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Summary

A robust tracking control is proposed for the fractional order systems to achieve a

tracking response with no overshoot, even in the presence of a class of disturbances.

The control proposed makes use of a newly designed integral sliding mode technique

for fractional order systems, which is capable of rejecting the bounded disturbances

acting through the input channel. The proposed integral sliding mode control design

has two components, a nominal control component and a discontinuous control com-

ponent. The overshoot in the system response is avoided by the nominal control

designed with the use of Moore’s eigenstructure assignment algorithm. The sliding

mode technique is used for the design of discontinuous part of the control which

imparts the desired robustness properties.
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1 INTRODUCTION

The problem of ensuring the system response tracks a known reference output faithfully remains an important area of control
systems design. It is particularly important when the system is operating with very low tolerance on the output. Avoiding
overshoot while tracking is preferred in several applications such as servo- control mechanisms in robotics, minimizing the spill
off in tanks while filling, temperature control mechanisms in machines working with inflammable substances and so on1,2,3.
Several design techniques have been proposed in the literature for the overshoot reduction in the system response. In most of
the design techniques fast response and reduction in overshoot appear as a contradictory design criteria and the control designer
must seek a trade off2 between these conflicting objectives. Many works are available for reduction of overshoot in single-input
single-output (SISO) systems4,5,6. The composite nonlinear feedback technique is discussed in2 for fast tracking with reduced
overshoot. The non-overshooting tracking control (NOTC) technique was proposed in8,10 which has the advantage of a fast
response without overshoot. This technique is applicable to multi-input multi-output(MIMO) systems, where the overshoot is
avoided by eigenstructure assignment, using Moore’s technique to obtain the required feedback matrix9.

Fractional order derivatives include both integer order derivatives and non-integer order derivatives, in that sense the frac-
tional order calculus is considered as a generalisation of the integer order calculus13. The behaviour of systems can be more
faithfully captured by fractional order representation. The historical aspect of the development of the fractional order calculus
is described in11,12. The improvement in computing facilities and the advances of the fractional order calculus has lead to the
increased application of fractional order calculus to various engineering problems14,15. Various physical phenomena and plants
are represented as fractional order system(FOS) in16,17. Stability of linear time invariant (LTI) FOS are discussed in23,24.
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Sliding mode control (SMC) is known for its ability to provide robustness to the system by completely rejecting matched
disturbances. The early works of Utkin28 made the research community aware of the potential of SMC. The capability of SMC to
reject the disturbance completely has encouraged lot of research on SMC for past few decades. SMC is applied in wide range of
applications such as mobile robots, robotic manipulators, electric drives, power converters and so on, to get a robust performance
against the disturbances29,30,31. The SMC is applied to the FOS for the robust stabilization of the FOS in19. The integral sliding
mode control(ISMC) is a particular kind of the SMC where an integral sliding surface is designed such that the system always
starts from the sliding surface. Hence, the sliding mode is induced from the initial time. So, the ISMC is able to reject the
disturbance from initial time32,33. Also the ISMC can be easily combined with other control techniques to impart the robustness
against the matched and bounded disturbances. ISMC is used to achieve robust NOTC for integer order systems (IOS) in34,35.

In this paper, initially a NOTC is derived for MIMO FOS to achieve tracking without any overshoot. Secondly, an ISMC is
proposed for FOS to achieve robustness for the proposed NOTC. The NOTC is designed by eigenstructure assignment using
Moore’s algorithm. ISMC technique is designed to reject the effect of the matched and bounded disturbances completely.

The organisation of the paper is as follows: Section 2 contains a review of fractional order calculus. In Section 3 the problem
statement is introduced. NOTC for FOS is discussed in Section 4. Section 5 contains the main result, where the robust NOTC
with ISMC technique for FOS is discussed. In Section 6 the proposed result is verified using a simulation example. Section 7
contains the conclusions.

2 REVIEW OF FRACTIONAL CALCULUS

Preliminaries on fractional order calculus are introduced briefly in this section. In this paper the Caputo fractional-order
derivative is used to represent the FOS dynamics13,18. The definitions of fractional-order integral and derivatives are given below.

Definition 1. The �th order Riemann-Liouville fractional integral is defined as

t0
I�
t
f (t) ∶=

1

Γ(�)

t

∫
t0

f (�)

(t − �)(1−�)
d�

where � ∈ ℝ
+.

Definition 2. The �th order Riemann-Liouville fractional derivative is defined as

t0
D�

t
f (t) ∶= t0

Dm

t t0
I
(m−�)
t

f (t)

∶=
dm

dtm

⎡⎢⎢⎣
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∫
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f (�)

(t − �)(�−m+1)
d�

⎤⎥⎥⎦
.

where � ∈ ℝ
+, and m − 1 < � < m and m ∈ ℕ.

Definition 3. The �th order Caputo fractional derivative is defined as

c

t0
D�

t
f (t) ∶= t0

I
(m−�)
t t0

Dm

t
f (t)

∶=
1

Γ(m − �)

t

∫
t0

f (m)(�)

(t − �)(�−m+1)
d�.

where � ∈ ℝ
+ and m − 1 < � < m and m ∈ ℕ.

The relationship between Caputo fractional order derivative and Riemann-Liouville fractional order derivative is given by

c

t0
D�

t
f (t) = t0

D�

t
f (t) −

f (t0)

Γ(1 − �)
(t)−� . (1)

The Caputo and Riemann-Liouville fractional order derivatives are equal when the initial condition f (t0) = 0.
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Definition 4. For z ∈ ℂ and � ∈ ℝ
+, the one-parameter Mittag-Leffler function is given by

E�(z) =

∞∑
k=0

zk

Γ(�k + 1)
(2)

where Γ(⋅) is Gamma function. For �, � ∈ ℝ
+, the two-parameter Mittag-Leffler function is given by

E�,�(z) =

∞∑
k=0

zk

Γ(�k + �)
(3)

The Mittag-Leffler function can be viewed as a generalized form of the exponential function. When � = � = 1, we obtain

E1,1(z) =

∞∑
k=0

zk

Γ(k + 1)
=

∞∑
k=0

zk

k!
= ez. (4)

For 0 < � < 1 and t ∈ ℝ
+, the single parameter Mittag-Leffler function E�(−t

�) is monotonically decreasing21.

Lemma 1. Given 0 < � < 1, �1 < �2 < 0 and 
1, 
2 ∈ ℝ, the function

f (t) = 
1E�(�1t
�) + 
2E�(�2t

�) (5)

has a root in ℝ
+ if and only if

�2

�1
<

−
2

1

< 1 (6)

Proof: See the Appendix. We note that as f is a continuous function, if it does not have a root, then it cannot change sign.

Lemma 2. 18,23,24 Let the commensurate LTI Caputo FOS dynamics, with � > 0, be given by

c

t0
D�

t
x(t) = Ax(t) (7)

whereA is a constant real matrix. The solution is given by x(t) = E�(A(t−t0)
�)x0, where x0 = x(t0) denotes the initial condition.

The system dynamics are asymptotically stable if | arg(spec(A))| > ��∕2.

Remark 1. We denote the stability region of (7) by ℂ̄� . When � = 1, the FOS is of integer order, and we refer to it as IOS. For
� ≥ 2, the system is unstable for all A, and ℂ̄� = ∅. While the roots of det(��I − A) = 0 are the poles of the commensurate
FOS, it is only required to consider the equation det(�I − A) = 0, with � = �� , to determine the system stability. So, for the
sake of simplicity the term ‘poles of FOS’ is abused. From here onwards, by ‘poles of FOS’, we mean the roots of the equation
det(�I − A) = 0. For the FOS with input

c

0
D�

t
x(t) = Ax(t) + Bu(t) (8)

y(t) = Cx(t)

the concept of system controllability was defined in22. It was shown that, as for IOS, controllability is assured if the controllability

matrix has full rank. As for IOS, the invariant zeros of FOS are the values of � ∈ ℂ for which the Rosenbrock matrix

[
A − �I B

C 0

]

loses rank. We say that an invariant zero of (8) is stable if it belongs to ℂ̄� .

3 PROBLEM STATEMENT

In this paper we consider the commensurate Caputo FOS with fractional-order derivative 0 < � < 1, represented by

c

0
D�

t
x(t) = Ax(t) + B

(
u(t) + d(t)

)
(9)

y(t) = Cx(t)

where x(t) ∈ ℝ
n, u(t) ∈ ℝ

m, y(t) ∈ ℝ
p and d(t) ∈ ℝ

m represent the states of the system, control input, system output
and the unknown disturbance entering the system, respectively. The matrices A, B and C are constant matrices of appropriate
dimensions. A full column rank is assumed for matrix B and a full row rank is assumed for C matrix. The system is assumed to
be controllable. The uncertainty entering the system through the input channel is considered to be bounded, i.e. ‖d(t)‖ ≤ dmax.
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Also, the system is considered to be in the initial state x0 with input u0, yielding an output y0. The reference signal is represented
by r ∈ ℝ

p, which is taken as a step signal. The tracking control input

u(t) = F (x(t) − xs) + us (10)

where us ∈ ℝ
m, xs ∈ ℝ

n are input and state at the steady state. The feedback matrix F is to be designed. The steady state vectors
us ∈ ℝ

m, xs ∈ ℝ
n are computed from

0 = Axs + Bus (11)

r = Cxs (12)

The closed-loop FOS dynamics with the tracking control input u given by (10) is

c

0
D�

t
x(t) = Ax(t) + B

(
F (x(t) − xs) + us

)
(13)

y(t) = Cx(t)

With a coordinate change � = x − xs, the FOS dynamics is computed as

c

0
D�

t
� (t) = (A + BF )� (t), (14)

y(t) = C� (t) + r

where �0 = x0 − xs represents the initial condition. The feedback matrix F designed such that the closed loop system dynamics
(14) is stable, i.e. � → 0 as t → ∞, and hence the tracking error by �(t) = r − y(t) = C� (t) approaches zero as t → ∞. The
reference signal r is tracked by the output y(t), when the control (10) is applied to the FOS (9). But, this design cannot guarantee
a non-overshooting tracking response for FOS.

In this paper we address the problem of obtaining a robust NOTC which ensures the FOS output track the step reference
signal without overshoot in all output components, while also rejecting the effect of bounded disturbances acting through the
input channel. This requires the tracking error, �(t) = r − y(t) to converge to zero without changing sign in any of its output
components8. A NOTC for a square FOS with n − p stable invariant zeros has been discussed in20. But, the control introduced
in20 does not guarantee a non-overshooting response in the presence of the disturbances. Motivated from these results, initially a
NOTC is designed for FOS with n−2p stable invariant zeros, without disturbance. Then it is extended to a general case without
disturbance for n − lp stable invariant zeros, l ∈ ℕ. Then the ISMC is used to make the proposed NOTC robust against the
matched and bounded disturbances.

4 DESIGN OF NON-OVERSHOOTING TRACKING CONTROL FOR FOS

In this section, a NOTC is designed for FOS without any disturbance. The overshoot in the output response can be avoided
through a proper design of the feedback gain matrix F . For IOS without any disturbance, a NOTC is computed using a proper
design of F as in8. To obtain the NOTC, the assumptions listed below are made on the FOS (9).

Assumption 1. FOS (9) is right invertible and controllable. Also, there is no invariant zero at the origin.

Assumption 2. The number of inputs and outputs are equal for FOS (9), i.e. m = p.

Assumption 3. No disturbance is entering the FOS (9), i.e. d(t) = 0.

The following lemma from8 will be used for the design of a state feedback F matrix to achieve NOTC.

Lemma 3. 8. Let  = {�1, �2,… �n} be a self-conjugate set of n distinct complex numbers. Let  = {s1, s2,… , sn} be a set of
n vectors in ℝ

p, not necessarily distinct. Assume that, for each i ∈ {1, 2,… , n}, the matrix equation.[
A − �iI B

C 0

] [
vi
wi

]
=

[
0

si

]
(15)

has solutions {v1, v2,… vn} ⊂ ℂ
n and {w1, w2,…wn} ⊂ ℂ

p. Then, provided the vectors {v1, v2,… vn} are linearly independent,
a unique real feedback matrix F exists such that, for all i ∈ {1, 2,… , n},

(A + BF )vi = �ivi (16)

Using  = {w1,… , wn} and  = {v1,… , vn}, the matrix F can be constructed using Moore’s algorithm9.
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4.1 Systems having n − 2p stable invariant zeros

Consider the system under the following assumption

Assumption 4. The system (9) has at least n − 2p stable and distinct invariant zeros in ℂ̄� .

For the FOS (9) with the control input (10), satisfying assumptions 1-4, the feedback matrix F using the following algorithm.

Algorithm 4.1.

1. Let the closed-loop poles of FOS be given by the self-conjugate set  = {�1, �2,… , �n} ∈ ℂ, where �i for i ∈

{1, 2,… , n−2p} are placed at the distinct n−2p stable invariant zeros of the FOS. For �i, i ∈ {n−2p+1, n−2p+2,… , n}

are placed on the negative real axis such that they are distinct.

2. Choose a set of vectors  = {s1, s2,… , sn} ∈ ℝ
p, such that

si =

⎧⎪⎪⎨⎪⎪⎩

0 for i ∈ {1, 2,… , n − 2p};

e1 for i ∈ {n − 2p + 1, n − 2p + 2};

e2 for i ∈ {n − 2p + 3, n − 2p + 4};

⋮

ep for i ∈ {n − 1, n};

(17)

where ei, i ∈ {1, 2, 3,… , p} denote the canonical basis vectors of ℝp.

3. Solve (15) by taking �i ∈  and si ∈  to obtain

[
vi
wi

]
. Let  = {v1, v2,… , vn}, and  = {w1, w2,… , wn}.

4. By Lemma 3, provided is linearly independent, a feedback matrixF satisfying (16) exists. The matrixF can be computed
from  and  using Moore’s algorithm.

The following notations help in stating Theorem 1.

Notation 4.1

.

1. For each k ∈ {1, 2,… p}, let �k,1 and �k,2 denote the eigenvalues in  associated with si = ek, ordered as �k,1 < �k,2.

2. Let the eigenvectors vk,1 and vk,2 correspond to eigenvalues �k,1 and �k,2, respectively.

3. Introduce coordinates � (t) = x(t) − xs, �0 = � (0).

4. Let matrix V be formed from  as
V ∶= [v1|v2|… |vn−2p|v1,1|v1,2|… |vp,1|vp,2]

5. Let  ∶= V −1�0, with the elements denoted as
 = [ 1  2 …  n−2p  1,1  1,2 …  p,l  p,2]

T

6. Hk ∶= span{vk,1, vk,2}

7. Let Jk ⊆ Hk and for 
k,1, 
k,2 ∈ ℝ

Jk ∶=
{

k,1vk,1 + 
k,2vk,2 ∶

−
k,2


k,1
∉ (

�k,2

�k,1
, 1)

}
,

8. For each x ∈ ℝ
n, let xk denote the orthogonal projection of x onto Hk, and let J ⊆ ℝ

n consists of all points x ∈ ℝ
n for

which xk ∈ Jk for all k ∈ {1, 2,… , p}.

Theorem 1. Under the Assumptions 1-4, let F be a feedback matrix obtained from Algorithm 4.1, and let the control input (10)
be applied to the FOS (9). Then the reference signal r will be tracked by the output y(t) of (9) without overshoot, if and only if
�0 ∈ J .
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Proof. Consider the FOS (9) under the Assumption 1-4, given by

c

0
D�

t
x(t) = Ax(t) + Bu(t) (18)

y(t) = Cx(t)

When the control input (10) is applied to the system (18) where the feedback matrix F is obtained as in Theorem 1, the closed-
loop dynamics of the FOS (18) is given by

c

0
D�

t
x(t) = Ax(t) + B

(
F (x(t) − xs) + us

)
(19)

y(t) = Cx(t)

Applying the a change of coordinates � (t) = x(t) − xs and using (11), the closed-loop system dynamics and output equation are
given by

c

0
D�

t
� (t) = c

0
D�

t
x(t)

= Ax(t) + B
(
F (x(t) − xs) + us

)

= Ax(t) + BF (x(t) − xs) + Bus

= Ax(t) + BF� (t) + Bus

= A(� (t) + xs) + BF� (t) + Bus

= (A + BF )� (t) +
(
Axs + Bus

)

= (A + BF )� (t) (20)

y(t) = C� (t) + r (21)

F is designed such that first n − 2p poles of the closed-loop system are placed at the stable invariant zeros of the FOS located
in ℂ̄� . The remaining 2p poles are placed on the negative real axis. From Lemma 2, the FOS (20) is asymptotically stable, and
the tracking error is given by

�(t) = r − y(t)

= −C� (t)

= −CE�((A + BF )t�)�0

= −C

∞∑
k=0

(A + BF )k(t�)k

Γ(�k + 1)
�0

From the diagonal decomposition of the matrixA+BF given byA+BF = V ΛV −1, Λ = diag(�1, �2,… , �n), one can compute
�(t) as

�(t) = −C

∞∑
k=0

(V ΛV −1)k(t�)k

Γ(�k + 1)
�0

= −CV

∞∑
k=0

(Λ)k(t�)k

Γ(�k + 1)
V −1�0 (22)

Introducing  = V −1�0 ∈ ℝ
n, the above equation can be written as

�(t) = −CV

∞∑
k=0

(Λ)k(t�)k

Γ(�k + 1)
 

= −CV E�(Λt
�) 

From the equation (15), Cvi = si, where vi is the i-th column vector of V , and  i as the i-th element of  , one can write

�(t) = −

n∑
i=1

siE�(�it
�) i (23)
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By using the Notation 4.1: 1 − 5 and substituting for si from (17),

�(t) = −

⎡
⎢⎢⎢⎢⎣

 1,1E�(�1,1t
�) +  1,2E�(�1,2t

�)

 2,1E�(�2,1t
�) +  2,2E�(�2,2t

�)

⋮

 p,1E�(�p,1t
�) +  p,2E�(�p,2t

�)

⎤
⎥⎥⎥⎥⎦

(24)

Assuming �0 ∈ J , the projection of �0 onto eachHk lies in Jk. So by Lemma 1, each component of the tracking error has no root
in ℝ

+, and hence converges to zero without changing sign as t→ ∞. Hence, a tracking response without overshoot is achieved
and the response converges to the reference value monotonically as time t → ∞. Conversely, if there is a k ∈ {1,… , p} such
that the projection of �0 onto Hk does not lie in Jk, then again by Lemma 1, the system response will be overshooting in the
k-th output component. Thus the condition �0 ∈ J is both necessary and sufficient for a non-overshooting response.

Remark 2. The system response can be made arbitrarily fast since the modes appearing in the output are the freely chosen poles
placed on the negative real axis.

Remark 3. For the FOS with at least n − p stable invariant zeros by using the proposed method of NOTC, it can be shown that
only one Mittag-Leffler function will appear in each component of the error term. Hence, one can obtain a tracking response
that is non-overshooting from all initial conditions.20.

Remark 4. In the case of at least n − 2p stable invariant zeros, to get the maximum advantage of the available stable invariant
zeros in the system, instead of considering any of the n − 2p stable invariant zeros as in Theorem 1 one can place the closed
loop poles at all of the available stable invariant zeros. By doing so one can get a non-overshooting response from a wider set
of initial conditions. For example if the system has n− (p+ q) stable invariant zeros where q < p and q ∈ ℕ, then system come
under the category of at least n−2p distinct stable invariant zero case. But, if we are placing n− (p+ q) distinct stable invariant
zeros instead of n− 2p stable invariant zeros as the closed loop poles of the system and place rest of the p+ q closed loop poles
on the negative real axis and select si in equation (17) as

si =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 for i ∈ {1, 2,… , n − 2p};

e1 for i ∈ {n − 2p + 1, n − 2p + 2};

e2 for i ∈ {n − 2p + 3, n − 2p + 4};

⋮

eq for i ∈ {n − 2p + 2q − 1, n − 2p + 2q};

eq+1 for i ∈ {n − 2p + 2q + 1};

⋮

ep−1 for i ∈ {n − 1};

ep for i ∈ {n};

(25)

Then out of p output components, q output components have the sum of two Mittag-Leffler functions appearing in the output
and the remaining e p− q output components can have only a single Mittag-Leffler function appearing in the output. In this way
one can get a larger set of initial conditions from which non-overshooting response can be obtained. While computing the set J
given in Notation 4.1 (8), it is only necessary check the projection of �0 onto Hk belongs to Jk for k ∈ {1, 2, 3… , q}.

4.2 Systems with fewer than n − 2p stable invariant zeros

In this case we relax the Assumption 4 with following assumption

Assumption 5. The system (9) has at least n − lp distinct stable invariant zeros in ℂ̄� , where l ∈ ℕ.

For the LTI FOS system with at least n−lp stable invariant zeros, the following lemma 4 is useful to prove that the components
of tracking errors do not change sign.

Lemma 4. Let 0 < � < 1, let �1 < �2 <⋯ < �l < 0, and let 
1, 
2,… , 
l ∈ ℝ. Then the function

f (t) = 
1E�(�1t
�) + 
2E�(�2t

�) +⋯ + 
lE�(�lt
�) (26)

does not have a root in ℝ
+ if

(a) 
i, i ∈ {1, 2,… , l} are all of same sign, or

This article is protected by copyright. All rights reserved.
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(b) For some k ∈ {1, 2,… , l − 1}, the elements of {
1,… , 
k} are all of same sign, the elements of {
k+1,… , 
l} are all of the
same sign, and |∑k

1

i| < |∑l

k+1

i|.

Proof. Case (a) follows directly from the fact thatE�(−�) is positive and monotonically decreasing as � increases, for 0 < � < 1

and � > 021. Case (b) can be proved from Lemma 1.

Under Assumption 5, one can include any commensurate LTI FOS by considering an sufficiently large value of l. For the
FOS (9) under the control input (10), satisfying Assumptions 1-3 and 5, a NOTC can be achieved by designing the feedback
matrix F using the following algorithm.

Algorithm 4.2

1. Let the closed-loop poles of the FOS be at  = {�1, �2,… , �n} ∈ ℂ̄� . The first n − lp closed-loop poles of the FOS, �i
for i ∈ {1, 2,… , n − lp}, are placed at any of the n − lp distinct stable invariant zeros of the FOS. The remaining poles,
�i for i ∈ {n − lp + 1, n − lp + 2,… , n} are placed on the negative real axis such that all the poles are distinct.

2. Choose a set of vectors  = {s1, s2,… , sn} ∈ ℝ
p as follows

si =

⎧
⎪⎪⎨⎪⎪⎩

0 for i ∈ {1, 2,… , n − lp};

e1 for i ∈ {n − lp + 1, n − lp + 2,… , n − lp + l};

e2 for i ∈ {n − l(p − 1) + 1, n − l(p − 1) + 2,… , n − l(p − 1) + l};

⋮

ep for i ∈ {n − l + 1, n − l + 2,… , n};

(27)

where ei, i ∈ {1, 2, 3,… , p} denote the canonical basis vectors of ℝp.

3. Compute the vector

[
vi
wi

]
by solving (15), considering �i ∈  and si ∈  . Hence obtain  = {v1, v2,… , vn}, and

 = {w1, w2,… , wn}.

4. From Lemma 3, if  is linearly independent, then the feedback matrix F exists. The matrix F can be computed by Moore’s
algorithm.

Notation 4.2

.
The following notations are considered to state Theorem 2.

1. For each k ∈ {1, 2,… p}, let �k,1, �k,2,… , �k,l denote eigenvalues in  that are associated with si = ek, ordered as
�k,1 < �k,2 <… �k,l,

2. Let vk,1, vk,2,… , vk,l denote the eigenvectors corresponding to the eigenvalues �k,1, �k,2,… , �k,l, respectively.

3. Define � (t) = x(t) − xs and let �0 = � (0).

4. Form matrix V with the columns as the elements in the set  ,
V ∶= [v1|v2|… |vn−lp|v1,1|v1,2|… |v1,l|v2,1|… |vp,l]

5. Define  ∶= V −1�0 ∈ ℝ
pn, denoted as

 = [ 1  2 …  n−lp  1,1  1,2 … 1,l  2,1 …  p,l]
T

6. For each k ∈ {1, 2,… , p}, define

�k(t) ∶= −( k,1E�(�k,1t
�) +  k,2E�(�k,2t

�) +⋯ +  k,lE�(�k,lt
�)), (28)
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Theorem 2. Assume that FOS (9) satisfies Assumptions 1-3 and 5. Let control input (10) is applied to the FOS, where the
matrix F designed from the Algorithm 4.2 by considering  as the closed loop poles and  as the associated eigenvectors.
Then, the response y(t) of FOS (9) with control input (10) will track the reference signal r with no overshoot, if and only if the
functions �k(t) do not change sign, for all k ∈ {1, 2,… , p}.

Proof. The proof follows the similar lines of the proof of Theorem 1. The tracking error �k in the k-th output component has
the form of (28).

Remark 5. NOTC can be computed for any commensurate LTI FOS by considering the case of least n− lp stable invariant zeros
with appropriate value of l ∈ ℕ. But, as the value of l increases the non-overshooting response can be achieved only form a
reduced set of initial conditions by using the proposed NOTC.

Remark 6. For the case of n − lp stable invariant zeros, Lemma 4 only provides a sufficient condition for the tracking errors to
not change sign, and thus underestimates the set of initial conditions from which a non-overshooting response can be achieved.
In the case of n − 2p zeros, the Lemma 1 gives a necessary and sufficient condition for the tracking errors to not change sign,
and hence one can find the complete set of initial conditions from which a non-overshooting response can be achieved.

5 DESIGN OF ROBUST NON-OVERSHOOTING TRACKING CONTROL FOR FOS

In this Section, Assumption 3 is relaxed by Assumption 6 stated below:

Assumption 6. Matched and bounded disturbance act on FOS (9), i.e ‖d(t)‖ ≤ dmax, where dmax is a known quantity.

When there is a disturbance acting on the FOS, the NOTC discussed Section 4 does not yield a non-overshooting response. So,
the ISMC technique is exploited in this section to make the FOS response robust towards the matched and bounded disturbances.
A robust NOTC for integer order system is discussed in34. ISMC technique is used with NOTC to achieve the robust NOTC for
IOS in34. The ISMC for FOS , u(t), introduced in this section has two parts

u(t) = un(t) + ui(t) (29)

where ui(t) is discontinuous control part and un(t) is the nominal control part. The discontinuous control, ui(t), is designed from
the ISMC technique for FOS, which make the FOS response invariant to the matched and bounded disturbance. Nominal control
part, un(t), is designed by NOTC discussed in Section 4.

In order to compute ui(t), define an fractional order integral sliding surface, �(t) = 0, where the sliding variable, �(t), is
designed as

�(t) = 0I
1−�
t

(Gx(t)) − G

t

∫
0

x0

Γ(1 − �)
(�)−�d� − G

t

∫
0

(Ax(�) + Bun(�))d� (30)

where G ∈ ℝ
m×n is the projection matrix, chosen such that the (GB)−1 exists. x is the state of FOS, x0 is the initial condition

and un is the nominal control. The discontinuous control part, ui, is given by

ui(t) = −k(GB)−1
�(t)

‖�(t)‖ (31)

where k is the gain to be computed.

5.1 Systems having n − 2p stable invariant zeros

Consider the case with the FOS having at least n − 2p stable invariant zeros.

Theorem 3. Assume that the FOS (9) satisfies the Assumptions 1,2,4 and 6. Let control input (29) be designed such that un(t)
is obtained using Theorem 1 and the ui(t) is computed by (31) with gain k > ‖GB‖dmax. When the control (29) is applied to
FOS (9), the response y(t) will track the reference r without overshoot by rejecting the effect of the disturbances, if the initial
condition satisfies �0 ∈ J .
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Proof. Consider the sliding variable, �(t), defined in (30). The sliding variable �(t) is designed such that �(0) = 0. Also, the
derivative of the sliding variable is computed as

�̇(t) = 0I
−�
t

(Gx(t)) − G
x0

Γ(1 − �)
(t)−�

− G(Ax(t) + Bun(t))

= 0D
�

t
(Gx(t)) − G

x0

Γ(1 − �)
(t)−�

− G(Ax(t) + Bun(t))

= Gc

0
D�

t
x(t) − G(Ax(t) + Bun(t))

= G(Ax(t) + B(un(t) + ui(t) + d(t)))

− G(Ax(t) + Bun(t))) (32)

After substituting for ui(t) from (31), we get �̇(t) as

�̇(t) = −k
�(t)

‖�(t)‖ + GBd(t) (33)

The gain k, is selected as k > ‖GB‖dmax, so the �-reachability condition is satisfied and the surface remains attractive30. Hence
the system trajectories remain on the sliding surface. Since �(0) = 0, the system trajectories start from siding surface and then
remains on the sliding surface. For the discontinuous control ui(t), one can compute an equivalent value, uieq(t), by considering
�(t) ≡ 0 for t ≥ 0 and equating the derivative of the sliding variable to zero.

�̇(t) = G(Ax(t) + B(un(t) + ui(t) + d(t)))

− G((Ax(t) + Bun(t)))

= GB(ui(t) + d(t))

0 = GB(uieq(t) + d(t)) (34)

Without loss of generality, if GB be selected as identity matrix Im×m, one can conclude

uieq(t) = −d(t) (35)

Hence uieq(t), the equivalent value of ui(t) applied to the FOS always negates the disturbance(if GB is not taken as Im×m, then
uieq(t) will be scaled by (GB)−1). So the effect of the disturbance get cancelled by the ui(t) applied to the FOS and the system
trajectories always remain on the sliding surface. The states of (9) will evolve according to the nominal system given by

c

0
D�

t
x(t) = Ax(t) + Bun(t) (36)

Since the un(t) is designed using NOTC from Theorem 1, the response of (9) will track the reference r without any overshoot.
The disturbance, d(t), is rejected by the discontinuous control, ui(t), by forcing the FOS trajectories to remain on the sliding
surface.

5.2 Systems having n − lp stable invariant zeros

Consider the case with the system having at least n − lp stable invariant zeros, where l ∈ ℕ. The design of a robust NOTC can
be done using Theorem 4 as follows:

Theorem 4. Let FOS (9) satisfies the Assumptions 1,2,5 and 6. Let control input (29) be designed such that the un(t) is obtained
from Theorem 2 and the ui(t) computed from (31) with gain k > ‖GB‖dmax. Control input (29), when applied to the FOS (9),
will make y(t) to track the signal r with no overshoot by rejecting the disturbances, if and only if the functions �k(t) in (28) do
not change sign for all k ∈ {1, 2,… , p}.

Proof. The proof of Theorem 4 follows the similar lines of the proof for Theorem 3.
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6 SIMULATION RESULT

The robust NOTC for FOS proposed in Section 5 is verified using two simulation examples.

6.1 Example 1

Consider the LTI commensurate FOS in (9) where

A =

⎡
⎢⎢⎢⎢⎢⎣

−9 −9 5 0 −3

−8 0 0 −7 0

10 −9 −5 0 −8

10 0 8 −5 0

−1 0 0 0 −7

⎤⎥⎥⎥⎥⎥⎦

, B =

⎡⎢⎢⎢⎢⎢⎣

0 0

1 0

1 0

2 −10

1 0

⎤⎥⎥⎥⎥⎥⎦

, C =

[
1 1 0 0 −1

0 0 0 −1 −4

]

and � = 0.9. The disturbance entering the system is taken as d(t) = [0.2 sin(2t) 0.1 cos(2t)]T . The initial condition is given by
x0 = [2.5 − 6.5 − 7 − 8 1]T . The step reference signal to be tracked is assumed to be r = [5 − 5]T .

The steady state values xs and us are obtained by solving (11) and (12) as xs = [7.1795 0.2564 14.8462 −4.7436 2.4359]T ,
us = [24.2308 26.2744]T .

The initial condition x0 considered in the example satisfies the condition �0 = x0−xs ∈ J given in Notation 4.1. Hence when
the control input, u(t), is designed from Theorem 1 in the absence of disturbance or from Theorem 3 in the presence of matched
and bounded disturbance is acting on the system will not show any overshoot in the response.

The robust NOTC, u(t), proposed in Section 5.1 is given by

u(t) = un(t) + ui(t)

The FOS considered has number of states n = 5, the number of outputs p = 2 and the number of inputs m = 2. Also, the given
system is square, i.e. m = p. The invariant zeros of the system considered are found to be at 8.0462 and −12.1176. To compute
the nominal control part un(t), the system considered comes under the category of at least n − 2p stable invariant zeros, since
n − 2p = 1 and system has only one stable invariant zero. For computing nominal part, un(t), choose the first closed-loop pole
as the stable invariant zero of the FOS �1 = −12.1176. The remaining 2p = 4 closed-loop poles are placed at �2 = −4.5,
�3 = −5.5, �4 = −5, �5 = −6. The vectors si, i = 1, 2,… , 5 are chosen according to (17) given by s1 = [0 0]T , s2 = [1 0]T ,
s3 = [1 0]T , s4 = [0 1]T , s5 = [0 1]T . To compute the feedback matrix F , first one need to solve for vi andwi, i ∈ {1, 2,… , 5},
from the equation (15), which are obtained as

v1 =

⎡⎢⎢⎢⎢⎢⎣

0.2673

−0.1213

−0.2974

−0.5841

0.1460

⎤⎥⎥⎥⎥⎥⎦

, v2 =

⎡⎢⎢⎢⎢⎢⎣

0.5154

0.5254

1.4340

−0.1631

0.0408

⎤
⎥⎥⎥⎥⎥⎦

, v3 =

⎡
⎢⎢⎢⎢⎢⎣

0.4081

0.5805

1.3238

0.0456

−0.0114

⎤
⎥⎥⎥⎥⎥⎦

, v4 =

⎡⎢⎢⎢⎢⎢⎣

−0.2019

−0.0673

−0.4442

0.0769

−0.2692

⎤⎥⎥⎥⎥⎥⎦

, v5 =

⎡⎢⎢⎢⎢⎢⎣

−0.1978

−0.0756

−0.4190

0.0939

−0.2735

⎤⎥⎥⎥⎥⎥⎦

w1 =

[
−0.4799

−0.4823

]
, w2 =

[
0.6174

1.7942

]
, w3 =

[
0.3910

1.5475

]
, w4 =

[
−0.7404

−0.7054

]
, w5 =

[
−0.4713

−0.6179

]
.

The matrix F , can be obtained as

F = [w1w2w3w4w5][v1 v2 v3 v4 v5]
−1.

=

[
11.1134 −9.3696 0.7204 6.8703 −2.4684

1.4120 −2.3561 1.7298 0.9741 −0.4258

]

The nominal control input is obtained as

un(t) = F (x(t) − xs) + us
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To compute the discontinuous part, ui(t), the sliding surface must be designed. The projection matrix, G, to compute sliding
surface is taken as follows so that GB will be an identity matrix.

G =

[
1.0 1.0 −1.0 0 1.0

1.0 0.2 1.0 −0.1 −1.0

]
.

The sliding variable is computed using the expression

�(t) = 0I
1−�
t

(Gx(t)) − G

t

∫
0

x0

Γ(1 − �)
(�)−�d� − G

t

∫
0

(Ax(�) + Bun(�))d� (37)

The gain, k = .5, satisfies the condition k ≥ ‖GB‖dmax. The discontinuous control, ui(t), is obtained as

ui(t) = −.5
�(t)

‖�(t)‖ (38)

The ISMC applied to the FOS, u(t), is given as

u(t) = un(t) + ui(t)

Figure 1 a shows the output plot of the FOS with NOTC without ISMC and Figure 1 b shows the output plot of the FOS
with robust NOTC with ISMC. Comparing the two output plots of the FOS from Figure 1 a and Figure 1 b, one can clearly
observe that the robust NOTC proposed in Section 5 reject the effect of the disturbances acting on the FOS and make all output
components to track the reference r avoiding overshoot. Figure 1 c shows the plots of the control input designed by NOTC
without ISMC. Figure 1 d shows robust NOTC with ISMC applied to FOS. From the Figure 1 d it can be observed that the
proposed robust NOTC has a high frequency switching and hence it will result in chattering in the system but it is able to reject
the disturbance and give the desired non overshooting response. Figure 1 e and 1 f show the plots of the states of the FOS with
NOTC and with robust NOTC, respectively. The low frequency disturbance acting on the system is plotted in Figure 1 g. The
disturbance acting through the input channel is causing oscillations in the output and states in the case of NOTC but the robust
NOTC is able to nullify the effect of the disturbances. The sliding variable plotted in Figure 1 h shows that the system trajectory
starts from the sliding surface and is maintained on it. Since the system trajectory is on the sliding surface from the initial time,
the robust NOTC is able to neutralize the effect of disturbance form the initial time. From the Figures 1 a and 1 b, one can
conclude that the proposed ISMC performs better in the presence of disturbances. Since the nominal control is designed from
NOTC, there is no overshoot in both output components. The speed of the output of the FOS can be made faster by choosing
closed-loop poles further to the left on the negative real axis.

6.2 Example 2

Here we consider an example FOS falling into the category of n − lp stable invariant zeros, as discussed in Section 4.2. Let the
LTI commensurate FOS in (9) have � = 0.9, and

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −9 5 0 −3 8

2 0 0 7 0 1

1 −9 1 0 −8 0

−2 0 8 5 0 7

−1 0 0 0 7 −2

1 0 9 2 1 −4

⎤
⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0

1 0

1 0

2 −10

1 0

1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, C =

[
1 −1 1 0 1 −1

0 0 0 1 −1 1

]

The matched disturbance entering the system is taken as high frequency signal given by d(t) = [5 sin(100t) 4 cos(100t)]T . The
initial condition is given by x0 = [34.57 15.18 −2.24 −28.15 −2.73 14.42]T . The reference signal is taken to be r = [6 −6]T .

The values of the state and input at the steady state xs and us, respectively are obtained by solving (11) and (12) as xs =

[30.0000 10.7419 − 0.3871 − 18.8710 − 0.8710 12.0000]T , us = [60.0968 4.6742]T .
The initial condition x0 satisfies the condition x0 − xs ∈ J given in Notation 4.2. The  , obtained as  = V −1�0 are all

negative and hence �0 = x0−xs ∈ J . So by Theorem 2, the NOTC designed will generate a non-overshooting tracking response
in the absence of disturbance or from Theorem 3 the robust NOTC designed will generate a non-overshooting tracking response
in the presence of matched and bounded disturbances acting on the system.
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FIGURE 1 Plots for Example 1
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FIGURE 2 Plots for Example 2
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The robust NOTC, u(t), proposed in Section 5.2 is given by

u(t) = un(t) + ui(t)

The FOS considered has number of states n = 6, the number of outputs and inputs are same p = m = 2. The invariant zeros of the
system are 2.2624± 11.6318i and 1.2986. So there are no stable invariant zeros for the system. To compute the nominal control
part un(t), the system considered comes under the category of at least n− lp stable invariant zeros, where l = 3. For computing
nominal part, un(t), the closed-loop poles are placed at �1 = −4, �2 = −4.5, �3 = −5, �4 = −5.5, �5 = −6, �5 = −6.5. The
vectors si, i = 1, 2,… , 6 are chosen according to (17) given by s1 = [1 0]T , s2 = [1 0]T , s3 = [1 0]T , s4 = [0 1]T , s5 = [0 1]T

and s6 = [0 1]T . From equation (15), vi and wi, for i = {1, 2,… , 6}, are obtained as

v1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0672

−0.3011

0.1069

0.5248

0.1370

−0.3878

⎤⎥⎥⎥⎥⎥⎥⎦

, v2 =

⎡⎢⎢⎢⎢⎢⎢⎣

0.0895

−0.2715

0.1243

0.5147

0.1301

−0.3846

⎤
⎥⎥⎥⎥⎥⎥⎦

, v3 =

⎡⎢⎢⎢⎢⎢⎢⎣

0.1137

−0.2167

0.1670

0.5026

0.1221

−0.3806

⎤⎥⎥⎥⎥⎥⎥⎦

, v4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1.0715

−0.5728

0.2385

1.2601

0.2180

−0.0421

⎤
⎥⎥⎥⎥⎥⎥⎦

, v5 =

⎡⎢⎢⎢⎢⎢⎢⎣

−0.8648

−0.5102

0.1866

1.1680

0.2017

0.0337

⎤
⎥⎥⎥⎥⎥⎥⎦

, v6 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.7814

−0.4876

0.1598

1.1339

0.1926

0.0587

⎤⎥⎥⎥⎥⎥⎥⎦

.

w1 =

[
−2.2156

−0.1702

]
, w2 =

[
−2.1758

−0.1338

]
, w3 =

[
−2.1732

−0.0624

]
, w4 =

[
−3.7714

0.8815

]
, w5 =

[
−3.4193

0.9467

]
, w6 =

[
−3.2645

0.9764

]
.

The matrix F , can be obtained as

F = [w1w2w3w4w5w6][v1 v2 v3 v4 v5 v6]
−1.

=

[
0.7257 −4.4439 2.0635 −2.5304 −12.6647 1.9595

−0.3498 3.5949 −1.9480 2.2354 1.0685 0.4525

]

The nominal control input is obtained as

un(t) = F (x(t) − xs) + us

To compute the discontinuous part, ui(t), sliding surface must be designed. The projection matrix to compute sliding surface
is taken as

G =

[
1.0 1.0 −1.0 0 1.0 0

1.0 0.2 1.0 −0.1 −2.0 1.0

]
.

The sliding variable is computed using the expression

�(t) = 0I
1−�
t

(Gx(t)) − G

t

∫
0

x0

Γ(1 − �)
(�)−�d� − G

t

∫
0

(Ax(�) + Bun(�))d� (39)

The gain, k = 7, satisfies the condition k ≥ ‖GB‖dmax. The discontinuous control is computed as

ui(t) = −7
�(t)

‖�(t)‖ (40)

The robust NOTC with ISMC applied to the FOS, u(t), is given as

u(t) = un(t) + ui(t)

Figure 2 a and Figure 2 b show the output plots of the FOS with NOTC without ISMC and robust NOTC with ISMC. As in
the Example 6.1, here also the robust NOTC is able to reject the effect of the disturbances and perform better without causing
any overshoot and oscillations in the output. Figure 2 c shows the plots of the control input designed by NOTC without ISMC.
Figure 2 d shows robust NOTC with ISMC applied to FOS. Here also the high frequency switching in the control can be
observed from the Figure 2 d where as the input applied in the case of NOTC in Figure 2 c is continuous and does not have
any high frequency switching. The high frequency switching will cause chattering in the system which will results in wear and
tear in the system and actuator. But even the effect of the high frequency disturbance considered in the system is neutralised by
the robust NOTC. Figure 2 e shows the plot of the states of the FOS with NOTC and 2 f shows the states of FOS with robust
NOTC. The high frequency disturbance acting on the system is plotted in Figure 2 g. The sliding variable plotted in Figure 2 h.
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In Example 6.1 a low frequency disturbance was considered and in Example 6.2 a high frequency disturbance was considered,
but the robust NOTC proposed in the Section 5 was able to successfully reject the disturbances and ensure a non-overshooting
tracking response in both the cases.

7 CONCLUSION AND FUTURE WORKS

NOTC is designed for MIMO FOS to achieve an non-overshooting output response that tracks the reference step signal without
any overshoot. By this technique, rise time can be reduced arbitrarily without any overshoot in the tracking response. NOTC
can be computed for any square MIMO FOS by using the assumption of least n− lp stable invariant zeros, by suitably choosing
l in assumption. Secondly, a robust NOTC for MIMO FOS is designed by using ISMC technique. A fractional integral sliding
surface has been designed for the ISMC. The nominal control part of ISMC is designed using Moore’s eigenstructure assignment
technique so that there is no overshoot in the response. The discontinuous control part of ISMC provides robustness towards the
effect of the disturbances.

The proposed ISMC for FOS is able to reject the disturbances, but it causes chattering phenomenon in the system due to the
discontinuous control. The in future work the possibility of using the higher order sliding mode control techniques which are
capable of reducing the chattering in the system can be investigated. The effect of delays and measurement noise are not studied
in the present paper which also can be considered in the future works since both may affect the stability and transient response
of the system.

APPENDIX

To prove Lemma 1, we firstly prove

Lemma 5. Let 0 < � < 1 and let �1 < �2 < 0. Then for all t > 0,

sup
t>0

E�(�1t
�)

E�(�2t
�)

= 1 and inf
t>0

E�(�1t
�)

E�(�2t
�)

=
�2

�1
(41)

Proof. For brevity we introduce

�(t) =
E�(�1t

�)

E�(�2t
�)

(42)

As E�(0) = 1 and E�(�1t
�) < E�(�2t

�) for all t > 0, we have the first equation in (41).

First derivative of Mittag-Leffler function26 for a complex z and � = 1, is given by(
d

dz

)
[E�(z)] = (�z)−1E�,0(z) (43)

If we introduce z = �t� , we may obtain the integer derivative (with respect to t) as

E(1)
�
(�t�) =

(
d

dz

)
[E�(z(t))]

dz

dt

= (�z)−1E�,0(z)
dz

dt

=
1

��t�
E�,0(�t

�)(��t�−1)

= t−1E�,0(�t
�) (44)

Hence, form the equation (44) one can obtain that, for all t > 0,

E(1)
�
(�1t

�) = t−1E�,0(�1t
�) < t−1E�,0(�2t

�) = E(1)
�
(�2t

�) < 0 (45)

so � is monotonically decreasing. Finally we note the well-known result36 that, for 0 < � < 1, � > 0 and t ≫ 0,

E�(−(t∕�)
�) ≃

sin(��)Γ(�)

�(t∕�)�
(46)
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To obtain the second equation in (41), we introduce �1, �2 > 0 such that ��
1
= 1∕|�1| and ��

2
= 1∕|�2|. Then

inf
t>0
�(t) = lim

t→∞
�(t)

= lim
t→∞

(t∕�2)
�

(t∕�1)
�

=
�2

�1
(47)

Now we can prove Lemma 1. Firstly assume that f has a root in ℝ
+; then there exists t∗ > 0 such that f (t∗) = 0, and we obtain

E�(�1t
�
∗
)

E�(�2t
�
∗
)
=

−
2

1

(48)

Applying Lemma 5, we obtain (6). Next assume (6); then by the continuity of � in (42), there exists t∗ > 0 satisfying (48), and
hence f (t∗) = 0.
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