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Characteristics of turbulence anisotropy in flow
over two-dimensional rigid dunes are analysed. The
Reynolds stress anisotropy is envisaged from the
perspective of the stress ellipsoid shape. The spatial
evolutions of the anisotropic invariant map (AIM),
anisotropic invariant function, eigenvalues of the
scaled Reynolds stress tensor and eccentricities of the
stress ellipsoid are investigated at various streamwise
distances along the vertical. The data plots reveal
that the oblate spheroid axisymmetric turbulence
appears near the top of the crest, whereas the prolate
spheroid axisymmetric turbulence dominates near the
free surface. At the dune trough, the axisymmetric
contraction to the oblate spheroid diminishes, as the
vertical distance below the crest increases. At the
reattachment point and one-third of the stoss-side,
the oblate spheroid axisymmetric turbulence formed
below the crest appears to be more contracted, as the
vertical distance increases. The AIMs suggest that the
turbulence anisotropy up to edge of the boundary
layer follows a looping pattern. As the streamwise
distance increases, the turbulence anisotropy at the
edge of the boundary layer approaches the plane-
strain limit up to two-thirds of the stoss-side,
intersecting the plane-strain limit at the top of the crest
and thereafter moving towards the oblate spheroid
axisymmetric turbulence.

2020 The Author(s) Published by the Royal Society. All rights reserved.
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1. Introduction
Dunes that form in the sand and gravel of rivers, sea beaches, and deserts originate primarily due
to the instability of the interface between the sediment bed and the driving fluid (both water and
air) [1]. Research on the water or air flow over these bedforms would allow to precisely foresee
the evolution of the planetary topography [2,3]. The diverse conditions of flow and sediment
supply across the earth surface give rise to a wide variety of fluvial and aeolian dunes [1–8]. The
mechanism that drives the dune formation is the characteristic phase lag between the sediment
flux and the initial instabilities of the bedforms [1,3,9,10]. Particularly, in a fluvial environment
of relatively coarse sediments of median size greater than 0.6 mm under a subcritical streamflow
(i.e. flow velocity is less than the gravity wave celerity, but greater than the threshold velocity
for the bed sediment motion), the sand and gravel dunes are formed [11]. They are scalene,
triangular shaped, bearing a mildly sloping stoss-side (upstream slope) of about 6◦ and a steeply
sloping leeside (downstream slope) roughly equalling the internal friction angle of sediments.
They move streamwise by the action of flow having a free surface profile being out-of-phase with
the wavy dune profile. It may however be noted that the field dunes in large rivers are mostly
featured by complex leeside shapes and mild leeside slopes (less than 10◦) [12]. Exploring the flow
and turbulence characteristics in flow over subaqueous dunes, in particular, is of great interest
to researchers [13,14], because their formation is closely linked with the underwater sediment
transport and streambed stability. Dune hydrodynamics, which is a complex flow phenomenon,
involves a separated flow emerging from the dune crest, followed by a recirculatory bubble within
the valley formed by the neighbouring dunes being attached to the leeside of the preceding dune,
a flow reattachment slightly in front of the trough, and a wake boundary layer over the stoss-side
of the following dune [15]. Way back in 1914, more than a century ago, Gilbert [16] was the first to
study the response of geophysical flows to dunes. Forty-four years later, Brooks [17] carried out
more organized research to report that the response of flow to dunes becomes stronger with an
increase in flow Froude number.

Among the promising experimental campaigns, Lyn [18] studied the turbulence quantities
in flow over two-dimensional (i.e. spanwise symmetrical) rigid dunes to show that the near-
bed turbulence quantities are influenced by the dune shape. McLean et al. [19] explored the
turbulence structure in flow over a two-dimensional dune. They showed that the sediment
transport over a dune is a nonlinear process, which is influenced by the statistics of velocity
fluctuations in the flow zone close to the dune. Bennett & Best [20] reported that in flow over a
two-dimensional dune, the maximum root-mean-square streamwise velocity fluctuations and the
upward skewness of vertical velocity fluctuations occur along the shear layer of the separated
flow. They argued that the strong ejection events are picked up from the Kelvin-Helmholtz
(K-H) instabilities, which are the source of macro-turbulence structures. Kadota & Nezu [21]
clarified the elemental structure of vortices using the flow visualization and measurements.
They discussed the four-dimensional spatiotemporal structures of coherent vortices by evaluating
the conventional correlation coefficients and the conditional statistics. They proposed a refined
physics of coherent vortices. In order to distinguish the flow over two-dimensional and three-
dimensional dunes, Maddux et al. [22] found that at a given vertical distance, the Reynolds shear
stress over a two-dimensional dune is larger than that over a three-dimensional dune under
an identical flow condition. However, the frictional resistance was reported to be higher in the
latter case. The momentum flux in the flow over a three-dimensional dune was found to be
driven by the secondary currents causing upward slower streamwise flow and downward faster
streamwise flow. Venditti [23] experimentally detected the turbulence quantities and the drag
over two-dimensional and three-dimensional dunes of different shapes. He concluded that these
hydrodynamic quantities vary significantly with dune dimension and shape. Very recently, Dey
et al. [15] performed an in-depth analysis of flow over two-dimensional dunes, shedding light on
the flow kinematics, Reynolds stresses, dispersive stresses, higher-order correlations, turbulent
kinetic energy (TKE) flux and budget, and bursting events, from the perspective of time- and
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spatial averaging. They explained the mechanism of flow reattachment from the foundation of
the Coandă effect. They argued that the decelerated flow zone downstream of the dune crest,
encapsulating the occurrence of recirculation zone, gives rise to the kolk-boil vortex in the flow.
In addition, they found the sweep and ejection events to govern the flow zones below and above
the crest, respectively.

With regard to flow modelling, McLean & Smith [24] proposed a simple model for flow over
two-dimensional dunes of a specific shape. Nelson & Smith [25] gave an improved flow model
for velocity and boundary shear stress over two-dimensional dunes. The formation of a wake
flow due to flow separation from the dune crest and its interaction with the inner boundary
layer downstream of the flow reattachment point were treated using the method proposed by
McLean & Smith [24]. Stoesser et al. [26] numerically simulated the turbulent flow field by
using large eddy simulation (LES). However, their primary focus was on the coherent structures.
They argued that the instantaneous separated vortices are formed downstream of the dune crest
owing to the K-H instabilities. Close to the reattachment point, the so-called kolk-boil vortex
develops in the form of a hairpin vortex. The separated vortices are convected along the stoss-
side of the following dune moving towards the free surface. The near-bed fluid streaks that
reorganize soon after the reattachment point were also prevalent in their study. Besides, the
double-averaging methodology (DAM) was applied to synthesize the flow over dunes [15,27–31].
It was found that the implementation of the DAM has made the flow parametrization, modelling
and phenomenological development rather convenient. The aforementioned research overview
mainly focuses on the flow field and the flow modelling for the said problem without paying
attention to the dune formation and the erodibility (sediment transport). These aspects are beyond
the realm of the present study, because this study deals with the flow over two-dimensional rigid
dunes.

It is worth highlighting that with regard to flow over dunes, the near-bed hydrodynamics
was widely investigated by means of numerical simulations [26,32–38]. Due to the complex
topography of dunes as often found in practical situations, resolving the near-bed flow and
turbulence characteristics is highly challenging. Most frequently, the standard numerical models
are unable to fully capture the essential elements of dune hydrodynamics due to the strong
effects of flow separation and anisotropic character of near-bed turbulence. One of the prominent
reasons of such failure is credited to the isotropic assumption on which the numerical models
are founded. The above overview indicates that despite magnificent advances in understanding
the hydrodynamics of flow over dunes, one of the key issues, viz., the characteristics of Reynolds
stress anisotropy, remains unexplored for this kind of problem. The usefulness of analysing the
turbulence anisotropy is that it effectively transforms the properties of a three-dimensional flow
field to a two-dimensional plane formed by the invariant functions, reducing one degree of
complexity [39]. Precise quantification of the turbulence anisotropy in flow over dunes offers
a detailed picture of the relative contributions from the Reynolds stress tensor components,
which have potential implications for the sediment transport and stability of bedforms [19,20].
For propagating mobile dunes, the sediment transport is largely driven by the spatio-temporally
variable near-bed stress field. From a time-averaged sense, quantification of the spatial variation
of the stress field over subaqueous dunes is important, because it is directly linked with the dune
morphodynamics. Therefore, the knowledge of turbulence anisotropy is worthwhile for analysing
the dune stability, which reflects a dynamic balance between the temporal evolution of the dune
profile and the spatial gradient of sediment flux [38]. More broadly, high-fidelity experimental
data of turbulence anisotropy in flow over dunes may shed new light on the validation and
possible refinement of the traditional numerical models. The performance of numerical models
largely depends on closure relationships, whose legitimacy can only be tested through novel
experimental measurements. Hence, exploring the turbulence anisotropy over subaqueous dunes
can offer guidance in enhancing the range of applicability of current numerical models. The
turbulence anisotropy, which has so far been explored for various fluid mechanics problems,
e.g. boundary layer flows, wall-wake flows and jet flows, is introduced below through a brief
discussion.
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From the perspective of turbulence foundation, an enriched insight into a fluid flow is essential
to envisage the type of turbulence in regard to the degree of departure from the ideal isotropic
turbulence, termed the turbulence anisotropy. The Reynolds stress anisotropy tensor is the most
trustful entity to characterize the turbulence and to underpin the hypotheses, which are made
in the classical theoretical development. In a turbulent flow, its second and third mathematical
invariants together describe the possible states of realizable turbulence by means of the anisotropic

invariant map (AIM) or the Lumley triangle [40–42]. It may be added that the anisotropy tensor
invariants are integral to the Rotta model [43], describing the affinity of turbulence to return to
an isotropic state at a rate linearly proportional to the degree of anisotropy in a turbulent flow.
The current state of the art of research on the Reynolds stress anisotropy is primarily limited
to the atmospheric boundary layer flows [44], flat-plate boundary layer flows [40,45–49], wall-
wake flows [50–52], wake flows of wind turbine arrays [53–56], chemically reacting turbulent
wall jet flows [57] and off-set jet flows [58]. It turns out that despite several decades of turbulence
analysis, our knowledge of the Reynolds stress anisotropy in flow over dunes remains inadequate.
The reason is ascribed to our current understanding of the turbulence anisotropy that is in fact
incomplete, predominantly with respect to how the flow responds to the dunes.

Given the above appraisal, the objective of this study is to characterize the Reynolds stress
anisotropy in flow over dunes. Additionally, in order to have an understanding of the overall
flow structure over dunes, the physics of flow is briefly introduced here through the velocity
vector and Reynolds shear stress plots before detailing the analysis of Reynolds stress anisotropy.
To get a first-hand picture of the Reynolds stress anisotropy, the contours of the shape factor
of stress ellipsoids formed by the Reynolds normal stresses are furnished on a non-dimensional
spatial frame. In this study, the Reynolds stress anisotropy tensor is decomposed into its principle
components related to a coordinate system. The second and third invariants of the scaled
Reynolds stress tensor are plotted on the Lumley triangle in order to measure the state of
turbulence in the dunal-bedform flow. In addition, the spatial evolutions of the anisotropic
invariant function and the eigenvalues of the scaled Reynolds stress tensor are analysed in detail.

The novelty of this study comprises two key aspects. Firstly, it effectively advances the current
state of the science of turbulence anisotropy in flow over subaqueous dunes. From the scientific
rationale, this aspect sheds new light on the realization of stress ellipsoids formed by the Reynolds
stresses. Secondly, it provides a discussion on the implications of the turbulence anisotropy from
a modelling perspective. This aspect indicates the quest for new experimental data in calibrating
and developing sophisticated numerical models. The organization of this paper is as follows. The
experimentation is narrated in §2. The physics of flow over dunal bedforms is briefly described
in §3, and the Reynolds stress anisotropy is critically analysed in §4. Lastly, the conclusion is
drawn in §5.

2. Experimentation
An experiment was carried out to study the flow features over an artificially prepared bed with
a series of two-dimensional dunes in a 15 m long flume of rectangular cross section (width ×

depth = 0.9 × 0.75 m2) situated at the Hydraulics Laboratory, Indian Institute of Technology
Kharagpur, India. Dunes that were created by uniformly graded gravels of median size d =

9.75 mm covering the entire flume length were rigidified by spraying an adhesive in order to
prevent erosion by the flowing water. The gravel size was characteristically one to be often found
in a natural riverbed with dunal bedforms [11]. Figure 1 shows the shape of the dunal bedforms,
where each dune had a mild upstream slope forming the stoss-side of 0.425 m length (projected
length on the streamwise axis) and a steep downstream slope forming the leeside (with a mild
concave face) of 0.125 m length. The dune had a wavelength λ of 0.55 m and a height �h of
0.04 m, maintaining the criterion λ = 13.75�h, which is typically one that is frequently observed
in a natural riverbed [11]. The dune bed had an average streamwise bed slope S0 of 0.0004 (i.e. 1
in 2.5 × 103). This average bed slope was accrued by laying the series of identical dunes on the
flume bottom from the same value of the flume bottom slope. The water flow flux in the flume
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flow
h = 0.207 m

0.425 m 0.125 m

Dh = 0.04 m

flow parameters

U0 = 0.245 m s–1

hav = h – 0.5Dh = 0.187 m

Re = 4U0hav/n = 183, 260

Fr = U0/(ghav)0.5 = 0.181  

l = 0.55 m

–

–

–

Figure 1. Sketch of the shape of a single dune in the experimentation. (Online version in colour.)

was measured by a calibrated V-notch weir and regulated by a valve, while the flow depth in the
flume was adjusted by a downstream tailgate. The test section located at 8.25 m from the flume
entrance was 1.65 m long (three wavelengths of dunes). The flow flux and the flow depth were
regulated in such a way that the free-surface perturbation (undulation) within the test section
measured by a Vernier point gauge was minimal (measured to be 2 mm). Note that the perturbed
flow profile was essentially unavoidable owing to the bed undulations created by the dunes, but it
was minimal. Therefore, the flow was deemed to have attained a quasi-uniform fully-developed
free-surface flow. The maximum flow depth h (measured from the dune trough) was 0.207 m
(±1 × 10−3 m), (less than 6�h), satisfying the condition of scalene triangular dunes that are
commonly observed in a natural riverbed [59]. Dey et al. [15] recognized that the dunal bedforms
produce a macro-rough flow of wake-interference flow kind, in which the wake flow downstream of
each dune intrudes the flow over the succeeding dune. It is, however, appropriate to estimate the
average flow velocity Ū0 based on the average flow depth hav (= h − 0.5�h) [19,31]. We obtained
the average flow velocity Ū0 = 0.245 m s−1, the flow Reynolds number Re(= 4Ū0hav/ν) = 183 260
(confirming a turbulent flow), and the flow Froude number Fr[= Ū0/(ghav)0.5] = 0.181 (confirming
a subcritical flow), where ν is the coefficient of kinematic viscosity of fluid (≈ 10−6 m2 s−1) and g

is the acceleration due to gravity.
The three-dimensional instantaneous velocity components in a Cartesian coordinate system

were measured by a Nortek-manufactured down-looking acoustic Doppler velocimeter probe,
named Vectrino plus. It was operated with an acoustic frequency of 10 MHz capturing the signals
from a sampling location of 50 mm below the probe. Thus, the interference by the probe at the
flow measuring location was minimal. The data acquisition was done at a sampling rate of 100
Hz for a duration of 240 s. The measurement was performed on the flume central plane over
three wavelengths of dunes starting from the 16th dune. With reference to a Cartesian coordinate
system (figure 2), x is the streamwise distance having the origin at 8.25 m from the flume entrance
(i.e. the starting location of the 16th dune), and z is the vertical distance measured from the
dune trough, whose origin lies between the 16th and the 17th dune. The resolutions of the
flow measurements were 5 mm for 0 < z ≤ 0.105 m and 15 mm for 0.105 m < z ≤ 0.155 m, which
could provide the complete flow structure satisfactorily [15]. In order to ascertain the errors
associated with the flow measurements to be within the acceptable limit, uncertainty analysis
was performed. To this end, the measurements were repeated three times and the samples were
collected from several points in flow so as to keep away the reapplicability of the samples
from bias and random errors. The results revealed that the errors were within 5% for the time-
averaged velocity components and 8% for the Reynolds stresses. This confirmed the acceptability
of the measured samples from the viewpoint of the uncertainty of measurements. Details of the
experimental set-up and procedure, including the post processing (filtering, spike removal, etc.)
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Figure 2. Non-dimensional time-averaged velocity vectors in flow over dunes on a vertical central plane. The lower broken line

represents the flow separation line touching the bed at the reattachment point. The upper broken line, representing the locus

of the inflection points of the ū profiles, characterizes the extent of the inner boundary layer. (Online version in colour.)

of the raw samples collected by Vectrino system and their uncertainty analysis, are available in
Dey et al. [15].

Dey et al. [15] investigated the important turbulence quantities in flow over a reach of three
wavelengths of dunes (from the 16th to the 18th dune) from the perspective of their spatial
averaging in addition to their time averaging over this reach. However, they paid no attention to
analyse the Reynolds stress anisotropy. Therefore, it is interesting to shed light on this unexplored
aspect of flow over dunes, because the state of the art of the Reynolds stress anisotropy is
primarily limited to certain specified cases, as briefly stated in the introduction. As the objective
of this study focuses on the Reynolds stress anisotropy rather than on the spatial averaging, we
aim to probe the turbulence anisotropy over the 17th dune at specific key locations, viz., at trough,
reattachment point, one- and two-thirds of stoss-side, crest and mid of leeside. The selection of
these key sections is justified from the viewpoint of Dey et al. [15], who considered these sections
in analysing the turbulence characteristics. It is however important to mention that the trends of
the Reynolds stress anisotropy profiles at the identical sections over the 16th and the 18th dunes
were almost similar to those over the 17th dune. This can be perceived from the principle of
turbulence similarity.

3. Physics of flow over dunal bedforms
Although the primary focus of this study is to explore the Reynolds stress anisotropy in flow over
dunes, a subtle glance at the behaviour of flow over dunes is worthwhile to understand the salient
features of the physical system. In this context, it is worth mentioning that an in-depth description
of flow physics over dunal bedforms has recently been reported elsewhere [15]. Despite this fact,
the underlying physics of flow over dunal bedforms is summarized here to give the readers some
key highlights of the dunal-bedform flow together with certain terminologies, which are used in
§4. With regard to the physical system as sketched in figure 1, the non-dimensional time-averaged
two-dimensional velocity vectors, having magnitude Ū/(gd)0.5 and direction arctan (w̄/ū), in flow
over dunes on a vertical central plane are illustrated in figure 2. Here, Ū = (ū2 + w̄2)0.5, and ū and
w̄ = time-averaged streamwise and vertical velocity components, respectively. It implies that the
time-averaged two-dimensional velocity components (ū, w̄) follow (x, z) directions. In figure 2,
the velocity vector plots are shown on a non-dimensional spatial frame (x/λ, z/h) over the stretch
of a single dune (17th dune) with an additional leeside portion of the preceding dune. The origin
(x = 0, z = 0) of the axes is located at the trough that lies between the 16th and the 17th dunes.
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Note that each dune can be thought to be a composite roughness element. As a result, the wall-
shear flow experiences a regular variation of resistance provided by the macro-roughness formed
by the series of dunes. It results in a flow heterogeneity, featuring a quasi-regular streamwise
pattern, in the near-bed flow zone. This spatially recursive near-bed flow can be regarded as a
wake-interference flow [15,60]. In this type of flow, the roughness elements are spanned so closely
that the wake and vortex created from a roughness element intervene in those produced at the
immediate downstream roughness element. It suggests a strong fluid mixing with an intricate
vorticity field in the near-bed flow zone. In the present context, the inter-dune spacing is such
that the wake generated from each dune crest interferes with the flow over the following dune
(figure 2). It is pertinent to point out that the dune wavelength rather than the dune height plays
an important role in creating the wake-interference flow. Furthermore, as the accelerated flow
rushes over the stoss-side of the dunes (x/λ = 0.12–0.77), a near-bed layer of flow heterogeneity
is apparent from figure 2 in the form of the dispersed velocity vectors originating from the
local surface roughness over the dune surface. By contrast, a recirculation zone is formed on
the leeside with a decelerated flow, which results from the separated flow downstream of the
crest followed by a sudden expansion on the leeside. The recirculation region was evidently
consistent on the leeside portions of both the neighbouring dunes (i.e. x/λ = −0.227–0.12 and
0.77–1.12). From figure 2, the no-slip condition at the dune bed is not obvious, because the closest
measuring location from the bed was 2 mm above, where the near-bed velocity vectors are finite.
A close observation reveals that the velocity declines rapidly, as one moves towards the bed,
encapsulating that the no-slip is preserved at the bed.

The salient features of the flow structure over the dune encompass a separated shear layer
from the dune crest with a recirculation zone on the leeside, a flow reattachment that spans
up to 5�h downstream of the crest, and an inner boundary layer (also called wake boundary
layer) for the wake flow on the stoss-side of the dune. The recirculation zone is clearly recognized
from the reversed flow at the immediate vicinity of the leeside. Note that in figure 2, the lower
broken line demonstrates the flow separation line (locus of ū = 0) that touches the bed at the
reattachment point, which is located just downstream of the trough. It suggests the location,
where the accelerated fluid inrushes to the dune bed. The inner boundary layer is affected by
the wake flow having an extremity along the locus (shown by the upper broken line in figure 2)
of the inflection points of the ū profiles. The inflection point up to which the effects of dunes
are pronounced is defined as the point where the curvature of local time-averaged streamwise
velocity vanishes (d2ū/dz2 = 0). However, above the flow reattachment, the wake flow layer
involves a velocity defect. The inner boundary layer that prevails over the stoss-side of the
following dune initiates from the reattachment point and it has a variable thickness (figure 2).
This flow structure re-establishes over the following dunes one-after-another [15].

It is also interesting to explore the Reynolds shear stress in flow over dunes, because this is
closely associated with the sediment transport and the bed stability for mobile dunes [19,20].
The Reynolds shear stress is expressed as τuw = −ρu′w′, where ρ is the mass density of fluid
and (u′, w′) are the fluctuations of instantaneous velocity components (u, w) with respect to their
time-averaged values (ū, w̄). Figure 3 shows the profiles of non-dimensional Reynolds shear stress
τuw/(ρgd) in flow over dunes on a vertical central plane. Over the dune stoss- and leeside, the τuw

magnitudes increase, as the vertical distance z increases within the inner boundary layer (marked
by the upper broken line in figure 3) attaining their individual peaks on the inner boundary layer.
Thereafter, they dampen gradually, as one moves upwards. An intense fluid mixing resulting
from the flow separation from the crest is the cause of occurrence of the peak in a given τuw

profile. Note that the fluid mixing, on the other hand, dampens the fluid flux forming a wake
flow downstream of the dune. The position of the peak of τuw rises downstream of the crest and
then inclines downwards after the reattachment point. It is believed that the highly active kolk-
boil vortex has an impact on the peak magnitude. However, the peak magnitudes in τuw profiles
diminish along the stoss-side towards the crest due to the weakening of fluid mixing. Instead,
inside the recirculation zone (whose extremity is shown by the broken line in figure 3) over the
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Figure 3. Profiles of non-dimensional Reynolds shear stress τuw/(ρgd) in flow over dunes on a vertical central plane. The

lower and upper broken lines represent the flow separation line and the extent of the inner boundary layer, respectively. (Online

version in colour.)

leeside of the dune, the τuw diminishes. A repeatability in the Reynolds shear stress structure over
the adjoining dunes was predominant.

The quantification of Reynolds shear stress serves as a guideline for obtaining the bed
evolution for propagating mobile dunes. Note that an extrapolation of the τuw profile to the
bed gives an estimate of the bed shear stress τ0. When the bedload is the predominant mode of
sediment transport, the equation of the sediment bed evolution follows: (1 − ρ0)∂η/∂t + ∂qb/∂x =

0, where ρ0 is the porosity of sediment, η(x, t) is the dune profile, t is the time and qb is the bedload
flux being a function of τ0 [11]. With the precise formulation for the qb, the η(x, t) can be obtained
by solving the above differential equation subject to suitable boundary conditions.

4. Reynolds stress anisotropy
Isotropic turbulence that is referred to as spherical turbulence corresponds to an idealized
disorderly temporal fluid motion having no preferential direction. The foundation of isotropic
turbulence belongs to the velocity fluctuations at a given point being independent of axis of
reference or invariant with respect to axis rotation. It therefore indicates that the Reynolds
normal stresses are identical, i.e. σu = σv = σw. Here, (σu, σv , σw) are the Reynolds normal stresses
in streamwise, spanwise and vertical directions, respectively, [= ρ(u′u′, v′v′, w′w′)] and v′ is the
fluctuations of the instantaneous spanwise velocity component v with respect to its time-averaged
value v̄. On the other hand, in an anisotropic turbulence, the velocity fluctuations (u′, v′, w′)
are directionally biased making the Reynolds normal stresses no longer identical. It is therefore
necessary to analyse the balance of Reynolds normal stresses from the outlook of the Reynolds
stress anisotropy. The convenient way to produce a first-hand picture of turbulence anisotropy in
the flow field over dunes is to plot the contours of shape factor Sσ of Reynolds stress ellipsoid,
as shown in figure 4. The shape factor Sσ is expressed as Sσ = σmin/(σmaxσint)0.5, where σmin,
σmax and σint are the minimum, maximum and intermediate values of Reynolds normal stress
components at a point in a Cartesian coordinate system, respectively. Note that for an isotropic
(i.e. spherical) turbulence, the Sσ becomes unity that corresponds to a Reynolds stress sphere,
while for anisotropic turbulence, the Sσ is less than unity. In a natural turbulent flow field, such
as in the present case, the turbulence is anisotropic, which is readily reflected from figure 4. It is
evident that the anisotropy reduces within the valley formed by two neighbouring dunes, while it
increases at the top of the crest. Overall, it appears that the Reynolds normal stresses are unequal
(σu �= σv �= σw), leaving a true signature of the anisotropic character of turbulence in flow over
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Figure 4. Contours of shape factor Sσ of Reynolds stress ellipsoid in flow over dunes on a vertical central plane. (Online version

in colour.)

dunes. It is pertinent to mention that the effects of Reynolds normal stresses play a significant
role in entraining sediment particles [61]. Even for a plane bed, the streamwise Reynolds normal
stress can considerably affect the threshold bed shear stress for the streamwise motion of particles
[62,63]. In addition, the vertical Reynolds normal stress is important for the particle uplift, because
it is closely tied up with the vertical pressure gradient across the grain [64]. In exploring the
turbulence characteristics over a two-dimensional dune, McLean et al. [19] also found substantial
spatial growth of the combined probability distribution of the streamwise and vertical Reynolds
normal stresses. Furthermore, it was evidenced that for a large bed shear stress exceeding the
threshold bed shear stress, the combined effects of the bed shear stress (in the time-averaged
sense) and the higher levels of turbulence can enhance the sediment entrainment rate significantly
[65]. Reverting to the Reynolds stress anisotropy, a detailed analysis is given below.

Let us recall the Reynolds stress tensor u′
iu

′
j, which can be expressed as a positive semi-definite

matrix. The required conditions for the positive semi-definiteness are as follows [66]:

u′
αu′

α ≥ 0, u′
αu′

α + u′
βu′

β ≥ 2 | u′
αu′

β |, and det(u′
iu

′
j) ≥ 0, α, β = {1, 2, 3}. (4.1)

The scaled Reynolds stress tensor, also termed the Reynolds stress anisotropy tensor bij, is
expressed as

bij =
u′

iu
′
j

2k
−

δij

3
, δij =

{

1, if i = j

0, if i �= j
, (4.2)

where k is the TKE (= u′
iu

′
i/2). By definition, the bij is a symmetric and traceless tensor. To satisfy

the semi-definiteness conditions given in equation (4.1), the characteristic ranges of diagonal and
off-diagonal components of bij are expressed as

−
1
3

≤ bαα ≤
2
3

and −
1
2

≤ bαβ ≤
1
2

, α �= β. (4.3)

For a second-order tensor with I1, I2 and I3 being the principal invariants, the characteristic
equation of bij is given by

ω3 − I1ω
2 + I2ω − I3I = 0, (4.4)

where ω1−3 are the eigenvalues. According to the Cayley-Hamilton theorem, the bij satisfies its own
characteristic equation. Therefore, equation (4.4) can also be expressed as

b3
ij − I1b2

ij + I2bij − I3δij = 0. (4.5)
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Figure 5. AIM on−I2I3 frame illustrating all possible realizations of turbulence states. (Online version in colour.)

As bij is a traceless tensor, by definition, I1 = 0. The eigenvalues also satisfy ω1 ≥ ω2 ≥ ω3,
ω3 = −(ω1 + ω2), and the following conditions:

ω1(ω2 ≥ 0) ≥ ω2, ω1(ω2 < 0) ≥ −2ω2, and ω1 + ω2 ≤
1
3

. (4.6)

Importantly, equation (4.6) on I2I3 frame becomes

− I2(I3 ≥ 0) ≥ 3
(

I3

2

)2/3
, −I2(I3 < 0) ≥ −3

(

I3

2

)2/3
and − I2 ≤ 3I3 +

1
9

. (4.7)

Figure 5 shows the AIM, which is a conceptual representation of −I2 versus I3, obtained from
equation (4.7). Equation (4.7) forms the Lumley triangle, having two curvilinear sides and one
top-linear side on −I2I3 frame. Note that all the realizable states of turbulence are confined to
the Lumley triangle on −I2I3 frame. The turbulence anisotropy has so far been envisioned from
two different perspectives. The first perspective is based on the shape of turbulent eddies [67],
whereas the other one being quite insightful is founded on the shape of the ellipsoid formed by
the principal components of the Reynolds stresses [58,68].

From the perspective of the shape of turbulent eddies, the bottom, left and right vertices of the
Lumley triangle correspond to three-dimensional isotropic turbulence (−I2 = I3 = 0), two-component

two-dimensional turbulence and one-component two-dimensional turbulence, respectively. On the other
hand, from the perspective of the shape of the ellipsoid formed by the principal components of
the Reynolds stresses, the characteristics of the realizations of turbulence states are briefly given
in table 1. The bottom vertex of the Lumley triangle corresponds to the isotropic limit (figure 5),
where the stress ellipsoid appears to be a sphere (σ1 = σ2 = σ3). Here, σ1−3 are the principal
components of Reynolds stresses with respect to a set of coordinates (x1, x2, x3). The left-curved
side of the Lumley triangle corresponding to the axisymmetric contraction limit makes the stress
ellipsoid an oblate spheroid, because one principal component is smaller than the other two equal
components (σ1 = σ2 > σ3). However, at the left vertex that refers to a two-component axisymmetric

limit, the stress ellipsoid becomes a circular disc owing to two equal principal components
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Table 1. Characteristics of the realizations of turbulence states.

shape of principal components

turbulence state invariants of Reynolds stresses

isotropic −I2 = I3 = 0 sphere
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

axisymmetric contraction limit −I2 = −3(I3/2)
2/3 oblate spheroid

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

two-component axisymmetric limit −I2 = 1/12, I3 = −1/108 circular disc
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

axisymmetric expansion limit −I2 = 3(I3/2)
2/3 prolate spheroid

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

two-component limit −I2 = 3I3 + 1/9 elliptical disc
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

one-component limit −I2 = 1/3, I3 = 2/27 straight line
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

with a vanishing third component (σ1 = σ2 and σ3 = 0). The right-curved side of the Lumley
triangle corresponding to the axisymmetric expansion limit represents a prolate spheroid, because one
principal component is larger than the other two equal components (σ1 > σ2 = σ3). Note that both
axisymmetric contraction and expansion limits are symmetric about the line I3 = 0, termed the
plane-strain limit (figure 5). Furthermore, on the top-linear side of the Lumley triangle representing
the two-component limit, the stress ellipsoid forms an elliptical disc. The reason is that one principal
component is larger than the other one together with a third component that disappears (σ1 > σ2
and σ3 = 0). The plane-strain limit intersects the two-component limit at a point, termed the
two-component plane-strain limit. Moreover, the right vertex of the Lumley triangle signifies the
one-component limit, where the stress ellipsoid appears to be a straight line owing to one finite
component along with two other vanishing components (σ1 > 0, σ2 = σ3 = 0).

To find how the turbulence anisotropy evolves with the streamwise distance, we consider
various characteristic sections over the dunes as shown at the top of figure 6. Figure 6a–f depicts
the AIMs at various non-dimensional streamwise distances, x/λ = 0 (trough), 0.23 (reattachment
point), 0.257 (one-third of stoss-side), 0.515 (two-thirds of stoss-side), 0.772 (crest) and 0.886 (mid
of leeside), respectively. Note that in figure 6a–f, the top-linear side of the Lumley triangle is not
shown, because the experimental data points are almost confined to the flank of the right- and
left-curved sides of the Lumley triangle. Different symbols (diamonds, squares and circles) are
used to distinguish the data points in three different flow layers, such as below crest, crest to
edge of boundary layer and outer flow layer, respectively. Here, the edge of the boundary layer
with regard to a given streamwise distance refers to the inflection point, where d2ū/dz2 = 0. In
addition, the experimental data points corresponding to the crest and the edge of the boundary
layer are highlighted (see filled diamonds and filled squares). At a given streamwise distance,
the evolution of turbulence anisotropy with an increase in vertical distance is shown by a broken
line with an arrowhead. At the dune trough (figure 6a), the data plots in the immediate near-
bed flow zone stay close to the left-curved side of the Lumley triangle. However, as the vertical
distance increases, the data plots suggest that the turbulence anisotropy appears to return to the
isotropic limit following a path almost parallel to the axisymmetric contraction limit. This reveals
that as the vertical distance increases, the turbulence anisotropy diminishes tending to the three-
dimensional isotropy. As the vertical distance increases further, the data plots appear to take a
swift clockwise turn in the direction of the left-curved side of the Lumley triangle, suggesting
a changeover of the turbulence anisotropy from the quasi-three-dimensional isotropic state to
the axisymmetric contraction limit. The AIM indicates that at the top of the crest, the turbulence
anisotropy closely follows the axisymmetric contraction limit. Beyond the crest, the data plots
take a rightward turn with an increase in vertical distance, crossing the plane-strain limit and
thereafter tend to move towards the right-curved side of the Lumley triangle (figure 6a). This
indicates that the turbulence anisotropy switches from the axisymmetric contraction limit to the
axisymmetric expansion limit, as the vertical distance increases, in particular within the outer
flow layer. It is notable that the data plots up to the edge of the boundary layer appear to form a
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Figure 6. AIMs at (a) x/λ= 0 (trough), (b) 0.23 (reattachment point), (c) 0.257 (one-third of stoss-side), (d) 0.515 (two-thirds

of stoss-side), (e) 0.772 (crest) and (f ) 0.886 (mid of leeside). At the top, the sketch shows the horizontal locations of the vertical

sections. (Online version in colour.)
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looping pattern with an increase in vertical distance owing to the return to and departure from
the quasi-three-dimensional isotropic state.

Figure 6a–f also shows that as the streamwise distance increases, the pattern of turbulence
anisotropy strikingly changes. At the reattachment point and the one-third of the stoss-side
(figure 6b,c), the data plots in the immediate near-bed flow zone stay close to the plane-strain
limit. However, with an increase in vertical distance below the crest, the data plots have an affinity
towards the axisymmetric contraction limit, forming a looping pattern within the crest to the
edge of the boundary layer. As the vertical distance increases further, the data plots within the
outer flow layer form another loop on the plane-strain limit line and afterwards gradually shift
towards the axisymmetric expansion limit. At two-thirds of the stoss-side (figure 6d), the data
plots in the near-bed flow zone emerge closely from the axisymmetric contraction limit and then
follow a similar pattern as observed at the dune trough (x/λ = 0). Note that the appearance of the
looping pattern on the plane-strain limit line at x/λ = 0.23 and x/λ = 0.257 gradually disappears
with an increase in x/λ (figure 6d). At the top of the crest (figure 6e), the data plots reveal that
the turbulence anisotropy appears to follow the axisymmetric contraction limit within the crest
to the edge of the boundary layer. However, as the vertical distance increases, the data plots
gradually take an anti-clockwise turn, crossing the plane-strain limit and then traversing towards
the axisymmetric expansion limit. At the mid of the leeside (figure 6f ), the data plots depict
two successive looping patterns located approximately at the midway between the axisymmetric
contraction and the plane-strain limits. However, within the outer flow layer, they gradually
approach the axisymmetric expansion limit with an increase in vertical distance. Figure 6 also
reveals that for all x/λ except x/λ = 0.772 (crest), the data points at the top of the crest (filled
diamond symbols) always stay close to the left-curved side of the Lumley triangle, indicating
the turbulence anisotropy to closely follow the axisymmetric contraction limit. On the other
hand, the data points at the edge of the boundary layer (filled square symbols) suggests that
the turbulence anisotropy appears to shift towards the plane-strain limit with an increase in x/λ

up to x/λ = 0.515, crossing the plane-strain limit at x/λ = 0.772 and thereafter switching to the
axisymmetric contraction limit.

It is worth noting that figure 6a–f does not provide an explicit representation of how the
turbulence anisotropy at a given streamwise distance varies with the vertical distance. To this
end, we introduce the anisotropic invariant function F. It is expressed as

F = 1 + 9I2 + 27I3. (4.8)

The anisotropic invariant function F offers an insight into the turbulence anisotropy ranging from
the two-component limit (i.e. top-linear side of the Lumley triangle), corresponding to F = 0 to
the isotropic limit (i.e. bottom vertex of the Lumley triangle) corresponding to F = 1. Therefore, it
turns out that 0 ≤ F ≤ 1.

Figure 7a–f presents the data plots for the anisotropic invariant function F versus non-
dimensional vertical distance z/h at various non-dimensional streamwise distances, x/λ = 0
(trough), 0.23 (reattachment point), 0.257 (one-third of stoss-side), 0.515 (two-thirds of stoss-side),
0.772 (crest) and 0.886 (mid of leeside), respectively. It appears that at the dune trough (figure 7a),
the turbulence anisotropy in the near-bed flow zone has a tendency to return to the isotropic limit
with an increase in vertical distance, forming a cusp at the separation line. Thereafter, it gradually
departs from the isotropic limit as the vertical distance increases further, particularly within
the outer flow layer. At the reattachment point (figure 7b), the pattern of turbulence anisotropy
remains quite similar up to the edge of the boundary layer. However, the data plots exhibit the
formation of two cusps, encapsulating the turbulence anisotropy to return to the isotropic limit as
the vertical distance increases above the edge of the boundary layer. Within the outer flow layer,
the data plots suggest that the turbulence anisotropy has a departure from the isotropic limit
with a further increase in vertical distance. At one-third of the stoss-side (figure 7c), the pattern
does not change significantly over the entire flow depth. However, it is noticeable that the upper
cusp formed within the outer flow layer at x/λ = 0.23 and 0.257 gradually disappears with an
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increase in vertical distance (figure 7d). At two-thirds of the stoss-side (figure 7d), the turbulence
anisotropy in the near-bed flow zone is affined towards the two-component limit, but returns to
the isotropic limit as the vertical distance increases below the crest. At the top of the crest, the
return to the isotropic limit over the flow depth appears to be extreme. With an increase in x/λ,
especially at the top of the crest and the mid of the leeside (figure 7e,f ), the turbulence anisotropy
in the near-bed flow zone slowly departs from the two-component limit and the formation of two
cusps is eventually recovered at the mid of the leeside (figure 7f ).

In order to have a clear picture of how the anisotropic function F for a given vertical distance
varies with the streamwise distance, all the experimental data of figure 7 are plotted on a single
F(z/h) frame, as shown in figure 8. Below the crest, the F varies approximately from 0.17 to 0.75,
while far beyond the crest, it follows an almost constant range of 0.5–0.6.

Figures 6–8 are not capable of providing a quantitative estimation of the exact shape of
ellipsoid formed by the principal components of Reynolds stresses. From the geometry, the
equation of ellipsoid formed by the principal components (σ1, σ2, σ3) in (x1, x2, x3) is expressed as

x2
1

σ 2
1

+
x2

2

σ 2
2

+
x2

3

σ 2
3

= 1. (4.9)

To set a connection between the shape of the Reynolds stress tensor u′
iu

′
j and the invariants of

the Reynolds stress anisotropy tensor bij, it is required to link the eigenvalues of u′
iu

′
j with bij. To

this end, equation (4.2) produces the following relationship:

ωi =
σi

2k
−

1
3

. (4.10)

For a given I2 and I3, equation (4.4) can be readily solved to obtain the complete set of
eigenvalues ωi (i = 1–3). With regards to the characteristic shapes in terms of eigenvalues ωi,
an oblate spheroid displays two equal eigenvalues that are larger than the other eigenvalue
(ω1 = ω2 > ω3), resulting in a spheroid squeezed in one direction. On the other hand, a prolate
spheroid exhibits a contrasting effect with one eigenvalue to be larger than the other two equal
eigenvalues (ω1 > ω2 = ω3 or ω1 = −2ω2), resulting in a spheroid stretched in one direction. In
principle, the ω1 and ω2 obey a generic set of inequalities given by equation (4.6). On the
ω1ω2 frame, equation (4.6) forms a triangle. Figure 9a–f shows the data plots for ω1 versus ω2
at various non-dimensional streamwise distances, x/λ = 0 (trough), 0.23 (reattachment point),
0.257 (one-third of stoss-side), 0.515 (two-thirds of stoss-side), 0.772 (crest) and 0.886 (mid of
leeside), respectively. Note that in figure 9a–f, the triangle on the ω1ω2 frame has been mapped
from the Lumley triangle on −I2I3 frame. Here, the right and left sides of the triangle refer
to the axisymmetric contraction and expansion limits, respectively, whereas the top side of
the triangle corresponds to the two-component limit. In addition, the vertical line signifies the
plane-strain limit. For a given ωi, the corresponding σi can be readily found from equation
(4.10) and subsequently, the shape of the stress ellipsoid can be identified. It appears that at
the dune trough (figure 9a), the axisymmetric contraction to the oblate spheroid reduces with
an increase in vertical distance below the crest, attaining a minimal value near the plane-
strain limit. Thereafter, the oblate spheroid axisymmetric turbulence becomes more tapered as
the data plots display a looping pattern with an increase in vertical distance up to the top
of the crest. However, beyond the crest, the axisymmetric contraction to the oblate spheroid
appears to reduce with an increase in vertical distance. Subsequently, the data plots cross
the plane-strain limit, revealing that the axisymmetric expansion to the prolate spheroid within
the outer flow layer increases as the vertical distance increases. At the reattachment point and
one-third of the stoss-side (figure 9b,c), the oblate spheroid axisymmetric turbulence below the
crest is more contracted with an increase in vertical distance. The data plots beyond the crest
eventually approach the plane-strain limit, forming a looping pattern on the plane-strain limit and
thereafter the axisymmetric expansion to the prolate spheroid increases, as the vertical distance
increases within the outer flow layer. The looping pattern on the plane-strain limit vanishes at
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Figure 7. Anisotropic invariant function F versus non-dimensional vertical distance z/h at (a) x/λ = 0 (trough), (b) 0.23

(reattachment point), (c) 0.257 (one-third of stoss-side), (d) 0.515 (two-thirds of stoss-side), (e) 0.772 (crest) and (f ) 0.886 (mid

of leeside). (Online version in colour.)

two-thirds of the stoss-side (figure 9d). In the flow zone near the top of the crest (figure 9e), the
stress ellipsoid appears to follow an oblate spheroid, because the data plots closely follow the
axisymmetric contraction limit. However, in the outer flow layer, the axisymmetric expansion
to the prolate spheroid tends to increase with an increase in vertical distance. At the mid of the
leeside (figure 9f ), some of the data plots immediately above the crest to the edge of the boundary
layer reveal that the oblate spheroid axisymmetric turbulence tends to be more contracted
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with an increase in vertical distance. However, as the vertical distance increases further, the
prolate spheroid axisymmetric turbulence appears to be more contracted within the outer
flow layer.

It is also interesting to examine how the shape of the stress ellipsoid for a given streamwise
distance varies with the vertical distance. Figure 10a–f shows the data plots for the ω2/ω1 ratio
versus non-dimensional vertical distance z/h at various non-dimensional streamwise distances,
x/λ = 0 (trough), 0.23 (reattachment point), 0.257 (one-third of stoss-side), 0.515 (two-thirds of
stoss-side), 0.772 (crest) and 0.886 (mid of leeside), respectively. The vertical lines ω2/ω1 = –0.5, 0
and 1 that refer to the axisymmetric expansion, plane-strain and axisymmetric contraction limits,
respectively, are also marked. In the insets of figure 10a–f, the data plots for eccentricities, σ2/σ1
and σ3/σ2 versus z/h are illustrated in order to quantitatively picturize how the stress ellipsoid
evolves with the vertical distance. Note that ω2/ω1 = 1 and σ3/σ2 = 1 correspond to oblate and
prolate spheroids, respectively. At the dune trough (figure 10a), the shape of the stress ellipsoid
appears to depart gradually from the oblate spheroid with an increase in vertical distance below
the top of the crest, achieving a minimal value at the separation line. The stress ellipsoid is affined
to the oblate spheroid at the top of the crest. However, the stress ellipsoid tends to become a
prolate spheroid as the vertical distance increases within the outer flow layer. The data plots for
σ2/σ1 and σ3/σ2 versus z/h suggest a similar conclusion (see the inset of figure 10a). It is worth
noting that at z/h ≈ 0.45, the data plots for σ2/σ1 and σ3/σ2 intersect each other, revealing that the
sides of the stress ellipsoid follow a geometric progression (σ 2

2 = σ1σ3). The point of intersection of
σ2/σ1 and σ3/σ2 data plots remains almost the same at one-third, two-thirds of the stoss-side and
mid of the leeside (figure 10c,d,f ). However, at the reattachment point (figure 10b) and at the top of
the crest (figure 10e), the data plots for σ2/σ1 and σ3/σ2 appear to intersect at z/h ≈ 0.65. Moreover,
figure 10a–f indicates that the maximum contraction to the oblate spheroid occurs close to the top
of the crest, whereas the maximum expansion to the prolate spheroid is prevalent within the outer
flow layer, particularly near the free surface.

Indeed, understanding of the Reynolds stress anisotropy is the utmost imperative and subtle
issue in reviewing the turbulence models based on the turbulence closure relationships, because
it is involved in ascertaining the sensitivity of the turbulence quantities associated with the
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turbulence models [48]. The significance of this study lies in its effectiveness in evaluating the
turbulent topology at various streamwise sections over subaqueous dunes. The transformation
of the three-dimensional flow structure to a two-dimensional frame formed by a new set of
invariants, originally proposed by Rotta [43], is beneficial for developing predictive turbulence
models and acts as the basis of the return to isotropy models [42,43]. The experimental data of
this study would be helpful to enhance the performance of the current sophisticated numerical
models for subaqueous dunes. In most cases, a parallel experimental campaign is required to
check the legitimacy of numerical models for a wide range of flows. An urgent need for promising
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numerical models can follow two different directions [69]. The first direction is to search for
higher levels of closure in order to capture various turbulence phenomena, e.g. a Reynolds-stress
level can be preferred to overcome the incapability of turbulent viscosity models in addressing
the anisotropic decaying turbulence. In the same line, a structure-based level can be adopted to
overcome the inability of Reynolds-stress models in estimating the rapid distortions having mean
rotation. The second direction is to search for specific models within each class being more precise
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than the existing models. Most often, a specific class of models is introduced by a set of governing
equations that contain free constants and free coefficients, e.g. the class of k–ǫ turbulence models
[69] and the algebraic Reynolds stress models [70–73]. The present experimental data can at
least provide a guideline to improve the efficacy of numerical models, indicating a need for
the so-called optimal model. For example, with regard to each model within the class, the error
can be obtained as the weighted difference among the model estimation and the experimental
observation. The optimal model therefore corresponds to the description of the free constants
and free coefficients for which the error can be minimized. It is worth noting that in developing
numerical models, accurate closure models backed up by experimental observations are sorely
required. From the perspective of the realizability of turbulence models [74], an unrealizable
closure model must be considered unacceptable, because it violates the realizability of Reynolds
stress.

In the LES models for subaqueous dunes [26,32,33,38], the subgrid stresses were modelled
by means of the eddy viscosity assumption [75]. The eddy viscosity νt takes the form of νt =

(Cs�)2|〈Sij〉|, where � is the subgrid characteristic length scale, |〈Sij〉| is the magnitude of the
local strain-rate tensor [= (2〈Sij〉〈Sji〉)0.5] and 〈·〉 represents a suitably chosen low-pass filter. The
constant Cs was reported to be estimated from the Kolmogorov constant [76]. However, in the
presence of mean shear, Cs does not remain a constant [75]. In the LES model of Omidyeganeh &
Piomelli [32,33], the Cs was estimated using the dynamic model [75] together with the Lagrangian
averaging technique [77]. However, a major difficulty of the LES models is the performance of
the eddy-viscosity in the near-bed flow zone. For instance, the Smagorinsky model predicts a
finite value of νt as long as the velocity gradient exists [78]. However, in the near-bed flow zone,
the velocity fluctuations are excessively dampened, making the νt vanish. It therefore requires
adopting a smaller value of Cs in order to maintain a turbulent flow in the physical system
[78]. In the recent LES model for three-dimensional dunes [38], a refined choice of the νt was
considered using a new subgrid scale model [78]. Therefore, an accurate estimation of Cs in flow
over a complex geometry remains a challenging task unless new experimental measurements are
available. The experimental data of this study can certainly shed new light on this aspect.

5. Conclusion
This paper features the turbulence anisotropy in flow over two-dimensional rigid dunes. At
the dune trough and the top of the crest, the turbulence anisotropy in the near-bed flow zone
closely follows the axisymmetric contraction limit. However, it switches from axisymmetric
contraction to axisymmetric expansion limits with an increase in vertical distance within the
outer flow layer. At various streamwise distances, the turbulence anisotropy up to the edge of
the boundary layer forms a looping pattern as the vertical distance increases owing to the return
to and departure from the quasi-three-dimensional isotropic state. The turbulence anisotropy
in the immediate near-bed flow zone at the reattachment point and one-third of the stoss-side
follows the plane-strain limit, whereas that at two-thirds of the stoss-side originates from the
axisymmetric contraction limit. At all streamwise distances, the turbulence anisotropy close to the
top of the crest follows the axisymmetric contraction limit. However, the turbulence anisotropy
at the edge of the boundary layer tends to shift towards the plane-strain limit as the streamwise
distance increases up to two-thirds of the stoss-side, crossing the plane-strain limit at the top of the
crest and subsequently, moving towards the axisymmetric contraction limit. At a certain vertical
distance within the outer flow layer, the sides of the stress ellipsoid appear to obey a geometric
sequence. The maximum contraction to the oblate spheroid takes place near the top of the crest,
while the maximum expansion to the prolate spheroid prevails near the free surface.

This study significantly advances the understanding of turbulence anisotropy in flow over
two-dimensional rigid dunes, providing quantitative measures of the evolution of stress ellipsoid
formed by the Reynolds stresses. The experimental data of this study provide a lucid picture of
the components of the Reynolds stress tensor and clearly indicate their implications towards dune
morphodynamics, where the sediment transport triggered by the near-bed stress field governs the
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bed stability. In addition, this study not only offers a benchmark to calibrate the sophisticated
numerical models, but also calls for a revision of the traditional turbulence models that are
grounded on the isotropic hypothesis. Note that most of the existing turbulence models depend
on the shear flow or the strain rate, indicating their inefficacy in capturing the flow with a high
shear but low turbulence intensity. By contrast, this study makes use of the scaled Reynolds stress
tensor, which does not need to be further scaled by the shear velocity, as traditionally done to
represent the turbulence quantities in non-dimensional form. It turns out that the Reynolds stress
anisotropy tensor can be deemed to be a representative quantity on which the numerical models
should rely.
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