , d} and target class label
D and is given by (4).

Obviously, when d equals 1, the solution is the feature that maximizes γAj
(D); (1 ≤ j ≤ m). When d > 1, a simple

incremental search scheme is to add one feature at one time. This type of selection is called the first order incremental
search. By definition of first order search, it is assumed that Sd−1, that is, the set of d−1 features, has already been obtained.
The task is to select the optimal dth feature Ad from the set {C − Sd−1} that contributes to the largest increase of γS(D).
The quick reduct algorithm of Chouchoulas and Shen [35] is based on the principle of Max-Dependency.

The dependency D in (6) is represented by the dependency of (4), that is, D = γSd
(D), where Sd = {Sd−1,Ad}.

Hence, from the definition of dependency in rough sets, the first order incremental search algorithm optimizes the following
condition to select dth feature from the set {C − Sd−1}:

max
Aj∈{C−Sd−1}

{γ{Sd−1,Aj}(D)}, (7)

which is equivalent to optimize the following condition given the set of selected features Sd−1:

max
Aj∈{C−Sd−1}

{γ{Sd−1,Aj}(D) − γSd−1
(D)} = max

Aj∈{C−Sd−1}
{σSd

(D,Aj)}. (8)

Obviously, the Max-Dependency is equivalent to either maximizing the joint dependency between selected feature set
and the target class label ormaximizing the significanceof the candidate featurewith respect to thealready-selected features.

Despite the theoretical value of Max-Dependency, it is often hard to generate the resultant equivalence classes due to
two difficulties in the high-dimensional space: the number of samples is often insufficient and the generation of resultant
equivalence classes is usually an ill-posed problem. Another drawback ofMax-Dependency is the slow computational speed.
Theseproblemsaremostpronounced for real lifeapplications. If each featurehas c categoricalordiscrete statesandn samples,
then d features could have a maximum min{cd, n} equivalence classes. When the number of equivalence classes increases
very quickly and gets comparable to the number of samples n, the joint dependency of these features cannot be estimated
correctly. Hence, although Max-Dependency feature selection might be useful to select a very small number of features
when n is large, it is not appropriate for real life applications where the aim is to achieve high classification accuracy with a
reasonably compact set of features.

3.2. Max-Relevance and Max-Significance

As Max-Dependency criterion is hard to implement, an alternative is to select features based on maximal relevance
criterion (Max-Relevance). Max-Relevance is to search features satisfying (9), which approximates D(S, D) in (6) with the
mean value of all dependency values between individual feature Ai and target class label D:

maxR(S, D), R = 1

|S|
∑

Ai∈S

γAi
(D). (9)

It is likely that features selected according toMax-Relevance could have rich redundancy, that is, the dependency among
these features could be large. When two features highly depend on each other, the respective class discriminative power
would not change much if one of them were removed. Therefore, the following maximal significance (Max-Significance)
condition can be added to select mutually exclusive features:

max S(S, D), S = 1

|S|(|S| − 1)

∑

Ai �=Aj∈S

j>i

{σ{Ai,Aj}(D,Ai) + σ{Ai,Aj}(D,Aj)}. (10)

The criterion combining the above two constraints is called “maximal-relevance-maximal-significance” (MRMS). The
operator Φ(R, S) is defined to combine R and S , and the following simplest form is considered to optimize R and S

simultaneously:

maxΦ(R, S), Φ = R + S. (11)
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In practice [8,10,16], incremental search methods can be used to find the near-optimal features defined by Φ(·). Given
the feature setSd−1 with d−1 features, the task is to select the dth feature from the set {C−Sd−1}. This is done by selecting
the feature that maximizes Φ(·). The respective incremental algorithm optimizes the following condition:

max
Aj∈{C−Sd−1}

⎡

⎣γAj
(D) + 1

d − 1

∑

Ai∈Sd−1

σ{Ai,Aj}(D,Aj)

⎤

⎦ . (12)

Hence, the combination ofMax-Relevance andMax-Significance, that is, theMRMS criterion, is equivalent tomaximizing
thedependencybetween the candidate featureAd andclass labelD aswell asmaximizing the averagevalueof all significance
values of the candidate feature Ad with respect to the already-selected feature Ai ∈ Sd−1.

The following conclusions can be drawn from the above discussions:

(i) Maximizing the first term of (12), that is, maximizing R(S, D) of (9), only leads to Max-Relevance. Clearly, the dif-
ference between Max-Relevance and Max-Dependency of (6) is rooted in the different definitions of dependency in
terms of rough set theory. Eq. (9) does not consider the joint effect of features on the target class D. On the contrary,
Max-Dependency of (6) considers the dependency between the data distribution in multi-dimensional space and the
target class D. This difference is critical in many circumstances.

(ii) Maximizing the second term of (12) only, that is, maximizing S(S, D) of (10), is equivalent to searching mutually
exclusive or independent features. This is not sufficient for selecting highly discriminative features.

(iii) The equivalence between Max-Dependency and Max-Significance indicates that Max-Significance is an optimal first
order implementation of Max-Dependency.

(iv) Compared toMax-Dependency, theMRMS criterion avoids the estimation of resultant equivalence classes formultiple
features. Instead, computing the resultant equivalence classes for two features couldbemucheasier andmoreaccurate.
This also leads to a more efficient feature selection algorithm.

In this regard, it should be noted that the minimum-redundancy-maximum-relevance (mRMR) based feature selection
algorithm [8,10] selects a subset of features from the whole feature set by maximizing the relevance and minimizing the
redundancy of the selected features. However, the redundancy measure of the mRMR method does not take into account
the supervised information of class labels, while both relevance and significance criteria of the proposed MRMS method
are computed based on the class labels. Hence, the proposed MRMS method provides better performance than the existing
mRMR method.

4. Proposed feature selection algorithm

In real data analysis such as microarray data, the data set may contain a number of insignificant features. The presence
of such irrelevant and insignificant features may lead to a reduction in the useful information. Ideally, the selected features
should have high relevance with the classes and high significance in the feature set. The features with high relevance are
expected to be able to predict the classes of the samples. However, if insignificant features are present in the subset, theymay
reduce the prediction capability. A feature set with high relevance and high significance enhances the predictive capability.
Accordingly, a measure is required that can enhance the effectiveness of feature set. In this paper, the rough set theory is
used to select the relevant and significant features or genes from high dimensional microarray gene expression data sets.

4.1. Maximum Relevance-Maximum Significance

Let C = {A1, . . . ,Ai, . . . ,Aj, . . . ,Am} denotes the set of m features or genes of a given microarray data set and S is

the set of selected genes. Define f̂ (Ai, D) as the relevance of the gene Ai with respect to the class labels D while f̃ (Ai,Aj)
as the significance of the geneAj with respect to the geneAi. The total relevance of all selected genes is, therefore, given by

Jrelev =
∑

Ai∈S

f̂ (Ai, D), (13)

while the total significance among the selected genes is

Jsignf =
∑

Ai �=Aj∈S

f̃ (Ai,Aj). (14)

Therefore, the problem of selecting a set S of relevant and significant genes from the whole set C of m genes is equivalent
to maximize both Jrelev and Jsignf , that is, to maximize the objective function J , where
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J = Jrelev + βJsignf =
∑

Ai∈S

f̂ (Ai, D) + β
∑

Ai �=Aj∈S

j>i

f̃ (Ai,Aj), (15)

where β is a weight parameter. To solve the above problem, the following greedy algorithm is used.

(i) Initialize C ← {A1, . . . ,Ai, . . . ,Aj, . . . ,Am}, S ← ∅.
(ii) Calculate the relevance f̂ (Ai, D) of each feature or gene Ai ∈ C.

(iii) Select the gene Ai as the most relevant gene that has the highest relevance value f̂ (Ai, D). In effect, Ai ∈ S and
C = C \ Ai.

(iv) Repeat the following two steps until the desired number of genes is selected.
(v) Calculate the significance of each of the remaining genes of C with respect to the selected genes of S and remove it

from C if it has zero significance value with respect to any one of the selected genes.
(vi) From the remaining genes of C, select gene Aj that maximizes the following condition:

f̂ (Aj, D) + β

|S|
∑

Ai∈S

f̃ (Ai,Aj). (16)

As a result of that, Aj ∈ S and C = C \ Aj .

Both the relevance and significance of a gene are calculated based on the rough set theory. The relevance f̂ (Ai, D) of a

gene Ai with respect to the class labels D is calculated using (4), while significance f̃ (Ai,Aj) of the gene Aj with respect to
the already-selected gene Ai is computed using (5).

4.2. Computational complexity

The rough set based proposed gene selection method has low computational complexity with respect to the number of
genes in the original microarray gene expression data set.

(i) The computation of the relevance ofm genes is carried out in step 2 of the proposed algorithm, which hasO(m) time
complexity.

(ii) The selection ofmost relevant gene from the set ofm genes, which is carried out in step 3, has also a complexityO(m).
(iii) There is only one loop in step 4 of the proposed gene selection method, which is executed (d − 1) times, where d

represents the number of selected genes.
(a) The computation of significance of a candidate genewith respect to the already-selected genes takes only a constant

amount of time. If ḿ represents the cardinality of the already-selected gene set, the total complexity to compute
the significance of (m − ḿ) candidate genes, which is carried out in step 5, is O(m − ḿ).

(b) The selection of a gene from (m − ḿ) candidate genes by maximizing both relevance and significance, which is
carried out in step 6, has also a complexity O(m − ḿ).

Hence, the total complexity to execute the loop (d− 1) times is (O((d− 1)((m− ḿ)+ (m− ḿ)))) = O(d(m− ḿ)).

In effect, the selection of a set of d relevant and significant genes from thewhole set ofm genes using the proposed rough
setbasedfirstorder incremental searchmethodhasanoverall computational complexityof (O(m)+O(m)+O(d(m−ḿ))) =
O(m) as d, ḿ ≪ m.

5. Generation of equivalence classes

Inmicroarray gene expression data, the class labels of samples are represented by discrete symbols, while the expression
values of genes are continuous. Hence, to measure both relevance and significance of genes using rough set theory, the
continuous expression values of a gene have to be divided into several discrete partitions to generate equivalence classes
[16,52,53].

Different discretization methods such as discretization based on mean and standard deviation [16], equal frequency
binning [52], Roughfication method [21], and so forth can be employed to discretize the continuous gene expression values.
However, the inherent error that exists in discretization process is of major concern in the computation of relevance and
significance of continuous valued genes [53]. To address this problem, a fuzzy set based discretization method is presented
next to generate equivalence classes required to compute both relevance and significance of genes using rough set theory. In
this context, it shouldbenoted that the fuzzy-rough sets [26,54–57] andneighborhood rough sets [58] canhandle continuous
valued attributes without any discretization.
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The family of normal fuzzy sets produced by a fuzzy partitioning of the universe of discourse can play the role of fuzzy
equivalence classes. Given a finite set U, C is a fuzzy condition attribute set in U, which generates a fuzzy equivalence
partition on U. If c denotes the number of fuzzy equivalence classes generated by the fuzzy equivalence relation and n is

the number of objects in U, then c-partitions of U are sets of (cn) values {µC
ij } that can be conveniently arrayed as a (c × n)

matrix MC = [µC
ij ], which is denoted by

MC =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

µC
11 µC

12 . . . µC
1n

µC
21 µC

22 . . . µC
2n

. . . . . . . . . . . .

µC
c1 µC

c2 . . . µC
cn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(17)

subject to
∑c

i=1 µC
ij = 1, ∀j, and for any value of i, if k = arg maxj{µC

ij }, then maxj{µC
ij } = maxl{µC

lk} > 0, where µC
ij ∈

[0, 1] represents themembership of object xj in the ith fuzzy equivalence partition or class Fi. The above axioms should hold
for every fuzzy equivalence partition,which correspond to the requirement that an equivalence class is nonempty. Obviously,
this definition degenerates to the normal definition of equivalence classes when the equivalence relation is nonfuzzy.

Each row of the matrix MC is a fuzzy equivalence partition or class [32,59,60]. In the proposed gene selection method,
the π function in one dimensional form is used to assign membership values to different fuzzy equivalence classes for the
input genes. A fuzzy set with membership function π(x; c̄, σ ) represents a set of points clustered around c̄, where

π(x; c̄, σ ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2
(

1 − ‖x−c̄‖
σ

)2
for σ

2
≤ ‖x − c̄‖ ≤ σ ,

1 − 2
( ‖x−c̄‖

σ

)2
for 0 ≤ ‖x − c̄‖ ≤ σ

2
,

0 otherwise,

(18)

whereσ > 0 is the radius of theπ functionwith c̄ as the central point and‖·‖denotes the Euclideannorm.When thepattern
x lies at the central point c̄ of a class, then ‖x − c̄‖ = 0 and its membership value is maximum, that is, π(c̄; c̄, σ ) = 1. The
membership value of a point decreases as its distance from the central point c̄, that is,‖x− c̄‖ increases.When‖x− c̄‖ = (σ

2
),

the membership value of x is 0.5 and this is called a crossover point [61]. The (c × n) matrix MAi
, corresponding to the ith

gene Ai, can be calculated from the c-fuzzy equivalence classes of the objects x = {x1, . . . , xj, . . . , xn}, where

µ
Ai

kj = π(xj; c̄k, σk)
∑c

l=1π(xj; c̄l, σl)
. (19)

In effect, each position µ
Ai

kj of the matrix MAi
must satisfy the following conditions:

µ
Ai

kj ∈ [0, 1];
c

∑

k=1

µ
Ai

kj = 1, ∀j and for any value of k, if

s = arg max
j

{µAi

kj }, thenmax
j

{µAi

kj } = max
l

{µAi

ls } > 0.

After the generation of the matrix MAi
corresponding to the geneAi, the object xj is assigned to one of the c equivalence

classes based on the maximum value of memberships of the object in different equivalence classes that follows next:

xj ∈ Fp, where p = arg max
k

{µAi

kj }.

Each input real valued gene in quantitative form can be assigned to different fuzzy equivalence classes in terms of
membership values using theπ fuzzy set with appropriate c̄ and σ . The centers and radii of theπ functions along each gene
axis are determined automatically from the distribution of the training patterns. In the proposed gene selection algorithm,
three fuzzy equivalence classes (c = 3), namely, low, medium, and high are considered. These three equivalence classes
correspond to under-expression, base-line, and over-expression of continuous valued genes, respectively. Corresponding to
three fuzzy sets low, medium, and high, the following relations hold:

c̄1 = c̄low(Ai); c̄2 = c̄medium(Ai); c̄3 = c̄high(Ai); σ1 = σlow(Ai); σ2 = σmedium(Ai); σ3 = σhigh(Ai).

The parameters c̄ and σ of each π fuzzy set are computed according to the following procedure [61]. Let m̄i be the mean
of the objects x = {x1, . . . , xj, . . . , xn} along the ith geneAi. Then m̄il and m̄ih are defined as the mean along the ith gene of
the objects having co-ordinate values in the range [Aimin

, m̄i) and (m̄i,Aimax ], respectively, whereAimax andAimin
denote the

upper and lower bounds of the dynamic range of gene Ai for the training set. For three fuzzy sets low, medium, and high,
the centers and corresponding radii are computed as follows:
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c̄low(Ai) = m̄il ; c̄medium(Ai) = m̄i; c̄high(Ai) = m̄ih;

σlow(Ai) = 2(c̄medium(Ai) − c̄low(Ai)); σhigh(Ai) = 2(c̄high(Ai) − c̄medium(Ai)); σmedium(Ai) = η × A

B
;

where A = {σlow(Ai)(Aimax − cmedium(Ai)) + σhigh(Ai)(cmedium(Ai) − Aimin
)}; B = {Aimax − Aimin

},

where η is a multiplicative parameter controlling the extent of the overlapping. The distribution of the patterns or objects
along each gene axis is taken into account, while computing the corresponding centers and radii of the fuzzy sets. Also, the
amount of overlap between the three fuzzy sets can be different along the different axis, depending on the distribution of
the objects or patterns.

6. Experimental results

The performance of the proposed rough set based maximum relevance-maximum significance (MRMS) method is ex-
tensively studied and compared with that of some existing algorithms, namely, minimum redundancy-maximum relevance
(mRMR) framework [8], Quick Reduct algorithm [35], Discernibility Matrix based approach [37], Roughfication [21], the
methods proposed by Valdes and Barton [30] and Fang and Busse [29]. The performance of the MRMS method is also
compared with that of Max-Dependency and Max-Relevance criteria, along with the comparison between fuzzy and crisp
equivalence classes [16,52]. The proposed MRMS algorithm is implemented in C language and run in LINUX environment
having machine configuration Pentium IV, 2.8 GHz, 1 MB cache, and 1 GB RAM.

To analyze the performance of different algorithms, the experimentation is done on five cancer and two arthritismicroar-
ray data sets. For eachdata set, 50 top-ranked genes is selected for analysis, and eachdata set is pre-processed by standarizing
each sample to zero mean and unit variance. The major metrics for evaluating the performance of different algorithms are
the classification accuracy of K-nearest neighbor (K-NN) rule and support vectormachine (SVM). To compute the prediction
accuracy of both SVM and K-NN rule, both leave-one-out cross-validation (LOOCV) and 10-fold cross-validation (10-fold CV)
are performed on each gene expression data set.

6.1. Gene expression data sets

In this paper, publicly available five cancer and two arthritis data sets are used. Since binary classification is a typical
and fundamental issue in diagnostic and prognostic prediction of both cancer and arthritis, different methods are compared
using the following binary class data sets.

(i) Breast Cancer: The breast cancer data set contains expression levels of 7129 genes in 49 breast tumor samples [62].
The samples are classified according to their estrogen receptor (ER) status: 25 samples are ER positive while other 24
samples are ER negative.

(ii) Leukemia: It is an affymetrix high density oligonucleotide array that contains 7070 genes and 72 samples from two
classes of leukemia [1]: 47 acute lymphoblastic leukemia and 25 acute myeloid leukemia.

(iii) Colon Cancer: The colon cancer data set contains expression levels of 2000 genes and 62 samples from two classes
[63]: 40 tumor and 22 normal colon tissues.

(iv) Lung Cancer: This data set contains 181 tissue samples: among them 31 are malignant pleural mesothelioma and rest
150 adenocarcinoma of the lung [64]. Each sample is described by the expression levels of 12,533 genes.

(v) Prostate Cancer: In this data set, 136 samples are grouped into two classes: 77 prostate tumor and 59 prostate normal
samples [65]. Each sample contains 12,600 genes.

(vi) Rheumatoid Arthritis versus Osteoarthritis (RAOA): The RAOA data set consists of gene expression profiles of thirty
patients: 21 with RA and 9 with OA [66]. The Cy5-labeled experimental cDNA and the Cy3 labeled common refer-
ence sample were pooled and hybridized to the lymphochips containing ∼18,000 cDNA spots representing genes of
relevance in immunology [66].

(vii) Rheumatoid Arthritis versus Healthy Controls (RAHC): The RAHC data set consists of gene expression profiling of pe-
ripheral blood cells from 32 patients with RA, three patients with probable RA and 15 age and sex matched healthy
controls performed on microarrays with a complexity of ∼26K unique genes (43K elements) [67].

6.2. Class prediction methods

Following two quantitative indices are used to evaluate the performance of different methods with respect to seven
microarray data sets.

6.2.1. Support vector machine

The support vector machine (SVM) [68] is a margin classifier that draws an optimal hyperplane in the feature vector
space; this defines a boundary that maximizes the margin between data samples in different classes, therefore leading to
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Table 1

Comparative performance of rough sets and mutual information using LOOCV.

Microarray Quantitative Rough sets + D1 Mutual information + D1 Rough sets + D2 Mutual information + D2

data set measures Accuracy Gene Accuracy Gene Accuracy Gene Accuracy Gene

Breast SVM 100 18 97.96 11 100 8 97.9 10

K-NN 100 45 93.88 6 98.0 27 95.9 6

Leukemia SVM 97.2 22 98.61 19 100 14 98.6 24

K-NN 98.6 47 95.83 25 100 37 98.6 42

Colon SVM 87.1 5 87.1 5 85.5 33 80.6 15

K-NN 83.9 3 88.71 40 77.4 23 79.0 46

Lung SVM 100 34 99.45 2 100 8 99.5 25

K-NN 100 38 99.45 2 99.5 9 99.5 20

Prostate SVM 89.7 44 96.32 47 94.9 48 94.9 12

K-NN 88.2 7 92.65 27 94.9 23 94.9 18

RAOA SVM 100 5 100 7 100 8 100 6

K-NN 100 3 100 11 100 12 96.7 7

RAHC SVM 90 20 98 10 100 33 96 13

K-NN 100 11 100 16 100 21 98 49

good generalization properties. A key factor in the SVM is to use kernels to construct nonlinear decision boundary. In the
present work, linear kernels are used.

6.2.2. K-nearest neighbor rule

The K-nearest neighbor (K-NN) rule [69] is used for evaluating the effectiveness of the reduced gene set for classification.
It classifies samples based on closest training samples in the feature space. A sample is classified by a majority vote of its
K-neighbors, with the sample being assigned to the class most common amongst its K-nearest neighbors. The value of K ,
chosen for the K-NN, is the square root of the number of samples in training set.

6.3. Importance of rough sets

In the proposed MRMS method, both the relevance and significance of a gene are calculated based on the rough set
theory. The relevance of a gene with respect to the class labels is calculated using (4), while significance of a gene with
respect to the already-selected gene is computed using (5). However, other measures such as mutual information can also
be used to compute both relevance and significance of a gene. In order to establish the importance of rough sets over mutual
information, extensive experimental results are reported in Table 1 for seven microarray data sets. Subsequent discussions
analyze the results with respect to the classification accuracy of both SVM and K-NN rule. The value of β is set to 1.0 for the
MRMS criterion and the equivalence classes are generated by two discretization methods: using mean-standard deviation
(D1) [16] and equal frequency binning (D2) [52].

From the results reported in Table 1, it is seen that the performance of rough sets is better than that ofmutual information
in most of the cases. Out of total 28 cases, the MRMS criterion achieves significantly better results for rough sets in 19 cases.
However, the mutual information provides better accuracy of the SVM for leukemia, prostate cancer, and RAHC data sets
and that of the K-NN for colon and prostate cancer data sets using the method D1. On the other hand, the rough set based
approach provides same accuracy of the SVM and K-NN with higher number of genes for prostate cancer data set, same
accuracy of the SVM with higher number of genes for RAOA data set, and lower accuracy of the K-NN for colon cancer data
set using the method D2.

6.4. Effectiveness of MRMS criterion

To establish the effectiveness of the proposed MRMS criterion based gene selection method over Max-Dependency and
Max-Relevance criteria, extensive experimental results are reported in Table 2 for seven microarray data sets. Subsequent
discussions analyze the results with respect to the classification accuracy of both SVM and K-NN rule. The best results
obtained using Max-Dependency and Max-Relevance criteria on these data sets are also presented in this table for the sake
of comparison. The value of β varies from 0.0 to 1.0 for theMRMS criterion and the equivalence classes are generated by two
discretization methods: using mean-standard deviation (D1) [16] and equal frequency binning (D2) [52]. In this context, it
should be noted that the Max-Relevance criterion is equivalent to the proposed MRMS criterion with β = 0.0, while the
quick reduct algorithm of Chouchoulas and Shen [35] follows the Max-Dependency criterion.

6.4.1. Optimum value of β
The parameter β regulates the relative importance of the significance of the candidate gene with respect to the already-

selected genes and the relevance with the output class. If β is zero, only the relevance with the output class is considered
for each gene selection. If β increases, this measure is incremented by a quantity proportional to the total significance with
respect to the already-selected genes. The presence of a β value larger than zero is crucial in order to obtain good results. If



P. Maji, S. Paul / International Journal of Approximate Reasoning 52 (2011) 408–426 417

Table 2

Comparative performance of Max-Dependency, Max-Relevance, and proposed algorithm using LOOCV.

Microarray Quantitative Discretization Max-Dependency Max-Relevance MRMS (β = 1.0) MRMS (0.0 < β < 1.0)

data set measures procedure Accuracy Gene Accuracy Gene Accuracy Gene Accuracy Gene Value of β

Breast SVM Method: D1 85.7 3 98.0 11 100 18 100 18 0.6–0.9

Method: D2 87.8 3 100 9 100 8 100 8 0.1–0.9

K-NN Method: D1 83.7 2 98.0 17 100 45 100 45 0.8–0.9

Method: D2 91.8 3 91.8 8 98.0 27 98.0 27 0.1–0.9

Leukemia SVM Method: D1 100 3 97.2 32 97.2 22 98.6 36 0.1

Method: D2 87.5 2 98.6 43 100 14 100 14 0.1–0.8

K-NN Method: D1 98.6 2 98.6 43 98.6 47 100 50 0.1–0.3

Method: D2 90.3 3 97.2 25 100 37 100 37 0.1–0.9

Colon SVM Method: D1 80.7 2 80.7 23 87.1 5 87.1 5 0.9

Method: D2 62.9 1 74.2 4 85.5 33 85.5 33 0.1–0.9

K-NN Method: D1 80.7 3 82.3 50 83.9 3 85.5 9 0.9

Method: D2 64.5 1 69.4 7 77.4 23 77.4 23 0.1–0.9

Lung SVM Method: D1 99.5 3 99.5 7 100 34 100 34 0.6–0.9

Method: D2 98.3 3 99.5 31 100 8 100 8 0.1–0.9

K-NN Method: D1 99.5 3 99.5 42 100 38 100 39 0.9

Method: D2 97.8 3 99.5 22 99.5 9 99.5 9 0.1–0.9

Prostate SVM Method: D1 84.6 4 81.6 47 89.7 44 89.7 44 0.9

Method: D2 56.6 1 62.5 6 94.9 48 94.9 48 0.1–0.9

K-NN Method: D1 88.2 4 91.2 5 88.2 7 88.2 7 0.1–0.9

Method: D2 55.8 1 63.9 25 94.9 23 94.9 23 0.1–0.9

RAOA SVM Method: D1 86.7 1 90.0 50 100 5 100 3 0.5–0.6

Method: D2 73.3 2 96.7 16 100 8 100 4 0.2

K-NN Method: D1 90.0 2 90.0 2 100 3 100 3 0.7–0.9

Method: D2 70.0 2 90.0 6 100 12 100 12 0.8–0.9

RAHC SVM Method: D1 70.0 1 94.0 16 90.0 20 94.0 36 0.1–0.4

Method: D2 70.0 1 96.0 48 100 33 100 12 0.6

K-NN Method: D1 84.0 3 90.0 11 100 11 100 11 0.5–0.9

Method: D2 82.0 3 86.0 11 100 21 100 12 0.8–0.9

the significance between genes is not taken into account, selecting the genes with the highest relevance with respect to the
output class may tend to produce a set of redundant genes that may leave out useful complementary information.

The values of β for which the proposedMRMS criterion based gene selection algorithm achieves its best performance are
reported in Table 2. From the results reported in this table, it is seen that the MRMS criterion attains its best performance at
β = 0.9 for breast, colon, lung, and prostate cancer data sets using both SVM and K-NN rule, and for RAOA and RAHC data
sets using only K-NN rule. On the other hand, the proposed algorithm provides its best results at β = 0.1 for leukemia data
set using both SVM and K-NN rule and for RAHC data set using only the SVM. Hence, the MRMS criterion achieves its best
performance for 0.1 ≤ β ≤ 0.9 irrespective of the data sets and classifiers used.

6.4.2. Comparative performance analysis

From the results reported in Table 2, it is seen that the performance of proposed MRMS criterion is better than that
of Max-Dependency and Max-Relevance criteria in most of the cases. Out of total 28 cases, the MRMS criterion achieves
significantly better results than Max-Dependency or Max-Relevance in 25 cases. However, the Max-Dependency criterion
provides better accuracy of the SVM for leukemia data set and same accuracy of the K-NN rule with lower number of genes
for prostate cancer data set than theMRMS criterion. Also, theMax-Relevance criterion achieves better accuracy of the K-NN
rule for prostate cancer data set and same accuracy of the SVMwith lower number of genes for RAHC data set than theMRMS
criterion. That is, both Max-Dependency and Max-Relevance criteria are useful to select a very small number of genes, but
not appropriate to achieve high classification accuracy. Hence, the combination of Max-Relevance and Max-Significance,
that is, the MRMS criterion, must be used to get a reduced set of genes with high classification accuracy.

6.5. Effectiveness of fuzzy equivalence classes

In order to improve the performance of proposed MRMS criterion based gene selection method, three π functions in
one dimensional form are used to generate three equivalence classes, namely, low, medium, and high. The multiplicative
parameterη controls theoverlappingbetween three fuzzyequivalence classes lowandmediumormediumandhigh.Keeping
the values of σlow and σhigh fixed, the amount of overlapping among three π functions can be altered varying σmedium. As η
is decreased, the radius σmedium decreases around c̄medium such that ultimately there is insignificant overlapping between
three π functions low and medium or medium and high. This implies that certain regions along the ith gene axis Ai go
under-represented such that three membership values corresponding to three fuzzy sets low, medium, and high attain
small values. Note that the particular choice of the values of σ s and c̄s ensure that for any pattern xj along the ith gene axis
Ai, at least one of membership values should be greater than 0.5. On the other hand, as η is increased the radius σmedium

increases around c̄medium such that the amount of overlapping between the three π functions increases.
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Table 3

Best performance of proposed algorithm on seven data sets using LOOCV.

Microarray SVM K-NN

data set Value of β Accuracy Gene Value of η Value of β Accuracy Gene Value of η

Breast 0.3–0.8 100 6 0.8 0.6–0.7 100 6 1.2

0.0 100 7 0.8 0.0 100 10 1.4

Leukemia 0.1 100 4 1.5–1.6 0.1–0.2 100 3 1.7

0.0 100 4 1.4–1.6 0.0 100 3 1.7

Colon 0.1–1.0 90.3 35 0.8 0.1–0.6 90.3 35 0.9

0.0 88.7 21 0.6 0.0 88.7 20 0.6

Lung 0.7 100 9 1.3 1.0 100 4 0.9

0.0 100 14 1.1 0.0 100 10 0.5–0.6

Prostate 0.9 96.3 43 1.3 0.9–1.0 95.6 6 2.0

0.0 93.4 50 0.5 0.0 91.9 2 1.3

RAOA 0.6–1.0 100 4 0.8, 1.0 0.7–1.0 100 8 0.9

0.0 100 30 0.5 0.0 93.3 2 0.7

RAHC 1.0 100 18 0.6 1.0 100 5 0.5

0.0 100 28 0.6 0.0 98.0 22 0.6

To establish the effectiveness of fuzzy equivalence classes over the crisp equivalence classes and to find out the corre-
sponding optimum values of both η and β , the extensive experimentation is carried out on seven microarray data sets. The
value of β ranges from 0.0 to 1.0, while the value of η varies from 0.5 to 2.0.

6.5.1. Variable number of selected genes

Table 3 presents the best performance of the proposedMRMS based gene selection algorithm for different data sets using
fuzzy equivalence classes. The results and subsequent discussions are presented in this table with respect to the predictive
accuracy of both SVM and K-NN rule. The values of β and η for which the best performance of the proposed algorithm is
achieved are also reported in this table, along with the number of selected genes. From the results reported in Table 3, it is
seen that the proposed algorithm with β �= 0.0 provides better or comparable classification accuracy with lower number
of selected genes than that of β = 0.0 in most of the cases. Only for leukemia, the performance of the proposed algorithm
with β = 0.1 is same as that of β = 0.0. The corresponding values of η indicate that very large or very small amounts of
overlapping among the three equivalence classes of input gene are found to be undesirable for β > 0.0.

6.5.2. Fixed number of selected genes

Figs. 1–7 present the performance of the proposed gene selection algorithm on five cancer and two arthritis microarray
data sets for fixed number of genes. The results and subsequent discussions are presented in these figures for different values
of β and η with respect to the predictive accuracy of both SVM and K-NN rule. For each data set, the number of selected
genes is fixed through extensive experimentation in such a way that the classification accuracy of both SVM and K-NN rule
attains its highest value.

From the results reported in Figs. 1–7, it is seen that as the value ofβ increases, the classification accuracy of both SVMand
K-NN rule increases. On the other hand, the performance decreases for very high or very low values of η. The proposed rough

Fig. 1. Variation of classification accuracy with respect to multiplicative parameter η and weight parameter β for breast cancer.
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Fig. 2. Variation of classification accuracy with respect to multiplicative parameter η and weight parameter β for leukemia.

Fig. 3. Variation of classification accuracy with respect to multiplicative parameter η and weight parameter β for colon cancer.

set based gene selection algorithm achieves its best performance for β > 0.0 with respect to the classification accuracy of
both SVM and K-NN rule. TheMRMS criterion achieves 100% accuracy for leukemia and 90.3% accuracy for colon at β = 0.1,
100% accuracy for breast and 90.3% accuracy for colon at β = 0.6, 100% accuracy for breast, lung, and RAOA data at β = 0.7,
and 100% accuracy for RAOA and RAHC data at β = 0.9, irrespective of the classifiers used. For prostate cancer data, it
attains 96.3% and 95.6% accuracy at β = 0.9 using the SVM and K-NN rule, respectively. All these results are obtained for
0.7 ≤ η ≤ 1.7. In other words, the best performance of proposed method is achieved when the relevance of each gene is
incremented by at least 10% of the total significance with respect to the already-selected genes. However, the performance
of the proposed method at β = 0.0 is same as that of β = 0.1 for leukemia data set using both SVM and K-NN rule. The
important results corresponding to Figs. 1–7 are also summarized in Table 4.

From the results reported in Tables 3 and 4 and Figs. 1–7, it is seen that, for a particular number of selected genes, the
predictive accuracy of both SVM and K-NN rule for β > 0.0 is higher compared to that of β = 0.0, irrespective of the
microarray gene expression data sets used. Moreover, it is seen that very large or very small amounts of overlapping among
the three π fuzzy equivalence classes of the input genes lead to undesirable results for β > 0.0.

6.5.3. Performance of fuzzy equivalence classes

Finally, Table 5 reports the comparative performance of crisp and fuzzy equivalence classes with respect to the classifica-
tion accuracy of both SVM and K-NN rule. The crisp equivalence classes are generated by two discretization methods: using
mean-standard deviation (D1) [16] and equal frequency binning (D2) [52]. From the results reported in Table 5, it is seen
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Fig. 4. Variation of classification accuracy with respect to multiplicative parameter η and weight parameter β for lung cancer.

Fig. 5. Variation of classification accuracy with respect to multiplicative parameter η and weight parameter β for prostate.

that the proposed gene selection algorithmwith fuzzy equivalence classes performs better than that with crisp equivalence
classes inmost of the cases. However, only for RAOAdata set, the proposed algorithmwith crisp equivalence classes produced
by the method D1 attains same accuracy as that with fuzzy equivalence classes with lower number of genes. On the other
hand, the discretizationmethod D2 achieves same accuracy as that of fuzzy equivalence classes with lower number of genes
for lung and RAHC data sets using the SVM.

6.6. Comparative performance analysis of different algorithms

Finally, the best results of different algorithms on seven microarray data sets are presented in Tables 7–9, while Table 6
reports the results considering thewhole gene set. Subsequent discussions analyze the results with respect to the prediction
accuracy of the SVM and K-NN rule. The best performance of some existing algorithms such as mRMR [8], Quick Reduct
algorithm [35], Discernibility Matrix based approach [37], Roughfication [21], the methods proposed by Valdes and Barton
[30] and Fang and Busse [29], is provided on same data sets for the sake of comparison.

Both LOOCV and 10-fold CV are performed on each data set. In case of 10-fold CV, the means and standard deviations
of the classification accuracy of the SVM and K-NN rule are computed for all data sets. Tests of significance are performed
for the inequality of means (of the classification accuracy of both SVM and K-NN rule) obtained using the proposed MRMS
method and the other related algorithms compared. Since bothmean pairs and the variance pairs are unknown and different,
a generalized version of t-test is used here. The above problem is the classical Behrens–Fisher problem in hypothesis testing.
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Fig. 6. Variation of classification accuracy with respect to multiplicative parameter η and weight parameter β for RAOA data.

Fig. 7. Variation of classification accuracy with respect to multiplicative parameter η and weight parameter β for RAHC data.

The test statistic, which is described and tabled in [70], is of the form

t = µ1 − µ2√
λ1σ1

2 + λ2σ2
2
, (20)

where µ1, µ2 are the means, σ1, σ2 the standard deviations, and λ1 = 1/n1, λ2 = 1/n2, n1, n2 are the number of
observations. Tables 7 and 9 report the individual means and standard deviations, and the value of test statistic computed.
The corresponding tabled value is 1.81 at an error probability level of 0.05. If the computed value is greater than the tabled
value, the means are significantly different.

6.6.1. Results on full gene set

The classification accuracy of both SVM and K-NN rule is reported in Table 6 considering the whole gene set. That is, the
K-NN rule and SVM are used to classify the samples of each microarray data set considering all genes of the data set and the
performance is compared with that of different feature selection algorithms, which are reported in Tables 7–9. The results
reported in Table 6 indicate that if all genes are considered for sample classification, the samples from different classes may
not bewell separatedwith respect to theK-NN rule and SVM.However, from the results reported in Tables 7–9, it can be seen
that when a gene or feature selection algorithm selects a set of genes from the whole gene set considering the relevance,
redundancy, or significance criteria, the genes those have high relevance with respect to the class labels are only selected. In
effect, the samples from different classes with reduced gene set become well separated, which leads to higher classification
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Table 4

Optimum values of β and η for different data sets using LOOCV.

Microarray SVM K-NN

data set Accuracy Values of (β , η) Accuracy Values of (β , η)

Breast 100 ({0.3–0.8}, 0.8) 100 ({0.6–0.7}, 1.2)

d = 6 98.0 (0.0, {0.8–0.9}) 95.9 (0.0, {0.8–0.9})

Leukemia 100 (0.1, {1.5–1.6}) 100 (0.1, {1.5–1.6})

d = 4 100 (0.0, {1.4–1.6}) 100 (0.0, {1.4–1.6})

Colon 90.3 ({0.1–1.0}, 0.8) 90.3 ({0.1–0.6}, 0.9)

d = 35 87.1 (0.0, 0.7) 82.3 (0.0, 0.6)

Lung 100 (0.7, 1.3) 100 (0.3, 1.7), ({0.4–0.6}, {1.6–1.7}), ({0.7–0.8}, 1.3),

d = 9 ({0.7–0.8}, {1.6–1.7}), (0.9, {1.2–1.3}),

(0.9, {1.6–1.7}), (1.0, {1.2–1.4}), (1.0, {1.6–1.7})

99.5 (0.0, 0.6) 99.5 (0.0, {0.6–1.0}), (0.0, {1.2–1.3}), (0.0, 1.8)

Prostate 96.3 (0.9, 1.3) 95.6 ({0.9–1.0}, 2.0)

d = 43/6 91.9 (0.0, {0.7–0.8}) 91.9 (0.0, {1.8–2.0})

RAOA 100 ({0.5–1.0}, 0.9), ({0.6–1.0}, 1.0) 100 ({0.7–1.0}, 0.9)

d = 8 96.7 (0.0, 0.8) 86.7 (0.0, {0.7–0.9}), (0.0, {1.1–1.5})

RAHC 100 ({0.4–0.5}, 0.8), ({0.6–1.0}, 0.6), (0.9, 0.7) 100 (0.9, 1.4)

d = 36 98.0 (0.0, 0.5) 98.0 (0.0, 0.9)

Table 5

Comparative Performance Analysis of Crisp and Fuzzy Equivalence Classes Using LOOCV.

Microarray Quantitative Crisp classes: D1 Crisp classes: D2 Fuzzy classes

data set measures Accuracy Genes Accuracy Genes Accuracy Genes

Breast SVM 100 18 100 8 100 6

K-NN 100 45 98.0 27 100 6

Leukemia SVM 98.6 36 100 14 100 4

K-NN 100 50 100 37 100 3

Colon SVM 87.1 5 85.5 33 90.3 35

K-NN 85.5 9 77.4 23 90.3 35

Lung SVM 100 34 100 8 100 9

K-NN 100 38 99.5 9 100 4

Prostate SVM 89.7 44 94.9 48 96.3 43

K-NN 91.2 5 94.9 23 95.6 6

RAOA SVM 100 3 100 4 100 4

K-NN 100 3 100 12 100 8

RAHC SVM 94.0 36 100 12 100 18

K-NN 100 11 100 12 100 5

Table 6

Classification accuracy of SVM and K-NN rule on full gene set.

Experimental Methods/ Statistical Microarray gene expression data sets

setup measures values Breast Leukemia Colon Lung Prostate RAOA RAHC

LOOCV SVM Accuracy 91.8 98.6 82.3 98.9 91.9 70.0 96.0

K-NN Accuracy 73.5 76.4 74.2 87.9 74.2 76.7 74.0

10-fold CV SVM Mean 89.8 98.8 85.5 98.9 92.7 78.3 94.2

Std.Dev. 10.3 3.8 13.3 2.2 7.3 18.3 9.2

K-NN Mean 76.3 75.0 72.6 89.4 72.1 75.0 71.7

Std.Dev. 10.4 7.8 14.3 6.3 11.9 22.7 17.6

accuracy. That is, the genes for which the samples from different classes are not well separated will not be selected in the
reduced set. On the other hand, the presence of irrelevant, redundant, and insignificant genes in the reduced gene set may
degrade the quality of the solution.

From the results reported in Tables 6–9, it is seen that the classification accuracy of theK-NN rule and SVMobtained using
themRMRmethod and proposed algorithm is always higher than that achieved by thewhole gene set for all microarray data
sets. On the other hand, out of 28 cases, the Quick Reduct algorithm [35], Roughfication [21], and Discernibility Matrix based
approach [37] perform better than the whole gene set in 20, 14, and 15 cases, respectively, while the methods proposed by
Valdes and Barton [30] and Fang and Busse [29] achieve in 18 and 12 cases, respectively.
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Table 7

Comparative performance analysis of mRMR and MRMS algorithms.

Experimental setup LOOCV 10-fold CV

Microarray Methods/ mRMR MRMS mRMR MRMS Computed

data set measures Accuracy Genes Accuracy Genes Mean Std.Dev. Mean Std.Dev. value

Breast SVM 100 6 100 6 100 0.0 100 0.0 –

m = 7129 K-NN 100 4 100 6 100 0.0 100 0.0 –

Leukemia SVM 100 32 100 4 98.8 3.8 100 0.0 1.00

m = 7070 K-NN 98.6 18 100 3 98.8 3.8 100 0.0 1.00

Colon SVM 88.7 10 90.3 35 87.1 11.8 90.7 9.9 0.74

m = 2000 K-NN 90.3 11 90.3 35 90.5 14.6 92.1 10.1 0.29

Lung SVM 99.5 4 100 9 100 0.0 100 0.0 –

m = 12,533 K-NN 98.3 6 100 4 98.3 3.6 100 0.0 1.49

Prostate SVM 94.1 20 96.3 43 93.5 5.9 96.3 6.7 1.01

m = 12,600 K-NN 93.4 31 95.6 6 92.8 5.6 95.7 4.8 1.26

RAOA SVM 100 4 100 4 100 0.0 100 0.0 –

m = 18,432 K-NN 100 3 100 8 100 0.0 100 0.0 –

RAHC SVM 100 29 100 18 100 0.0 100 0.0 –

m = 41,056 K-NN 100 11 100 5 100 0.0 100 0.0 –

Table 8

Comparative performance analysis of different rough set based algorithms using LOOCV.

Microarray Methods/ Fang and Busse Roughfication Valdes–Barton Quick reduct Discern. matrix MRMS

data set measures Accuracy Genes Accuracy Genes Accuracy Genes Accuracy Genes Accuracy Genes Accuracy Genes

Breast SVM 73.5 7 77.6 7 81.7 1 85.7 3 71.4 5 100 6

m = 7129 K-NN 71.4 6 79.6 49 89.8 1 83.7 2 73.5 3 100 6

Leukemia SVM 86.1 6 84.7 16 93.1 1 100 3 95.8 4 100 4

m = 7070 K-NN 79.2 6 80.6 7 93.1 1 98.6 2 91.7 1 100 3

Colon SVM 64.5 1 85.5 241 85.5 1 80.7 2 83.9 4 90.3 35

m = 2000 K-NN 61.3 2 80.7 6 85.5 1 80.7 3 82.3 5 90.3 35

Lung SVM 99.5 4 * * 97.3 1 99.5 3 99.5 5 100 9

m = 12,533 K-NN 98.9 3 * * 97.2 1 99.5 3 93.9 5 100 4

Prostate SVM 56.6 3 * * 74.3 7 84.6 4 75.0 10 96.3 43

m = 12,600 K-NN 78.7 4 * * 84.6 1 88.2 4 75.0 10 95.6 6

RAOA SVM 70.0 1 86.7 1 83.3 1 86.7 1 76.7 4 100 4

m = 18,432 K-NN 73.3 1 93.3 3 90.0 1 90.0 2 86.7 3 100 8

RAHC SVM 70.0 1 82.0 6 86 1 70.0 1 * * 100 18

m = 41,056 K-NN 80.0 1 84.0 8 84.0 1 84.0 3 * * 100 5

6.6.2. Comparative performance of mRMR and MRMS

To compare the performance of the proposed MRMS method with that of the mRMR method [8], extensive experimen-
tation is carried out on seven microarray data sets. Both LOOCV and 10-fold CV are performed on each gene expression data
sets.

Table 7 presents the classification accuracy of both SVM and K-NN rule for the MRMS and mRMR methods, along with
the computed test statistic values for 10-fold CV. From the results reported in Table 7, it is seen that the proposed MRMS
algorithm selects a set of relevant and significant genes from the whole gene set having highest classification accuracy of
both SVM and K-NN rule in all the cases. Out of total 28 cases, the proposed method achieves 100% classification accuracy
in 20 cases, while the mRMR method attains this accuracy in 14 cases. However, the mRMR method attains same K-NN
accuracy for breast cancer, colon cancer, and RAOA data set as that of the proposed MRMS method with lesser number of
genes. Also, the computed test statistic values indicate that although the MRMS method performs better than the mRMR
method, the results are not significantly better as all the computed values are less than 1.81, which is the tabled value at an
error probability level of 0.05.

6.6.3. Performance of different rough set based algorithms

Finally, Tables 8 and 9 compare the best performance of different existing rough set based feature selection algorithms
with that of the proposed MRMS algorithm. While Table 8 presents the classification accuracy of both SVM and K-NN rule
using the LOOCV, Table 9 depicts that using 10-fold CV.

From the results reported in Table 8, it is seen that the proposedMRMS algorithm achieves highest classification accuracy
of both SVMandK-NN rule in all the cases. Out of total 14 cases, the proposedmethod achieves 100% classification accuracy in
10 cases, while the Quick Reduct algorithm [35] attains this accuracy in only one case. However, the Quick Reduct algorithm
attains same SVM accuracy for leukemia data set as that of the proposed MRMS method with lesser number of genes.
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Table 9

Comparative test statistic analysis of different rough set based algorithms using 10-fold CV.

Data Statistical MRMS Fang and Busse Roughfication Valdes–Barton Quick Reduct Discern. matrix

sets values SVM K-NN SVM K-NN SVM K-NN SVM K-NN SVM K-NN SVM K-NN

Breast Mean 100.0 100.0 77.7 73.0 75.8 79.2 85.3 89.8 85.8 84.2 73.0 74.2

Std.Dev. 0.0 0.0 14.2 16.3 20.3 17.2 18.4 13.7 13.0 14.2 18.8 21.1

Computed 4.97 5.24 3.77 3.84 2.53 2.35 3.44 3.52 4.53 3.87

Leukemia Mean 100.0 100.0 89.1 80.2 85.5 77.3 93.4 93.4 100.0 97.3 96.3 91.7

Std.Dev. 0.0 0.0 11.9 10.0 12.2 10.0 6.6 6.6 0.0 5.4 8.0 8.9

Computed 2.88 6.26 3.76 7.13 3.15 3.15 – 1.58 1.48 2.96

Colon Mean 90.7 92.1 64.8 63.1 85.9 81.2 87.4 85.7 82.6 80.9 84.3 82.6

Std.Dev. 9.9 10.2 3.8 9.4 12.1 12.7 13.9 13.3 14.4 13.8 13.9 12.9

Computed 7.70 6.63 0.96 2.13 0.62 1.22 1.46 2.07 1.19 1.83

Lung Mean 100.0 100.0 100.0 98.9 * * 97.2 97.2 99.4 99.4 97.2 94.5

Std.Dev. 0.0 0.0 0.0 2.2 * * 3.7 2.8 1.7 1.7 4.5 6.1

Computed – 1.58 * * 2.36 3.16 1.06 1.06 1.96 2.87

Prostate Mean 96.3 95.7 55.9 80.2 * * 73.6 84.5 83.7 86.1 75.1 74.1

Std.Dev. 6.7 4.8 2.4 8.1 * * 13.3 5.9 10.3 8.2 10.1 6.3

Computed 18.07 5.21 * * 4.84 4.63 3.26 3.18 5.57 8.65

RAOA Mean 100.0 100.0 70.8 75.0 88.3 93.3 86.7 90.0 90.8 93.3 80.0 86.7

Std.Dev. 0.0 0.0 10.0 17.1 18.3 24.1 16.3 15.3 14.2 13.3 16.3 16.3

Computed 9.20 4.63 2.01 0.88 2.58 2.07 2.05 1.58 3.87 2.58

RAHC Mean 100.0 100.0 70.8 77.5 83.3 84.2 85.0 84.2 70.8 87.5 * *

Std.Dev. 0.0 0.0 4.2 17.9 11.8 15.6 12.8 11.5 4.2 13.0 * *

Computed 22.12 3.98 4.47 3.22 3.71 4.37 22.12 3.03 * *

Similarly, the results using 10-fold CV reported in Table 9 show that the proposed MRMS methods attains 100% clas-
sification accuracy in 10 cases, while both Quick Reduct algorithm [35] and the method proposed by Fang and Busse [29]
attains this accuracy in only one case. Also, the performance of the MRMSmethod is always better than that of any existing
rough set based algorithms. Out of 70 comparisons, the proposed method is found to provide significantly better results in
56 comparisons. Other 14 cases, the performance of theMRMSmethod is found to be better, but not significantly. The better
performance of the proposed gene selection algorithm is achieved due to the fact that it can identify relevant and significant
genes from microarray data sets more accurately than the existing rough set based algorithms.

7. Conclusion and future works

The main contribution of this paper is threefold, namely,

(1) development of a new feature selection method based on the rough set theory;
(2) application of the proposed method in identifying discriminative and significant genes from high-dimensional mi-

croarray gene expression data sets; and
(3) compare the performance of the proposed method and some existing methods using the predictive accuracy of K-

nearest neighbor rule and support vector machine.

For five cancer and two arthritis microarray data sets, significantly better results are found for the proposed method
compared to existing rough set based methods. All the results reported in this paper demonstrate the feasibility and effec-
tiveness of the proposed feature selection method. It is capable of identifying discriminative and significant genes that may
contribute to revealing underlying class structures, providing a useful tool for the exploratory analysis of biological data.

The results obtained on different microarray data sets demonstrate that the proposed method can bring a remarkable
improvement on gene selection problem. The proposed method is only used for selection of genes from high dimensional
microarray data sets. In future, this method will be extended to other feature selection tasks and further its merits and
limitations will be evaluated. It will also be combined with fuzzy-rough sets [26,32,54–57] and neighborhood rough sets
[58] in near future to deal with numerical features directly without discretization. A method will be developed based on
some quantitative measures to find out the optimum values of different parameters. In order to address the problem of
multiplicity of marker genes, a detailed analysis of the biological relevance of the selected genes will be conducted in future.
The gene interactions will be studied in detail to see whether incorporation of gene interaction information can improve the
diagnostic test.
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