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1. INTRODUCTION

Aperiodic sensing, communication and computation play
a crucial role for controlling resource constrained Cyber-
Physical Systems. It is shown in [Astrom et al. (2002);
Heemels et al. (2012); Tabuada (2007); Marchand (2013)]
that aperiodic sampling has more benefits over periodic
sampling, which motivates control researchers towards
event-triggered control. In event-triggered control, sens-
ing, communication and computation happens only when
any predefined event condition is violated. This control
strategy finds application in different control problems like
tracking [Tallapragada (2013)], estimation [Tallapragada
(2012); Trimpe et al. (2012)] etc. Event-triggered system is
modeled as a perturbed system in continuous and discrete
time domain respectively [Tabuada (2007); Eqtami et al.
(2010)]. Also the behaviour of such system is described
by an impulsive dynamics in literature [Donkers et al.
(2012); Sahoo et al. (2013)]. To achieve larger average
inter-event time, [Girard (2015)] proposes a dynamic
event-generating rule over the static approach [Tabuada
(2007)]. The input to state stability (ISS) property [Sontag
(2008); Nesic et al. (2004)] is exploited to prove the
closed loop stability and to define triggering condition for
event-triggered system. Sahoo et al. [Sahoo et al. (2013)]
proposed an event based adaptive control approach for
uncertain systems. A neural network is used to estimate
the nonlinear function to generate the control law. In event
based robust control problems, the uncertainty is mainly
considered in the communication channel in the form of
time-delay or data-packet loss [Garcia et al. (2013)]. The
main shortcoming of the classical event-triggered system
lies in the fact that one must know the exact model of the

plant apriori. A plant with an uncertain (system) model is
a more realistic scenario and has far greater significance.
However, there are open problems of designing a control
law and triggering conditions to deal with system uncer-
tainties. These uncertainties mainly arise due to system
parameter variations, unmodeled dynamics, disturbances
etc. and necessitates the design of robust controller. To
deal with uncertainties, an optimal control approach to
robust controller design for the uncertain system has been
reported in [Lin et al. (2000, 1998); Adhyaru et al.
(2009)] and find applications in tracking problem of robot
manipulator [Lin et al. (1998); Tripathy et al. (2014)],
set-point regulation in CSTR system etc. To achieve an
optimal solution to the robust control problem there is a
need to minimize a cost functional. In this direction, a non-
quadratic cost functional is utilized to solve robust control
problem with input constraint [Adhyaru et al. (2009)]. In
the above mentioned approach, event-trigger based imple-
mentation of robust control law is not considered which is
essential in the context of NCS.
This paper considers a robust control strategy of linear
uncertain system with limited state and input information.
The limited state information is considered to address the
channel unreliability or bandwidth constraint which is a
very common phenomena in NCS. To capture the channel
uncertainty, event-triggered control strategy is adopted in
[Xia et al. (2013)] without considering system uncertainty
explicitly. The primary motivation for this work is that
with limited information, existing robust control results
in [Lin et al. (2000, 1998); Kar (2002)] can not be
simply extended to the event-triggered system. This paper
proposes a novel event based robust control strategy for
matched uncertain systems where it is assumed that the
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Fig. 1. Conceptual Block diagram of proposed event-
trigger based robust control. Dotted line represents
the aperiodic information transmission through the
communication channel.

unknown uncertainty is in the range space of control input
matrix. A conceptual block diagram of the proposed event-
trigger based robust control framework is illustrated in
Figure 1. Here the system, sensor and actuator are co-
located but the controller is connected thorough a com-
munication network. A dedicated computing unit monitors
the event condition at the sensor end. The control input is
computed and updated only when an event is generated.
A zero-order-hold (ZOH) at the actuation end holds the
last transmitted control input until the transmission of
next input. The aperiodic state transmission to controller
and control input update instant {tk}k∈I over the network
is decided by the same event-triggering law. For simpli-
fication, it is assumed that there is no communication,
computation and actuation delay in the system. To design
robust control law, an equivalent optimal control problem
is formulated with an appropriate cost functional which
takes care of the upper bound of system uncertainty. The
nominal system dynamics is used to compute the optimal
controller gain which minimizes the cost-functional. The
analysis of this system is done in continuous time domain.
The proposed method is also extended to design dynamic
event-triggering rule in order to increase inter-event time.
The corresponding triggering rule and their stability crite-
ria for matched uncertain system have been derived. The
advantage of the proposed control strategy is that it signif-
icantly reduces the number of control input transmission
and computation in spite of system uncertainties.

Summary of contribution: The main contributions of this
paper are summarized as follows.

• Defining an optimal control problem to design a
robust control law for matched uncertain system.

• Deriving a dynamic event-triggering rule for uncer-
tain system using the upper bound of system uncer-
tainty.

• Ensuring stability of closed loop system using ISS
Lyapunov function.

• Deriving a positive non-zero lower bound of inter-
execution time. Results are verified through simula-
tion studies.

Organization of paper The paper is organized as follows.
In Section 2, we briefly review an optimal approach to ro-
bust control design for uncertain system. Section 3 discuss
the optimal control approach to solve the robust stabiliza-
tion problem for event-triggered system with system un-
certainty. A dynamic event triggering conditions is stated
in the form of theorems and their corresponding proofs are
reported. Also the expressions of the minimum positive
inter-event time is defined in Section 3. An academic
example with simulation results is discussed in Section
4 to validate the proposed control algorithm. Section 5
concludes the paper.

Notation The notation ‖x‖ is used to denote the Eu-
clidean norm of a vector x ∈ R

n. Here R
n denotes the n

dimensional Euclidean real space and R
n×m is a set of all

(n×m) real matrices. R+

0 and I denote the all possible set
of positive real numbers and non-negative integers. X ≤ 0,
XT andX−1 represent the negative definiteness, transpose
and inverse of matrix X, respectively. Symbol I represents
an identity matrix with appropriate dimensions and time
t∞ implies +∞. Symbols λmin(P ) and λmax(P ) denote the
minimum and maximum eigenvalue of symmetric matrix
P ∈ R

n×n respectively. A function f : R≥0 → R≥0 is K∞

if it is continuous and strictly increasing and it satisfies
f(0) = 0 and f(s) → ∞ as s → ∞.

2. PRELIMINARIES & PROBLEM STATEMENT

2.1 Preliminaries

Input to state stability In state space form, a linear
system with external disturbance d(t) ∈ R

n is expressed
as

ẋ(t) = Ax(t) +Bu(t) + d(t) (1)

where x(t) ∈ Rn, u(t) ∈ Rm are system’s state and
control input respectively. For simplification from now
onwards, x(t) and u(t) are denoted by x and u respectively.
Disturbance d(t) is assumed to be bounded by a known
function dm(t) i.e. ‖d(t)‖ � dm(t). The above system (1)
is said to be ISS with respect to d(t) if there exist an ISS
Lyapunov function. To analyze the ISS of system (1) with
respect to d(t), following definition is introduced [Sontag
(2008); Nesic et al. (2004)].

Definition 1. A continuous function V (x) : Rn → R is an
ISS Lyapunov function for system (1) if there exist class
k∞ functions α1, α2, α3 and γ for all x, d ∈ R

n and it
satisfy

α1(‖x(t)‖) ≤ V (x(t)) ≤ α2(‖x(t)‖) (2)

∇V (x)ẋ ≤ −α3(‖x(t)‖) + γ(‖d(t)‖) (3)

System with matched uncertainty : A linear system having
system-uncertainty is described as

ẋ = A(p)x+Bu (4)

where p ∈ P is an uncertain parameter vector. In general
system uncertainty is classified in two categories namely
matched and mismatched uncertainty [Lin et al. (2000);
Kar (2002)]. The system (4) has matched uncertainty if
there exists a bounded uncertain matrix φ(p) ∈ R

m×n such
that

A(p)−A(p0) = Bφ(p) (5)



 Niladri Sekhar Tripathy et al. / IFAC-PapersOnLine 49-1 (2016) 207–212 209

for any p ∈ P , where p0 is known nominal parameters and
A(p0) is nominal system matrix. In other words system
uncertainty is assumed to be in the range space of input
matrix B. The condition (5) is made to simplify the
derivation of stability results. It is assumed that there exits
a positive semi-definite matrix F to represent the upper
bound of the uncertainty i.e.,

φ(p)Tφ(p) ≤ F (6)

for all p ∈ P . This assumption dose not hold in case of the
mismatched system.

Robust control problem: Find a state feedback control
law u = Kx such that the uncertain system (4) is stable
in the presence of matched uncertainty (5) for any p ∈ P .
To solve the above mentioned robust control problem,
this paper has adopted an optimal control approach. The
essential idea is to compute the optimal control input
for the nominal system which minimizes the modified
cost functional. The cost functional is called modified
cost functional as it depends on the upper bound of
system uncertainty. The obtained optimal control input
for nominal system is shown to be a robust control input
for the actual uncertain system. For matched system (4)
the corresponding nominal dynamics and cost functional
are considered as follows:

ẋ = A(p0)x+Bu (7)

J =

∫
∞

0

(xTFx+ xTQx+ uTRu)dt (8)

with Q ≥ 0 and R > 0. The matrix F ≥ 0 is
the upper bound of matched uncertainty (6). The state
feedback control input u = Kx is used to stabilize (7).
Now to design a robust control law using optimal control
approach, following lemma is introduced [Lin et al. (2000,
1998)].

Lemma 1. Let there exists an optimal control solution for
nominal system (7) with a modified cost functional (8).
Then the optimal control law for the nominal system will
be the robust control solution of the original system (4)
for all bounded system uncertainty (5), (6).

Proof : A detailed explanation is given in [Lin et al.
(2000)]. �

2.2 Problem description and statement

The focus of this paper is to realize the robust control
problem through an aperiodic state feedback control law.
This formulation helps to realize such controller in the
network control domain with limited state information.
The aperiodic control input computation and actuation in-
stant is determined through a predefined state-dependent
event condition. This event condition is derived from ISS
stability criteria. Suppose {tk} represents (aperiodic state
transmission, control input computation and actuation
instant) the event occurring instant. The event-based state
feedback control input will be

u(tk) = Kx(tk), (9)

which replaces the continuous time state feedback control
law u(t) = Kx(t). To solve the robust control problem
through a aperiodic control law (9) the uncertain system
(4) is rewritten as

ẋ = A(p)x(t) +Bu(tk) (10)

Adopting the concepts introduced in [Tabuada (2007)],
the event-based closed loop system (10) reduces to

ẋ = A(p)x+BK(x+ e) (11)

The variable e ∈ Rn is referred as measurement error and
defined as

e(t) = x(tk)− x(t), ∀t ∈ [tk, tk+1), k ∈ I (12)

Using (11) and (5) the event-triggered system with
matched uncertainty is described as

ẋ = A(p0)x+Bu+B(φ(p)x+Ke) (13)

Problem statement: Design of the controller gain K
to stabilize an uncertain event-triggered system (13) such
that the entire closed loop system is ISS with respect to
its measurement error e.
We solve this problem in two steps. Firstly, we design
a controller using Lemma 1 and then define an event-
triggering rule such that the closed loop system (13) is
ISS. These two steps are briefly discussed in next two
subsections.

Controller design: The system (7) is the nominal dynam-
ics of (13). Using Lemma 1, the optimal controller gain K
of (7) which minimizes the cost functional (8) will be the
robust solution of (13). For system (7), control input u(t) is
designed by minimizing J . Let V (x) be a Lyapunov func-
tion for (13). Using optimal control results V (x) should
satisfy Hamilton Jacobi Bellman (HJB) equation [Naidu
et al. (2009); Lin et al. (2000)]

minu∈Rm(xTFx+ xTQx+ uTRu

+V T

x (A(p0)x+Bu) = 0 (14)

where Vx = ∂V

∂x
and u = Kx. Applying optimal u, the

equation (14) reduces to

(xTFx+ xTQx+ uTRu

+V T

x (A(p0)x+Bu) = 0 (15)

According to optimal control theory, the optimal input
u(t) should minimize the Hamiltonian [Naidu et al. (2009)]

H(x(t), u(t), Vx) = xTFx+ xTQx+ uTRu

+ V T

x (A(p0)x+Bu) (16)

which leads to
∂H(x(t), u(t), Vx, t)

∂u(t)
= 2xTKTR+ V T

x B = 0 (17)

For solving an infinite-time linear quadratic regulator
(LQR) problem, a quadratic function V (x) = xTSx is
defined, where matrix S > 0. With this choice, (14)
reduces to the following algebraic Riccati equation (ARE)

SA(p0) +A(p0)
TS + F +Q− SBR−1BTS = 0 (18)

Using the solution S of (18), the optimal control input u
is computed as

u(t) = −R−1BTSx(t) = Kx(t) (19)

Control gain K for (7) and aperiodic state information of
original system x(tk) are used to realize the control law

u(tk) = Kx(tk) (20)



210 Niladri Sekhar Tripathy et al. / IFAC-PapersOnLine 49-1 (2016) 207–212

The robust event-triggered control for (10) is written as

u(tk) = Kx(tk) (21)

Now to realize (21), it is important to design the event
triggering instant such that uncertain system (10) is ISS
with a aperiodic control law (9). The approach for deriving
the triggering law is discussed below.

Triggering condition design: Given an uncertain system
(10) with a linear controller (9) there must have an event-
triggering instant tk∈I with a positive inter-execution time
(tk+1 − tk = τ > 0) such that the closed loop system (10)
is ISS. To prove this there must have an ISS Lyapunov
function with the time derivative in the form of (3). The
ISS condition in the form of (3) helps to construct the
event-triggering rule in-terms of measurement error norm
‖e(t)‖ and the state norm ‖x(t)‖. To design the event-
triggering law for (13), the ISS Lyapunov functions are
considered as follows:

V (x) = xTSx (22)

where S is the solution of (18).

3. DYNAMIC EVENT-TRIGGERED ROBUST
CONTROL

In dynamic event-triggering mechanism, a variable η(t) >
0 is added to achieve larger inter-event time [Girard
(2015)]. The time evolution of new dynamic variable η(t)
is expressed by the following general differential equation.

η̇(t) = −β(η(t)) + σα(‖x(t)‖)− γ(‖e(t)‖) (23)

Here β, α, γ are smooth class K∞ functions and σ ∈
(0, 1). The Lemma 1 of [Girard (2015)], ensures the
positiveness of dynamic variable η(t). In this section the
dynamic event-triggering approach is adopted to solve the
present robust control problem with limited state and
input information. The dynamic event triggering instant
generated for uncertain system is stated through the
following theorem.

Theorem 1. Let the controller gain matrix K is designed
for the nominal system (7) by minimizing the cost func-
tional (8). The augmented matched system (13) and (23)
with event-trigger based controller (20), is asymptotically
stable if there exists a dynamic event occurring sequence
{tk}k∈I given by

t0 = 0, tk+1 = inf{t ∈ R|t > tk ∧ η(t)

+θ(µ‖x‖ − ‖e‖) ≤ 0} (24)

where µ is defined in (31) and the scalar θ is a design
parameter.

Proof : As a special case of (23), the evolution of η(t)
with respect to time can be defined as

η̇(t) = −λη(t) + (µ‖x‖ − ‖e‖) (25)

Now select W (x(t), η(t)) = V (x) + η(t) as a Lyapunov
function for augmented systems (13), (25) where V (x) is
defined in (22).

V̇ (x) = V T
x ẋ (26)

= V T
x (A(p0)x+BKx+Bφ(p)x+BKe)

Using (15) and substituting V T
x = 2xTS

V̇ (x) =−xTFx− xTQx− uTRu

−2xTKTRφ(p)x+ 2xTSBKe

=−xT ((F − φ(p)TRφ(p)) +Q

+(K + φ(p))TR(K + φ(p)))x

+2xTSBKe

According to Definition 1, (3) holds if we select

α(‖x‖) =
λmin(Q1)

2
‖x‖2 (27)

γ(‖e‖) =
2‖SBKKTBTS‖

λmin(Q1)
‖e‖2 (28)

In the above expressions,

Q1 = (F − φ(p)TRφ(p)) +Q

+(K + φ(p))TR(K + φ(p)) (29)

From (3), (27) and (28), triggering law is derived as

‖e‖ ≤ µ‖x‖ (30)

where

µ =
σ1/2λmin(Q1)

2‖SBK‖
(31)

Then using (26) and (25) the time derivative of W (x) can
be written as

Ẇ (x) ≤ (σ − 1)λmin(Q1)‖x‖
2 − λη(t) (32)

Form (32), for any value of σ ∈ (0, 1) and η(t) > 0 the
closed loop system (13) is ISS by dynamic event-triggering
rule (24). �

3.1 Selection of design parameters

The expression of inter-event time τ for dynamic event-
triggered case is shown analytically in the nest subsection.
The parameters θ, σ and λ are used in (24)-(32). These
parameters mainly affect the lower bound of inter-event
time and convergence rate of system state. This subsection
introduces a possible selection guideline of such parame-
ters. The convergence of closed loop system (13) is directly
associated with σ as seen in (32). As σ → 0 the conver-
gence rate of (13) equivalent to the ideal closed loop system
(4). The generated event number can also be controlled
by varying the value of σ. similarly the parameter θ has
contribution in the inter-event time τ . A possible selection
procedure of parameter θ is carried out by deriving a lower
bound on τ . The results are stated in form of a following
lemma and its proof is reported in [Tripathy et al. (2016)].

Lemma 2. ∀ σ ∈ (0, 1), η > 0 and θ > 0 the system (13),
(25) with triggering law (24) has strictly positive lower
bound of inter-event time τ > 0 and it is expressed as

τ =

∫ µ

0

dΓ
L1

µ + (L2 + λ)Γ + ( 1θ + L2µ)Γ2
(33)

where L1 = ‖(A(p0) + Bφ(p) + BK)‖, L2 = ‖BK‖ and
0 < θ ≤ 1

L1−λ .

Remark 1. The existence of positive inter-event time (33)
is guaranteed in the range of 0 < θ ≤ 1

L1−λ and it helps to
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select the parameter λ. The value of λ must satisfy λ ≤ L1

to make θ positive. Similarly, an analytical bound on τ can
also be derived for θ > 1

L1−λ
. Note that the value of scalar

L1 depends on uncertainty φ(p). Hence, it is difficult to
say the exact value of θ for which event-triggering law (24)
have larger lower-bound τ . But it is possible to compute
τ as the uncertain region is known apriori.

4. NUMERICAL RESULTS

In this section a benchmark example is used to validate
the theoretical results. Here we consider a batch reactor
as a coupled two input (u1, u2) and two output NCS with
a matched uncertainty [D. Nesic et. al. (2004); G C Walsh

et. al. (2014)] where A =







1.38 −0.20 6.71 −5.67
−0.58 −4.29 0 0.675
1.06 4.27 −6.65 5.89
0.04 4.27 1.34 2.10






,

B =







0 0
5.679 0
1.136 −3.146
1.136 0






and φ(p) =

[

p 0 0 0
0 0 0 0

]

. The uncer-

tain parameter p is assumed to vary from 0 to 10. To
realize the event-triggered robust control law (21), the
Riccati equation (18) is solved with the design parameters
Q = I, R = I, F = diag([100, 0, 0, 0]). The parameters σ =
0.6 , θ = 0.01, k = 0.48 are selected to design the event-
triggering law (21). The simulation is carried out for 3 sec-
onds with the initial condition [0.1, 0.1, 0.01, 0.01, 0.01]T .
Figures 2(a) and 2(b) show the convergence of uncertain
states x(t) and the dynamic variable η(t). It is observed
that η(t) is always remain positive for any non-zero posi-
tive initial condition but this condition may not hold for a
zero initial condition. The evolution of control inputs, error
norm ‖e‖2, state-dependent threshold with respect to time
are shown through Figures 2(c) and 2(d) respectively. Fig-
ure 2(c) also compares the input variation in conventional
continuous and event-triggered control. Through this fig-
ure it can be concluded that the variation of eventual
inputs u1(tk) and u2(tk) is less. Also event has occurred
only when ‖e‖2 exceeds the threshold η(t)+µ1‖x‖

2 which
is shown in Figure 2(d).

5. CONCLUSION

This paper proposes a framework of event-triggered based
robust control strategy for matched uncertain system. The
proposed control law is valid for a wider class of linear
systems in which event-triggering law is applicable. To
design the event-triggering law, a dynamic event-triggering
mechanisms is adopted. The stability of closed loop event-
triggering system is proved to be ISS for bounded variation
of parameters. The lower bound of inter-event time for
dynamic event-triggered control under presence of uncer-
tainty is also derived. It is observed that the total number
of control input computation and information transmission
are very less in an event-based mechanism over conven-
tional time-triggered system. The detailed analysis of de-
sign parameters, like θ, σ and λ are addressed to evaluate
their effects on system performance.
As a future work, the self-triggered approach [Anta et al.
(2010); Santos et al. (2012)] can be considered to solve
the robust control problem. The discrete-time version of

(a) Convergence of states by event-triggered control for p = 8.

(b) Convergence of dynamic variable η(t) with
η(0) = 0.01.

(c) Comparison of continuous and event-triggered control inputs

(d) Evolution of error norm and state-dependent
threshold.

Fig. 2. Results of robust dynamic event-triggered control.
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the proposed event-triggered approach is also a challenging
future scope of this paper.
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