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Abstract: For two-time scale systems, singular perturbation theory is often used for designing a controller based only on an
approximate model of its slow dynamics, assuming the fast model to be stable. In this context, the authors investigate and
implement a stabilising event-triggered feedback law for a networked singularly perturbed system, based only on an
approximate model of its slow dynamics. Triggering rule guarantees the stability and the existence of a positive lower bound
between two consecutive transmissions. The proposed approach has been validated for a laboratory-scale hardware setup of
an active suspension system of a quarter-car model. The presence of fast and slow modes in a vehicle suspension system is
utilised to model it as a singularly perturbed system. Experimental results indicate that in spite of the simplified structure of the
controller and event-triggered feedback, its performance is comparable to that of the full-state feedback design with continuous
feedback with the significant reduction in control execution events.

1 Introduction
Physical systems in which slow and fast dynamics coexist are often
modelled as singularly perturbed systems (SPSs) or as two-time
scale systems [1]. In SPSs, the feedback control synthesis suffers
from the higher dimensionality and ill-conditioning due to the
simultaneous existence of slow and fast dynamics [2, 3]. The time-
scale control strategies permit the original ill-conditioned system to
be decomposed into two reduced-order subsystems in different
time scales, known as the slow and the fast (boundary layer)
subsystems. Control synthesis for the overall system may be
obtained by designing stabilising control laws for these subsystems
independently, which ensures the stability of the overall system for
both linear time-invariant [4] and classes of non-linear systems [5].
Although this methodology is valid for the continuous and periodic
sample data control, for many practical situations, when SPS has a
resource-limited communication network in the feedback path,
how to develop an appropriate control scheme to maintain the
control performance is meaningful.

Event-triggered control (ETC) proposed in recent years has
received significant research interest because of its potential
application in networked control systems (NCSs) or embedded
systems, where computation and communication resources are
limited [6, 7]. In this control technique, the control execution does
not take place periodically but only when a certain condition on the
plant state gets violated [8–13]. Thus, compared to periodic
sampling, ETC is more effective in making regulated uses of the
network resources [14, 15]. Real-time implementation of ETC
system requires that the control update times should not be
arbitrarily close. In other words, there can not be infinite triggering
instants in a finite time known as Zeno effect [8]. There has been
remarkable contribution in the field of ETC in recent years.
Authors have studied ETC with output feedback in [16, 17], event-
triggered quantisation in [18]. Various conventional control
algorithms have also been implemented using event-triggered
sampling, for e.g. sliding mode control [19], model predictive
control [20] etc. Many application based results such as ETC of
networked power systems [21], networked unmanned aerial vehicle
system [22], position tracking problem for a dc torque motor in
[23] are established, to mention a few.

However, the ETC approaches used for normal systems can not
be generalised for the SPSs. The main difficulty is the designing of
the event-triggering condition and corresponding closed-loop
system stability analysis, which is influenced by the singular
perturbation parameter ϵ. The difficulties also include proving non-
Zeno behaviour. Therefore, the study of SPSs under event-
triggered sampling is significant from the theoretical and practical
point of view, but very limited works have been reported in the
literature for the ETC of SPSs. In [24], event-triggered feedback
law is designed to stabilise only reduced-order slow model of a
non-linear SPS. It is shown in [24] that the event-triggering rule
derived by Lyapunov analysis does not eliminate the Zeno
behaviour directly and therefore a variation like assimilating a
constant threshold in the event-triggering rule or allowing
transmissions only after a predefined amount of time after the latest
transmission is proposed to overcome this issue. Event-triggered
composite control is designed in [25], in which events are detected
independently in slow and fast states which reduces the number of
executions for the slow state. An ETC problem for synchronisation
of non-linear singularly perturbed complex networks has been
discussed in [26]. The event-triggered state estimation problem
using a dynamic event-triggering threshold for a discrete-time SPS
is taken up in [27]. An event-triggered H∞ control problem for the
discrete-time networked non-linear SPS is presented in [28]. In
[29], event-triggered sliding mode control has been proposed for a
discrete slow sampling model of SPS. It is worth mentioning that
the Zeno effect is automatically ruled out in discrete systems.

In this paper, we investigate an ETC strategy for a networked
SPS based on the sampling of its slow state only. An event-
triggering mechanism (ETM) with an exponentially converging
threshold [30, 31] is used that ensures a positive lower bound on
the inter-event time, and thus eliminates the Zeno effect. The
proposed control strategy guarantees asymptotic convergence to a
small neighbourhood of the equilibrium point.

To validate the proposed control, it is applied on a laboratory-
scale actual hardware setup of an active suspension system of a
quarter car model. Dynamics of a vehicle suspension system
comprises of two separate sets of fluctuating modes. The
suspension system possesses a two-time-scale property and can be
modelled as an SPS [32, 33]. In real applications of a vehicle
suspension systems nowadays, the number of embedded sensors

IET Control Theory Appl., 2020, Vol. 14 Iss. 17, pp. 2703-2713
© The Institution of Engineering and Technology 2020

2703



and electronic control units are placed in a vehicle and
transmission laws are customarily implemented on digital
platforms and therefore ETC is well-motivated [34, 35]. Use of
adaptive event-triggering conditions have been made for reliable
control of the vehicle suspension system in [36] and non-linear
vehicle active suspension systems with state constraints in [37]. In
[38], an output-feedback based periodic ETC is designed for active
suspension systems considering network-induced delays.

However, there are no experimental results available for ETC of
the active suspension system. Experimental results obtained in this
work indicate that in spite of the simplified structure of the
controller and event-triggered feedback, its performance is
comparable to that of the full-state feedback design with
continuous feedback. Fig. 1 shows the conventional sampled-data
control of an SPS with periodic sampling, whereas Fig. 2 shows the
conceptual block diagram of the proposed reduced-order ETC of
SPS. 

The main contributions of this work are as follows:

(1) ETC for an SPS is designed based only on its slow dynamics
using an event-triggering condition that has exponentially
converging threshold with time for ensuring the existence of a
positive lower bound on the inter-event time.
(2) The sufficient conditions for ensuring the stability of overall
system are established. Lower bound on the inter-execution time is
also calculated for various parameters of the event-triggering
condition.
(3) The proposed design is validated for a laboratory-scale set up of
an active suspension system, which is modelled as an SPS. For an
active suspension system, the proposed design has an advantage
that only vehicle body measurements (slow modes) are required at
the controller and not the tire measurements (fast modes) which are
difficult to measure and ETC reduces the number of transmissions
and control executions.

1.1 Notations

ℕ0 is used to denote the set of natural numbers including zero. λ(A)
represents the eigenvalues of matrix A. Re(λ(A)) is the real part of
the eigenvalues of A. Symbols λmax(A) and λmin(A) denote the largest

and the smallest eigenvalue of matrix A, respectively. ∥ A ∥
denotes the induced-2 norm of the matrix A ∈ ℝn × n with
∥ A ∥ = λmax(A

T
A). ∥ x ∥ denotes Euclidean norm of vector

x ∈ ℝn with ∥ x ∥ = xTx. max .  and min .  represent the
maximum value and minimum value, respectively. In is identity
matrix of dimension (n × n). Superscript T represents the matrix
transpose. x0 represents initial condition on state x(t). a  represents
the absolute value of scalar a. O denotes Zero matrix of appropriate
dimension. A vector function f (t, ϵ) is said to be O(ϵ) over an
interval [t1, t2] if there exist positive constants k and ϵ∗ such that

∥ f (t, ϵ) ∥ ≤ kϵ, ∀ϵ ∈ [0, ϵ
∗], ∀t ∈ [t1, t2]

2 Preliminaries
Consider the following SPS with input u(t)

z1̇(t) = A11z1(t) + A12z2(t) + B1u(t) (1a)

ϵz2̇(t) = A21z1(t) + A22z2(t) + B2u(t) (1b)

where z1 ∈ ℝn, z2 ∈ ℝm are slow and fast state, respectively. u ∈ ℝp

is an input and ϵ > 0 is a small parameter. A11, A12, A21 and A22 are
matrices of appropriate dimensions. We assume that A22

−1 exists and
the system (1) is controllable.

2.1 Slow and fast subsystems

As ϵ → 0, the eigenvalues of SPS (1) cluster into a slow group of
O(1) eigenvalues and a fast group of O(1/ϵ) eigenvalues, and (4)
has two-time scale structure. The full system can be approximated
by the slow and fast subsystems provided A22

−1 exists [5]. By setting
ϵ = 0 in (1), we can obtain nth order slow subsystem as

ż1s(t) = A0z1s(t) + B0us(t), z1s(t0) = z1
0 (2a)

z2s(t) = − A22
−1(A21z1s(t) + B2us(t)) (2b)

Fig. 1  Conventional sampled data control of SPS. Dotted line represents the communication through the network (periodic in this case). U(kT) represents the
control-input at kth sampling instant

 

Fig. 2  Proposed ETC of SPS. Dotted line represents the communication through the network (aperiodic in this case). U(tk) represents the eventual control-
input
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where

A0 = A11 − A12A22
−1

A21, B0 = B1 − A12A22
−1

B2, (3)

and z1s, z2s and us denote the slow parts of z1, z2 and u, respectively,
in the original system (1). The mth order fast subsystem is given by

z2 f
˙ (τ) = A22z2 f (τ) + B2u f (τ), z2 f (t0) = z2

0 − z2s
0 (4)

where z2 f = z2 − z2s and u f = u − us denote the fast part of
corresponding variables and τ is the fast time scale defined for all
ϵ ≥ 0 by

τ =
t − t0

ϵ
; τ = 0 at t = t0

Then the solution z1, z2 of the original system (1) is approximated
for ϵ ∈ (0, ϵ1] by

z1(t) = z1s(t) + O(ϵ) (5a)

z2(t) = −A22
−1

A21z1(t) + z2 f (τ) + O(ϵ) (5b)

where ϵ1 can be obtained as

ϵ1 = ( ∥ A22
−1 ∥ ( ∥ A0 ∥ + ∥ A12 ∥ ∥ A22

−1
A21 ∥ + 2( ∥ A0 ∥

∥ A12 ∥ ∥ A22
−1

A21 ∥ )1/2))−1

Various attributes of the SPS (1) including stability can also be
approximated by its slow and fast dynamics (2)–(4) [2].

2.2 Composite control

Control laws can be designed to improve properties of each slow
and fast subsystem. The total control law is obtained as a
composite of the two control laws for the two subsystems provided
the original system is controllable or systems in (2a) and (4) are
stabilisable [4]. However, if the fast dynamics is stable, the feed-
back law can be designed only on the basis of approximate model
of the slow dynamics. Assuming A22 to be a stable matrix,
controller for (1) is designed so as to ensure that the slow system
(2) is also stable. Controller us = K0z1s is designed such that matrix
Λ0 is stable, where

Λ0 := A0 + B0K0 (6)

So for system with stable fast dynamics, control input is given by
u = us. Using (5), we replace z1s by z1 so that

u = K0z1(t) (7)

3 Problem formulation
This paper aims to stabilise the system (1) using a controller that is
implemented over a network. The control law is based only on its
slow state and sampling mechanism is event-triggered i.e sampling
instants are decided by some state dependent criterion. An
emulation-based approach is followed, where controller is first
designed without considering any communication constraints and
later the effect of sampling is considered. So, we first design a
controller as in (7) and assume the following:
 

Assumption 1: A22 is a Hurwitz matrix and the control gain K0 is
designed such that Λ0 in (6) is a Hurwitz matrix.

With event-triggered sampling, the controller receives the
measurements of state z1 only at the transmission instants {tk},
k ∈ ℕ0 when an event occurs in state z1. Assuming zero-order-hold
device at the input, input in (7) can be written as

u(t) = K0z1(tk), ∀t ∈ [tk, tk + 1) (8)

where tk + 1 is the next time instant when state measurement are
released again to update the control (8). Defining measurement
error as error between state at time t and the latest released values
of state measurement as

ze(t) = z1(tk) − z1(t), ∀t ∈ [tk, tk + 1) (9)

As z1(tk) does not change between two consecutive executions of
z1(t), że(t) in this interval is given by

że(t) = − z1̇(t), ∀t ∈ [tk, tk + 1) (10)

Revising (1) in view of (8) and (9)

ż1(t) = Λ11z1(t) + A12z2(t) + B1K0ze(t) (11a)

ϵż2(t) = Λ21z1(t) + A22z2(t) + B2K0ze(t) (11b)

where

Λ11 := A11 + B1K0, Λ21 := A21 + B2K0 .

(11) represents the dynamics of the overall closed loop system
under event triggered sampling of its slow state. To implement the
above ETC, a suitable ETM is required which can recursively
determine the triggering instants for z1 so as to ensure the stability
of (11). Typically, whenever the norm of measurement error
exceeds a predetermined threshold, an event is said to be triggered.
In this work, the triggering function has a relative threshold which
is progressively reduced as a function of the time. The successive
release instances tk for state z1 are determined recursively as

tk + 1 = inf{t: t > tk ∧ ∥ ze(t) ∥ − a0 + a1e
−αt > 0} (12)

where α, a0 and a1 are design parameters such that α > 0, a0 ≥ 0
and a1 ≥ 0, but both a0 and a1 can not be zero simultaneously.

 
Remark 1: If (a1 = 0) ETM has fixed threshold, this type of

ETM has been vastly studied in the literature of ETC [39, 40].
System state converges to a small region determined by a0 around
equilibrium point at the cost of the number of transmissions. If
a0 = 0, the threshold in ETM decreases purely exponentially and in
this case system state asymptotically converges to the equilibrium
point [31]. However, there is always a compromise between
control performance and the number of executions. ETM in (12) is
a combination of these two types of ETMs and performs well both
in terms of the number of executions and control performance.

 
Remark 2: The time-dependent trigger function in (12) ensures

asymptotic convergence to the equilibrium point while eliminating
the Zeno behaviour even for distributed NCSs [41] or multiagent
systems [30]. On the other hand, the most prevalent trigger
functions in the literature are of the type ∥ ze(t) ∥ < σ ∥ z(t) ∥,
which ensures asymptotic convergence to the equilibrium but
existence of positive lower bound on inter event time may not be
guaranteed, particularly in the case of partial state feedback [24], or
for decentralised control [42]. The triggering rule in (12) gives
better performance in terms of event generation when the system is
close to the equilibrium [43].

 
Remark 3: It is inevitable that real-time detection and

computation of the event-triggering scheme will induce
computational burdens, but the energy to transmit 1 bit data is
equivalent to 1000–3000 times of computational operations [44,
45], therefore saving in the communication resources obtained by
using event-triggered mechanism is worth the extra computational
burden.

4 Decoupling transformation
System (11) is in the standard singularly perturbed form where A22

is non-singular, then there exists an ϵ
∗ > 0 such that for all
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0 < ϵ < ϵ
∗, a complete separation of (11) into block diagonal form

can be achieved by a non-singular transformation matrix T, where

T =
In ϵH

−L Im − ϵLH
(13a)

 with T
−1 =

In − ϵHL −ϵH

L Im

(13b)

where matrices L ∈ ℝm × n and H ∈ ℝn × m satisfy the following
linear algebraic equations

Λ21 − A22L + ϵLΛ11 − ϵLA12L = 0 (14a)

A12 − HA22 + ϵΛ11H − ϵA12LH − ϵHLA12 = 0 (14b)

Under the transformation

z1(t)

z2(t)
= T

ξ(t)

η(t)
(15)

The equivalent form of system (11) becomes

ξ̇(t)

ϵη̇(t)
= AD

ξ(t)

η(t)
+ BD K0ze(t) (16)

where ξ(t) and η(t) represent the exact slow and exact fast state
vector of (11) , respectively, and AD is a block diagonal matrix with

AD =
Λs O

O Λ f

, BD =
Bs

B f

(17)

where

Λs := Λ11 − A12L, Λ f := A22 + ϵLA12,

Bs := B1 − HB2 − ϵHLB1, B f := B2 + ϵLB1 .
(18)

After some algebraic manipulations, (not given here for
conciseness), we can write for O(ϵ) approximations for ϵ ∈ 0, ϵ

∗ :

L = A22
−1Λ21 + O ϵ , H = A12A22

−1 + O(ϵ), (19a)

Λs = Λ0 − ϵ(A22
−1)2Λ21Λ0 + O(ϵ2) = Λ0 + O(ϵ), (19b)

Λ f = A22 + ϵA22
−1Λ21A12 + O ϵ

2 = A22 + O(ϵ), (19c)

Bs = B0 + O(ϵ), B f = B2 + O(ϵ) (19d)

so that,

AD =
Λ0 O

O A22

+ O(ϵ), BD =
B0

B2

+ O(ϵ) (20)

ϵ
∗ can be obtained as

ϵ
∗ = ( ∥ A22

−1 ∥ ( ∥ Λ0 ∥ + ∥ A12 ∥ ∥ A22
−1Λ21 ∥ + 2( ∥ Λ0 ∥

∥ A12 ∥ ∥ A22
−1Λ21 ∥ )1/2))−1

On substituting in (16), we have

ξ̇(t)

ϵη̇(t)
=

Λ0 O

O A22

ξ(t)

η(t)

+
B0

B2

K0ze(t) +
g1(ξ, t, ϵ)

g2(η, t, ϵ)

(21)

As Λ0 and A22 are Hurwitz matrices, g1(ξ, t, ϵ) and g2(η, t, ϵ) are O(ϵ)
vector functions such that ∥ g1(ξ, t, ϵ) ∥ ≤ d1ϵ and

∥ g2(η, t, ϵ) ∥ ≤ d2ϵ, where d1 and d2 are positive constants
independent of ϵ. Since transformation matrix T is non-singular,
stability of [ξT

ηT] implies stability of [z1
T z2

T]. Hence, we switch
to (21) to prove the stability of (11) .

5 Main results
Sufficient conditions for the stability properties of the closed-loop
system (21) is characterised in the following theorem:
 

Theorem 1: For the event based closed-loop system (21), for
0 < ϵ < ϵ

0, where ϵ
0 ∈ (0, ϵ

∗], with event-triggering conditions
given by (12), the states of the system (21) starting from any
bounded initial conditions ξ

0 and η
0 will remain in the O(ϵ)

neighbourhood of the smallest invariant set containing φ, where φ
is given by

φ :=
ξ(t)

η(t)
∈ ℝn + m: ∥ [ξT

ηT] ∥ ≤
λmax(P)
λmin(P)

2 2ca0

b
(22)

where b = min λmin(Q1), λmin(Q2) ; (23a)

c = max ∥ P1B0K0 ∥ , ∥ P2B2K0 ∥ (23b)

P =
P1 O

O ϵP2

(23c)

P1, P2, Q1 and Q2 are positive definite symmetric matrices which
satisfy the following Lyapunov equations

Λ0
T
P1 + P1Λ0 = − Q1 (24a)

A22
T

P2 + P2A22 = − Q2 (24b)

Moreover for α < β1, Zeno effect is excluded and for ϵ → 0,
inter-event times are lower-bounded by a strictly positive constant
given by

te ≥
a0

(k1 + k2 + k3 + k1′ + k2′ + k3′)
(25)

where k1, k2, k3 and k1′, k2′, k3′ are positive constants defined as

k1 := δ1 ∥ Λ0 ∥ ∥ ξ
0 ∥ (26a)

k2 := ∥ B0K0 ∥ a0 1 +
δ1 ∥ Λ0 ∥

β1
(26b)

k3 := ∥ B0K0 ∥ a1 1 +
δ1 ∥ Λ0 ∥

β1 − α
(26c)

k1′ := δ2 ∥ H ∥ ∥ A22 ∥∥ η
0 ∥ (26d)

k2′ := ∥ H ∥ ∥ B2K0 ∥a0 1 +
δ2∥ A22 ∥

β2
(26e)

k3′ = ∥ H ∥ ∥ B2K0 ∥a1 1 +
δ2∥ A22 ∥
β2 − ϵα

(26f)

and

β1 = max Re(λ(Λ0)) , δ1 = ∥ V1 ∥ ∥ V1
−1 ∥ (27)

β2 = max Re(λ(A22)) , δ2 = ∥ V2 ∥ ∥ V2
−1 ∥ (28)

V1 and V2 being the matrices of the eigen vectors of Λ0 and A22

respectively, δ1, β1 and δ2, β2 are positive constants.
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Proof: Let V(z, t) be the Lyapunov function candidate for the
system (21), such that

V(z, t) = ξ
T(t)P1ξ(t) + ϵ ηT(t)P2η(t) (29)

As Λ0 and A22 are Hurwitz, then for any given positive definite,
symmetric matrices Q1 and Q2, there exist unique positive definite,
symmetric matrices P1 and P2 which satisfy the Lyapunov
equations given by (24a) and (24b), individually. The derivative of
the function V along the flow of the closed loop system (21) is

V̇ = ξ
T(Λ0

T
P1 + P1Λ0)ξ + ξ

T
P1B0K0ze + ze

TK0B0P1ξ

+ξ
T
P1g1(ξ, t, ϵ) + g1(ξ, t, ϵ)T

P1ξ + ηT(A22
T

P2 + P2A22)η

+ηTP2B2K0ze + ze
TK0B2P2η + ηTP2g2(η, t, ϵ) + g2(η, t, ϵ)T

P2η

(30)

V̇ = ( − ξ
T
Q1ξ + 2ξ

T
P1B0K0ze + 2ξ

T
P1g1(ξ, t, ϵ))

+( − ηTQ2η + 2ηTP2B2K0ze + 2ηTP2g2(η, t, ϵ))
(31)

V̇ = −ξ
T
Q1ξ − ηTQ2η + 2[ξT

ηT]
P1B0K0ze

P2B2K0ze

+2[ξT
ηT]

P1g1(ξ, t, ϵ)

P2g2(η, t, ϵ)

(32)

Making use of the following property of any positive definite
matrix Q:

λmin(Q) ∥ x(t) ∥2 ≤ x(t)T
Qx(t) ≤ λmax(Q) ∥ x(t) ∥2

The right-hand side of (32) can be bounded as

V̇ ≤ −λmin(Q1) ∥ ξ ∥2 − λmin(Q2) ∥ η ∥2

+2 ∥ [ξT
ηT] ∥ ∥ ze ∥ ∥ P1B0K0 ∥2 + ∥ P2B2K0 ∥2

+2 ∥ [ξT
ηT] ∥ ϵ ∥ d1P1 ∥2 + ∥ d2P2 ∥2

(33)

The ETM in (12) enforces ∥ ze(t) ∥ ≤ (a0 + a1e
−αt), so that

V̇ ⩽ −b ∥ [ξT
ηT] ∥2 + 2 2c(a0 + a1e

−αt) ∥ [ξT
ηT] ∥

+2 2dϵ ∥ [ξT
ηT] ∥

(34)

where b and c are as defined in (23), and
d = max { ∥ d1P1 ∥ , ∥ d2P2 ∥ }. For ϵ ∈ (0, ϵ

0], where ϵ
0 ∈ (0, ϵ

∗]
is sufficiently small such that 2 2dϵ is O(ϵ). □

V̇ ≤ − b ∥ [ξT
ηT] ∥ ∥ [ξT

ηT] ∥ −
2 2c(a0 + a1e

−αt)
b

− O(ϵ)

V̇ < 0 ∀ ∥ [ξT
ηT] ∥ >

2 2c(a0 + a1e
−αt)

b
+ O(ϵ) (35)

As t → ∞,

V̇ < 0 ∀ ∥ [ξT
ηT] ∥ >

2 2ca0

b
+ O(ϵ) (36)

Applying Theorem 4.18 of [46], it can be shown that states
[ξ(t)T

η(t)T] remain ultimately bounded to the O(ϵ) neighbourhood
of the set given by (22). This proves the first part of Theorem 1.

To obtain lower bound on inter-event time, we first solve state
(21). The norm of states can be bounded as

∥ ξ(t) ∥ ≤ ∥ e
Λ0t ∥ ∥ ξ

0 ∥ + ∫
0

t

∥ e
Λ0(t − s) ∥ ∥ B0K0 ∥ ∥ ze(s) ∥ ds

+∫
0

t

∥ e
Λ0(t − s) ∥ ∥ g1(ξ, t, ϵ) ∥ ds

(37a)

∥ η(t) ∥ ≤ ∥ e
(A22/ϵ)t ∥ ∥ η

0 ∥

+
1
ϵ∫0

t

∥ e
(A22/ϵ)(t − s) ∥ B2K0 ∥ ∥ ze(s) ∥ ds

+
1
ϵ∫0

t

∥ e
(A22/ϵ)(t − s) ∥ ∥ g2(η, t, ϵ) ∥ ds

(37b)

By assumption, A22 is Hurwitz and by design of controller, Λ0 is
also Hurwitz, hence

∥ e
Λ0t ∥ ≤ δ1e

−β1t and ∥ e
A22t ∥ ≤ δ2e

−β2t

∥ ξ(t) ∥ ≤ δ1e
−β1t ∥ ξ

0 ∥ + ∫
0

t

δ1e
−β1(t − s) ∥ B0K0 ∥ (a0 + a1e

−αs)ds

+∫
0

t

δ1e
−β1(t − s)

d1ϵds

(38a)

∥ η(t) ∥ ≤ δ2e
(−β2/ϵ)t ∥ η

0 ∥

+
δ2

ϵ ∫0

t

e
−(−β2/ϵ)(t − s) ∥ B2K0 ∥ (a0 + a1e

−αs)ds

+
δ2

ϵ ∫0

t

e
−(−β2/ϵ)(t − s)d2ϵds

(38b)

By integrating and combining terms, it follows that

∥ ξ(t) ∥ ≤ δ1 ∥ ξ
0 ∥ e

−β1t +
δ1 ∥ B0K0 ∥ a0

β1
1 − e

−β1t

+
δ1 ∥ B0K0 ∥ a1

β1 − α
e−αt − e

−β1t +
δ1ϵd1

β1
1 − e

−β1t
(39a)

∥ η(t) ∥ ≤ δ2 ∥ η
0 ∥ e

( − β2/ϵ)t +
δ2 ∥ B2K0 ∥ a0

β2
1 − e

( − β2/ϵ)t

+
δ2 ∥ B2K0 ∥ a1

β2 − ϵα
e−αt − e

( − β2/ϵ)t +
δ2ϵd2

β2
1 − e

( − β2/ϵ)t

(39b)

We can further upper bound the norm of states as shown in (40)
and (41).

(see (40)) 
(see (41)) 
To calculate the inter execution time, we use the fact that the

minimum time between events is the time it takes for ∥ ze(t) ∥ to
grow from 0 at t = tk to ∥ ze(t) ∥ = (a0 + a1e

−αt) at t = tk + 1. We
need to prove the existence of an upper bound on the rate of change
of ∥ ze(t) ∥. As (d /dt) ∥ ze ∥ ≤ ∥ zė ∥ and from (10) between two
consecutive events ∥ zė(t) ∥ = ∥ z1̇(t) ∥. In view of (13) and (15),
∥ że(t) ∥ = ∥ ξ̇(t) + ϵHη̇(t) ∥ or
∥ że(t) ∥ ≤ ∥ ξ̇(t) ∥ + ∥ ϵHη̇(t) ∥ and therefore, ∀t ∈ [tk, tk + 1)

∥ ξ(t) ∥ ≤
δ1

β1
( ∥ B0K0 ∥ a0 + ϵd1) + δ1 ∥ ξ

0 ∥ e
−β1t +

δ1 ∥ B0K0 ∥ a1

β1 − α
e−αt . (40)

∥ η(t) ∥ ≤
δ2

β2
( ∥ B2K0 ∥ a0 + ϵd2) + δ2 ∥ η

0 ∥ e
( − β2/ϵ)t +

δ2 ∥ B2K0 ∥ a1

β2 − ϵα
e−αt (41)
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d

dt
∥ ze ∥ ⩽ ∥ zė ∥ ⩽ ∥ Λ0 ∥ ∥ ξ(t) ∥ + ∥ B0K0 ∥ (a0 + a1e

−αt)

+ ∥ g1(ξ, t, ϵ) ∥ + ∥ H ∥ ∥ A22 ∥ ∥ η(t) ∥

+ ∥ H ∥ ∥ B2K0 ∥ (a0 + a1e
−αt) + ∥ H ∥ ∥ g2(ξ, t, ϵ) ∥

(42)

If the latest event for state x1 occurs at time tk ≥ 0 then
∀t ∈ [tk, tk + 1), ∥ ξ(t) ∥ ≤ ∥ ξ(tk) ∥ and ∥ η(t) ∥ ≤ ∥ η(tk) ∥ hold
in (40) and (41), respectively. So that (42) can be written as

(see (43)) 
On integrating both sides from tk to t and realising that

ze(tk) = 0, we get (44), (44) can be further written as (45) by
making use of (40) and (41).

(see (44)) 
(see (45)) 
By defining k1, k2, k3 and k1′, k2′, k3′ as in (26), we can deduce (46)

from (45) (see (46)) , where

D := 1 +
∥ Λ0 ∥

β1
d1 + ∥ H ∥ +

∥ HA22 ∥
β2

d2

For sufficiently small ϵ0, Dϵ is O(ϵ), and the quantity in bracket in
(46) can further be upper bounded as
(k1 + k2 + k3 + k1′ + k2′ + k3′ + O(ϵ) ). k1, k2, k3 and k1′, k2′, k3′ are
positive constants provided β1 > α.Therefore,

∥ ze(t) ∥ ≤ (k1 + k2 + k3 + k1′ + k2′ + k3′ + O(ϵ) (t − tk) (47)

The next execution takes place when ∥ ze(t) ∥ = a0 + a1e
−αt ≥ a0.

Thus inter-execution time te = (tk + 1 − tk) is given by

te ≥
a0

(k1 + k2 + k3 + k1′ + k2′ + k3′ + O(ϵ) ) (48)

(48) shows that inter-execution time te is a positive quantity and is
valid for all event times and this proves that Zeno behaviour is
eliminated. As ϵ → 0, a lower bound te on the inter-execution time
(tk + 1 − tk) can be estimated by (25) and is valid for all event times.
This proves the theorem.

5.1 Asymptotic stability

Next, we consider a specific case when a0 = 0 and a1 ≠ 0 in (12).
The event-triggering threshold is purely exponential and error is
delimited by ∥ ze(t) ∥ ≤ a1e

−αt. We can revise (22) for this case by

substituting a0 = 0 which confirms that system state approaches an
O(ϵ) neighbourhood of origin as t → ∞.

To determine the time between two successive transmissions,
we re-evaluate (46) for k2 = 0 and and k2′ = 0 for t > tk

∥ ze(t) ∥ ≤ ∫
tk

t

k1e
−β1tk + k3e

−αtk + k1′e
−(β2/ϵ)tk + k3′e

−αtk + O(ϵ) ds

(49)

Next event can not be triggered before ∥ ze(t) ∥ = a1e
−αt.

a1e
−αt = ∫

tk

t

k1e
−β1tk + k3e

−αtk + k1′e
−(β2/ϵ)tk + k3′e

−αtk + O(ϵ)

ds

Minimum bound on the inter-event time can be obtained by the
solution of above equation for te = t − tk. On simplifying further,

k1e
(α − β1)tk + k3 + k1′e

(α − (β2/ϵ))tk + k3′ + O(ϵ) e
αtk te = a1e

−αte (50)

The right hand side of (50) is always positive. Moreover, for
α < β1, the bracketed quantity in left hand side is also positive with
the upper and lower bound as k1 + k3 + k1′ + k3′ + O(ϵ)  and
k3 + k3′ + O(ϵ)  respectively, and this produces a positive value of
te for all tk ≥ 0. The inter event times are greater or equal to te

given by (k1 + k3 + k1′ + k3′ + O(ϵ) )te = a1e
−αte which is strictly

positive. This proves the admissibility of exponential trigger
function.

 
Remark 4: For simplicity, any time delay between sensing,

transmission, computation and actuation instants has not been
considered. However, in real-practice delays are always present.
Calculation of lower bound on the inter-event time gives us an
estimation of the delay one can account for, in the system.

6 Active suspension system
The quarter car model of active suspension system can be modelled
as a double mass-spring-damper system with two inputs as shown
in Fig. 3. Body displacement is denoted by zs and zus represents the
tire position. The first input is the force Fc(t) which is applied
between the body and wheel assembly. This can be controlled by
the feedback and represents the active component of the suspension
system. The second system input is the derivative of road surface
position zr(t). The state vector is defined as

d

dt
∥ ze ∥ ⩽ ∥ Λ0 ∥∥ ξ(tk) ∥ + ∥ H ∥ ∥ A22 ∥∥ η(tk) ∥ + ϵ(d1 + ∥ H ∥ d2)

+(∥ B0K0 ∥ + ∥ H ∥ ∥ B2K0 ∥ )(a0 + a1e
−αtk)

(43)

∥ ze(t) ∥ ≤ ∫
tk

t

∥ Λ0 ∥ ∥ ξ(tk) ∥ + ∥ H ∥ ∥ A22 ∥ ∥ η(tk) ∥ + ϵ(d1 + ∥ H ∥ d2)

+(∥ B0K0 ∥ + ∥ H ∥ ∥ B2K0) ∥ )(a0 + a1e
−αtk) ds

(44)

∥ ze(t) ∥ ⩽ ∫
tk

t

∥ Λ0 ∥ δ1∥ ξ
0 ∥e

−β1tk +
δ1∥ B0K0 ∥a0 + ϵd1

β1
+

δ1∥ B0K0 ∥a1

β1 − α
e

−αtk

+ ∥ H ∥ ∥ A22 ∥ δ2∥ η2
0 ∥e

−(β2/ϵ)tk +
δ2∥ B2K0 ∥a0 + ϵd2

β2
+

δ2∥ B2K0 ∥a1

β2 − ϵα
e

−αtk

+ϵ(d1 + d2 ∥ H ∥ ) + ∥ B0K0 ∥ + ∥ H ∥ ∥ B2K0 ∥ (a0 + a1e
−αtk) ds

(45)

∥ ze(t) ∥ ≤ ∫
tk

t

k1e
−β1tk + k2 + k3e

−αtk + k1′e
−(β2/ϵ)tk + k2′ + k3′e

−αtk + Dϵ ds, (46)
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x =

x1(t)

x2(t)

x3(t)

x4(t)

=

zs − zus

zṡ

zus − zr

żr

(51)

x1(t) is the suspension travel, x2(t) is the vehicle body vertical
velocity, x3(t) represents the tire deflection and x4(t) is the wheel
vertical velocity. The input, żr(t) is the road surface velocity and the
corresponding input vector is E and input Fc(t) is the control action
and B is the related input vector. The equations of motion of the
system can be described in the state space as

ẋ = Ax + BFc(t) + Eżr(t) (52)

The matrices A, B, E are given as

A =

0 1 0 −1

−
Ks

Ms
−

Bs

Ms
0

Bs

Ms

0 0 0 1

Ks

Mus

Bs

Mus
−

Kus

Mus
−

Bs + Bus

Mus

(53)

B =

0

1
Ms

0

−1
Mus

, E =

0

0

−1

Bus

Mus

(54)

Ks represents spring stiffness between car body and tire, Bs is
damping coefficient between car body and tire. Ms represents the
car chassis (body) mass. Kus denotes spring stiffness between tire
and road. Bus is damping coefficient between tire and road. Mus

represents the wheel assembly (Tire mass).
 

Remark 5: The equilibrium point of state space is assumed to be
x1(t) = 0 and x2(t) = 0. However, in actual practice, springs are
never relaxed due to weight of masses Ms and Mus. In other words
due to gravity, equilibrium point of x1, x2 does not collocate with
location where springs are relaxed.

6.1 Active suspension as singularly perturbed system

In a typical suspension system, the ratio of the magnitude of the
eigenvalues which correlate with the unsprung mass (wheel hop
mode) ( λ f ) to that which associate with the sprung mass (rigid

body mode) ( λs ) is almost of the order of ten and frequency
response of the vehicle suspension system reflects two distinct
resonant frequencies. The suspension system displays a two-time-
scale property, with its body mode as slow mode and and the wheel
hop mode as fast mode. The ratio of max { λs } to min { λ f } is
taken as the approximate value of the singular perturbation
parameter ϵ without any loss of generality.

In order to find suitable controller for an active suspension
system by making use of two-time scale property of the system,
(52) is partitioned as

Ẋ1 = A11X1 + A12X2 + B1Fc (55a)

Ẋ2 = A
^

21X1 + A
^

22X2 + B
^

2Fc (55b)

where

X1 = x1 x2
T; X2 = x3 x4

T; A11 =
0 1

−Ks

Ms

−Bs

Ms

A12 =
0 −1

0
Bs

Ms

; A
^

21 =
0 0

Ks

Mus

Bs

Mus

A
^

22 =
0 1

−Kus

Mus

−(Bs + Bus)
Mus

; B1 =
1

1
Ms

; B
^

2 =
0

−1
Mus

Note that input żr(t) is ignored to design the control law. To express
the system (52) in the standard singularly perturbed form as in (1),
we designate x1 and x2 as slow variables and x3 and x4 as fast
variables and denote singular perturbation parameter
ϵ = min { λ(A) }/ max { λ(A) }, the standard singular
perturbation form of (52) is then given by

Ẋ1 = A11X1 + A12X2 + B1Fc (56a)

ϵẊ2 = A21X1 + A22X2 + B2Fc (56b)

where A21 = ϵA
^

21; A22 = ϵA
^

22; B2 = ϵB
^

2.

7 Experimental results
To validate the proposed control, the controller is implemented on
an actual hardware setup of a bench-scale model shown in Fig. 4 to
emulate a quarter-car model, controlled by active suspension
mechanism. Model parameters of this system are listed in Table 1. 
The experimental setup comprises of three masses in the form of
plates, which can move in a vertical direction independent of each

Fig. 3  Structure of active suspension system
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other. For generating different road profiles a fast response brushed
DC servo motor is used which drives the bottom plate. The middle
plate represents the unsprung mass and is linked to the bottom plate
by a spring and a damper. The top plate represents the sprung mass
(vehicle body) supported above the suspension and it is connected
to the middle plate by a spring, damper and a high-quality DC
motor through a capstan. This capstan arrangement can generate
motion in both the directions and known as the actuator of the
control system that can dynamically compensate for the
perturbations induced by the road and the setup mimics as the
active suspension system. In this setup, 10-bit optical encoders are
used to sense the positions of the sprung and unsprung masses and
their velocities are obtained by high pass filters [47].

In order to apply the singular perturbation theory, we first verify
the two-time-scale property of this system. For that we calculate
the eigenvalues of matrix A using the parameters given in Table 1,
which come out to be
[ − 6.9453 ± 58.7246i, − 0.8353 ± 16.1843i]. It is seen that two
sets of eigenvalues are well separated. We calculate ϵ = 0.27 (see
Remark 6). The parameters of approximate slow and fast
subsystems are given as

Slow subsystem parameters

A0 =
0 1.0

−367.3469 −3.0612
, B0 =

0

0.4082
(57)

Fast subsystem parameters

A22 =
0 0.27

−675 −3.375
, B2 =

0

−0.27
(58)

It can be seen that eigenvalues of A22 are [ − 2.5500 ± 20.0414i],
and the fast subsystem is sufficiently stable. Therefore, control is
designed only for the slow system and control gain is calculated by
optimising the following performance index
J = ∫0

∞(z1
TS1z1 + u

2
R)dt

S1 =
450 0

0 30
, R = 0.01 (59)

so that K0 = −24.6621 −48.8657 . The control law in (8) is
tested for the hardware setup in Fig. 4 using ETM in (12) with
a0 = 0.01, a1 = 0.01 and α = 0.3. For the comparison purpose, a
full state linear quadratic regulator (LQR) control proposed in [47]
is used. In this approach, the performance parameters as well as
actuator limitations are quantified in a quadratic measure given by

J = ∫
0

∞

(xTSx + u
2
R)dt

where x(t) denotes the actual state of the system and u(t) is the
actual control input.

S =

450 0 0 0

0 30 0 0

0 0 5 0

0 0 0 0.01

, R = 0.01 (60)

So that u(t) = − Kx(t) and

K = 24.6621 48.8773 −0.4712 3.6848 (61)

Both the controllers are implemented in real-time using Matlab/
Simulink environment with 1 ms sampling time for an acceptable
accuracy. In an active-suspension system, road profile is usually
interpreted as external disturbance. In this experiment, we use two
types of road profiles (zr) to validate the proposed ETC.

Road profile I: zr is rectangular pulse of 20 mm height and 3 s
period with 50% duty cycle.

Figs. 5a–c show the suspension travel, tire deflection and the
vertical acceleration of the vehicle body, respectively, for the the
proposed ETC and full state LQR control in (61). Plots of body
position zs and tire position zus plotted over road surface position zr

for the proposed ETC are depicted in the Fig. 5d. Control input and
the release instants under event-triggered scheme are shown in
Figs. 6a and b respectively. It can be observed that response of the
proposed ETC gives almost similar response to that given by full
state LQR control with very less triggering instants, only 71 in 3 s.
Minimum inter-event time is calculated as 3 ms. The difference in
settling position of tire and body in Fig. 5d can be accounted for
the reasons given in Remark 5. Although for better road handling
properties, one can design a composite controller for both slow and
fast systems. Its easy to imagine that number of transmissions will

Fig. 4  Quarter-car active suspension setup in the lab
 

Table 1 The physical parameters of active suspension
setup [47]
Symbol Value Symbol Value
Ks 900 N/m Kus 2500 N/m
Bs 7.5 Ns/m Bus 5 Ns/m
Ms 2.45 kg Mus 1.0 kg
 

2710 IET Control Theory Appl., 2020, Vol. 14 Iss. 17, pp. 2703-2713
© The Institution of Engineering and Technology 2020



increase in that case due to feedback of fast state. Control input in
ETC system is piece-wise constant as shown in Fig. 6a.

Road profile II: Sine wave of 3 Hz frequency and 10 mm
amplitude, i.e. zr = 0.01sin(6πt).

Figs. 7 and 8 show the responses for road profile II. It can be
observed that response of the proposed event-triggered controller
gives almost similar response to that given by full state LQR

controller with 465 transmissions in 2 s. Control input is piece-wise
constant as shown in Fig. 8a. It can be noticed that the proposed
controller can stabilise the system even in the presence of extreme
road condition, i.e. sinusoidal type of road profile.

 
Remark 6: This setup is the laboratory-scale model to emulate a

quarter-car model and ratio of sprung mass Ms to unsprung mass
Mus is not that high compared to any actual vehicle suspension
system. Therefore, ϵ is also not very small for this system.

 
Remark 7: Practically, measurement of tire deflection is a

difficult task and also controlling fast modes (unsprung mass)
requires a great deal of energy. By means of the singular
perturbation method, we can give reduced-order feedback such that
neither the tire deflection nor the wheel velocity is fed back in this
control law. This is an advantage over the full-state feedback law.

 
Remark 8: The efficacy of using singular perturbation theory

for the analysis of active suspension system may not be apparent
for a simple problem of quarter car model, but in an extended
problem such as full car model, where a high-order controller is
impractical in most situations, better and greater advantages of
using singular perturbation theory are reflected.

8 Conclusion
This paper investigates a reduced-order event-triggered controller
for a linear SPS based only on its slow dynamics. The proposed
ETM guarantees that the system trajectories asymptotically
converge towards a small neighbourhood of equilibrium point
without exhibiting Zeno behaviour. The contribution of the paper
has been verified by applying it on a laboratory scale actual
hardware setup of an active suspension system of the quarter car
model. The findings of this paper pave a way for the following
problems to be further investigated:

• Network induced delays and quantisation are inevitable in digital
networks. The proposed method can be extended to study event-

Fig. 5  Experimental results for road profile I
(a) Suspension travel (m), (b) Tire deflection (m), (c) Vertical acceleration of sprung
mass (m/s2), (d) Zr, Zs and Zus in (m) for the proposed ETC

 

Fig. 6  Control input and release instants for road profile I in the proposed
ETC
(a) Control input N, (b) Release instants
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triggered stabilisation of SPS under bounded bit rates and with
network induced delays.
• Many practical engineering systems can be modelled as SPSs, for
e.g. air flight control systems, multi-link flexible robot, dc–dc
power converters, synchronous machines, power-systems etc. (see
[1] and references therein). Model order reduction in these systems
is extremely helpful and it will be interesting to apply the proposed
idea in this work for reduced-order ETC of these systems.

• By integrating the idea in this paper, ETC could be realised
through some novel event-triggering conditions which can ensure
stability and can avoid infinitely fast sampling and at the same time
can improve results by reducing the number of transmissions.
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