
1

Rapid Reconstruction of Time-varying Gene
Regulatory Networks with Limited Main Memory

Saptarshi Pyne (saptarshipyne01@gmail.com) and Ashish Anand (anand.ashish@iitg.ernet.in)

Abstract—Reconstruction of time-varying gene regulatory networks underlying a time-series gene expression data is a fundamental

challenge in the computational systems biology. The challenge increases multi-fold if the target networks need to be constructed for

hundreds to thousands of genes. There have been constant efforts to design an algorithm that can perform the reconstruction task

correctly as well as can scale efficiently (with respect to both time and memory) to such a large number of genes. However, the existing

algorithms either do not offer time-efficiency, or they offer it at other costs – memory-inefficiency or imposition of a constraint, known as

the ‘smoothly time-varying assumption’. In this paper, two novel algorithms – ‘an algorithm for reconstructing Time-varying Gene

regulatory networks with Shortlisted candidate regulators - which is Light on memory’ (TGS-Lite) and ‘TGS-Lite Plus’ (TGS-Lite+) – are

proposed that are time-efficient, memory-efficient and do not impose the smoothly time-varying assumption. Additionally, they offer

state-of-the-art reconstruction correctness as demonstrated with three benchmark datasets.

Source Code: https://github.com/sap01/TGS-Lite-supplem/tree/master/sourcecode

Index Terms—Gene Regulatory Network, Network Reconstruction, Bayesian Network, Probabilistic Graphical Model, Gene

Expression, Temporal Progression Model, Network Inference, Structure Learning, Computational Systems Biology.

✦

1 INTRODUCTION

P ROTEINS perform a multitude of functions in numerous
biological processes. The expression of every protein

depends on various factors; one of them is the expression
of the gene that encodes that protein. The expression of
a gene, in turn, can be regulated by that of one or more
genes, which are known as the regulators of the former
gene (the regulatee). These regulator-regulatee relationships
are represented as a directed network, known as the Gene
Regulatory Network (GRN) [1]. In a GRN, the nodes repre-
sent the genes and the edges represent their relationships.
Since all the regulators of a regulatee may not remain active
all the time, the edge relationships (hereafter, structure) of
a GRN may vary with time. Discovering how the GRN
structure underlying a biological process varies with time
is considered to be a fundamental question in the systems
biology ([1], [2]). Being able to answer this question helps in
understanding the underlying mechanisms of the concerned
biological process, such as developmental programs and
pathogenesis, at a molecular level.

Since the structural changes are reflected in the ex-
pressions of the genes, time-series gene expressions are
collected in an attempt to reverse-engineer (reconstruct)
how the structure of the underlying GRN varies with time.
For high-throughput time series gene expression datasets,
it becomes infeasible to conduct the reconstruction task
manually; instead, computational algorithms are employed
for that purpose. Such algorithms are called time-varying
GRN reconstruction algorithms ([3], [4]).

There exists a bevy of algorithms ([4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14]) that can be used to recon-
struct time-varying GRNs from time-series gene expression
datasets. These algorithms can be broadly divided into two
categories: ones that are time-intensive ([4], [5], [6], [7],
[8], [11]) and the others that achieve time-efficiency by
imposing a constraint, known as the ‘smoothly time-varying

assumption’ ([9], [10], [12], [13]), or by compromising on
memory-efficiency ([14]). A comparative study of a subset
of these algorithms ([8], [9], [14]) is conducted by Pyne
et al. [14] against three benchmark datasets. The study
demonstrates that the time-intensive algorithms and the
memory-inefficient algorithms tend to reconstruct GRNs
more correctly than the algorithms with the smoothly time-
varying assumption. More specifically, a time-intensive al-
gorithm, namely ARTIVA [8], most consistently produces
the lowest numbers of false positives. On the other hand,
a fast but memory-inefficient algorithm, namely TGS [14],
most consistently produces the highest numbers of true
positives. Another fast but memory-inefficient algorithm,
namely TGS+ [14], finds the desired balance: it consistently
achieves a comparable number of false positives to those of
ARTIVA and a high number of true positives comparable
to those of TGS. Nevertheless, the Achilles’ heel of both
TGS and TGS+ is their main memory (hereafter, simply
‘memory’) requirements, which grow exponentially with
the number of genes in the given dataset. As Jahnsson et
al. aptly put it, “The algorithm can always be given more
time; however, if it exceeds the available memory resources,
nothing can be done to solve the instance” [15].

In this paper, two novel algorithms – TGS-Lite and TGS-
Lite+ – are proposed. None of them imposes the smoothly
time-varying assumption. TGS-Lite provides the same time
complexity and true positive detection power as those of
TGS at a significantly lower memory requirement, that
grows linearly to the number of genes. Similarly, TGS-
Lite+ offers the superior time complexity and reconstruction
power of TGS+ with a linear memory requirement.

To summarise, the main contribution of this paper is
three-fold:

• Flexibility: It provides a data-driven framework

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/755249doi: bioRxiv preprint

2

without imposing the smoothly time-varying as-
sumption. In this framework, the time-varying GRN
structures are reconstructed independently of each
other. Thus, the framework is compatible with any
time-series gene expression dataset, regardless of
whether the true GRNs follow the smoothly time-
varying assumption or not.

• Time-efficiency: The proposed framework offers
state-of-the-art time complexity.

• Memory-efficiency: The memory requirement of the
proposed framework grows linearly with the num-
ber of genes in the given dataset.

2 PROBLEM FORMULATION

A time-varying GRN reconstruction algorithm takes a
dataset D as input and returns a sequence of time-varying
GRNs G as output (Figure 1). Dataset D consists of S num-
ber of time series, denoted by S = {s1, . . . , sS}. Each time
series is comprised of the expression levels of V number
of genes V = {v1, . . . , vV } at T consecutive time points
T = {t1, . . . , tT }. D(X ;Y;Z) denotes the expression levels
of genes X at time points Y in time series Z . D(X ;Y;Z) ⊆ D
since X ⊆ V,Y ⊆ T ,Z ⊆ S . Dataset D is also assumed to
be complete i.e. there are no missing values.

Given dataset D, the objective is to reconstruct a tempo-

rally ordered sequence of GRNs G =
(

G(1), . . . , G(T−1)
)

.

Each G(p) (∈ G) is a time interval specific GRN; it repre-
sents the gene regulatory events occurred during the time
interval between time points tp and t(p+1). Structurally,

G(p) is a directed unweighted network with (2× V) nodes:
{vi tq : vi ∈ V , tq ∈ {tp, t(p+1)}}. Each node vi tq is a dis-
tinct random variable, which represents the expression level
of gene vi at time point tq ; hence, data points D({vi};{tq};S)

are considered to be S instances of random variable vi tq .
It is assumed that the underlying gene regulation process
is first order Markovian [5] i.e. node vi tq can have reg-
ulatory effects only on the nodes at the immediately next
time point t(q+1), if any. Thus, there exists a directed edge
(

vi tq, vj t(q+1)

)

in G if and only if vi tq has a regulatory
effect on vj t(q+1), implying that the expression level of
gene vi at time point tq plays a regulatory role on that of
gene vj at time point t(q+1).

3 EXISTING ALGORITHMS

There exists a set of algorithms that solve the problem
partially, e.g., Bene [16], GENIE3 [17], NARROMI [18], LBN
[19]. They can reconstruct a time-invariant ‘summary’ GRN
over node-set V . A directed edge (vi, vj) signifies that gene
vi is likely to have a regulatory effect on gene vj . However,
it does not help in identifying the time interval(s) when
that regulatory effect has taken place. On the other hand,
Friedman et al. reconstruct one GRN for every time interval
by modelling G as a Dynamic Bayesian Network (DBN) [5].
However, DBN’s time-homogeneous nature requires each
gene to have the same regulators in all time intervals.

To overcome time-homogeneity, G is modelled as a time-
inhomogeneous DBN by a group of algorithms ([3], [6], [7],
[8], [9], [10], [13]). They assume that the underlying gene
regulation process is a multiple-change-point process with

v1 t1

v2 t1

vV t1

v1 t2

v2 t2

vV t2

v1 tT

v2 tT

vV tT

�
�1)

v1 t3

v2 t3

vV t3

�
�2)

v1

v2

vV

t1 t2 tT
s1

s2

sS

Time�varying GRN Recon�

struction Algorithm

Input: Time�series Gene Expression Data �

G
en
es

Ti
m
e
se
rie
s

Time

points

Output: Time�varying GRNs G

Fig. 1. The Workflow of a Time-varying GRN Reconstruction Algo-
rithm. The algorithm takes a time series gene expression data D as
input. The data consists of S number of time series. Each time se-
ries contains measured expressions of V number of genes across T

number of time points. In return, the algorithm outputs time-varying
GRNs

(

G(1), . . . , G(T−1)
)

= G, which is a sequence of directed un-

weighted networks. Here, G(p) (∈ G) represents the gene regulatory
events occurred during the time interval between time points tp and
t(p+1). It consists of (2× V) nodes {vi tq : vi ∈ V, tq ∈ {tp, t(p+1)}}.

There exists a directed unweighted edge
(

vi tp, vj t(p+1)

)

if and only

if vi regulates vj during time interval
(

tp, t(p+1)

)

. For instance, G(1)

represents the regulatory events that occurred between time points t1
and t2. One such event is the regulatory effect of v1 t1 on v2 t2 as
represented by a directed edge.

the set of change points T ⊆ T . The duration between
two consecutive change points is called a time segment.
Algorithms NsDbn [6] and NsCdbn [7] reconstruct a unique
GRN for each time segment. A more flexible algorithm
ARTIVA reconstructs a unique GRN for each time interval
[8]. It assumes that every gene has unique change points.
Thus, GRN structures of two consecutive time intervals vary
if they belong to different time segments of at least one gene.

ARTIVA’s flexibility fetches two major criticisms. First,
Grzegorczyk et al. suggest that having unique change points
for every gene might be too flexible [3]. Instead, genes with
similar expression patterns can be grouped into a cluster

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/755249doi: bioRxiv preprint

3

TABLE 1
A Summary of the Existing Algorithms, discussed in Section 3.

Algorithm(s) Summary

Bene [16], GENIE3 [17],
NARROMI [18], Chang
et al. [11], LBN [19], cp-
BGe [3]

Learn a single time-invariant GRN
structure (the ‘summary GRN’). Hence,
can not identify the time interval during
which a regulatory event has occurred.

Friedman et al. [5] Learns time-varying GRNs. However,
requires each gene to have the same
regulators in all time intervals.

NsDbn [6], NsCdbn [7],
ARTIVA [8], Xiong et al.
[4], TVDBN-0 [9]

Allow each gene to have different
regulators at different time intervals.
Nonetheless, substantially slow.

{TVDBN-bino-hard,
TVDBN-bino-soft,
TVDBN-exp-hard,
TVDBN-exp-hard} [9],
MAP-TV [10], Zhang et
al. [13]

Relatively faster. Nevertheless, impose
the structural constraint that each GRN
shares more common edges with its
temporally adjacent GRNs than the dis-
tal ones. This constraint is known as the
‘smoothly time-varying assumption’.

{TGS, TGS+} [14] The fastest. Do not require the smoothly
time-varying assumption. However, ex-
ponential memory requirements.

and unique change points can be assigned to that cluster.
Based on this paradigm, Grzegorczyk et al. develop the
cpBGe algorithm. However, cpBGe models G as a directed
weighted network whose edge weights are time-varying but
the structure is time-invariant.

The next criticism comes from Dondelinger et al. [9],
who become concerned of ARTIVA’s high computational
cost since ARTIVA divides the reconstruction problem into a
large number of atomic problems of learning the regulators
of every gene during every time segment specific to that
gene. Moreover, they argue that ARTIVA is statistically vul-
nerable to overfitting when S ≪ V since each atomic prob-
lem is solved only with the corresponding time segment’s
data. To avoid these issues, Dondelinger et al. propose
an alternative framework where all atomic problems are
solved jointly through ‘information sharing’ or ‘coupling’.
The underlying assumption, known as the ‘smoothly time-
varying assumption’, is that every time-interval specific
GRN structure shares more common edges with its tem-
porally adjacent GRN structures than with the distal ones.
All atomic problems are solved jointly to ensure that the
reconstructed GRN structures honour the assumption. The
framework is further divided into two categories – soft
coupling and hard coupling – based on the strength of
coupling i.e. the expected amount of similarities between
the GRN structures. To realize this framework, Dondelinger
et al. first introduce a baseline algorithm without coupling,
namely TVDBN-0, which is similar to ARTIVA except in
its internal sampling strategy. Then, coupling strategies
are added to the baseline algorithm to develop two hard
coupling algorithms - TVDBN-bino-hard and TVDBN-exp-
hard, and two soft coupling algorithms – TVDBN-bino-soft
and TVDBN-exp-soft; the terms ‘bino’ and ‘exp’ represent
that the corresponding algorithm assumes the expression
levels of every gene to follow a binomial or an exponential
distribution, respectively. Based on the same smoothly time-
varying assumption, one more algorithm (henceforth, MAP-
TV) is proposed by Chan et al. [10], which is later extended

by Zhang et al. [13].
A comparative study between ARTIVA and the latter

algorithms is conducted by Pyne et al. [14]. When compared
against three benchmark datasets, they observe that ARTIVA
most consistently provides the most correct models i.e. the
highest F1-scores. Two potential reasons behind this obser-
vation are: (1) the smoothly time-varying assumption does
not hold for the given datasets and (2) each of the datasets
possesses a sufficient number of time series which nullifies
the S ≪ V condition. On the other hand, it is also ob-
served that ARTIVA consumes the largest amounts of time.
Inspired by these observations, Pyne et al. develop a time-
efficient framework which is also as flexible as ARTIVA. This
framework considers every time point as a change point
for every gene. Thus, solving the reconstruction problem
boils down to solving a large number of atomic problems
of identifying the regulators of every gene during every
time interval. Instead of attempting to reduce the number of
atomic problems, Pyne et al. propose to reduce the amount
of time consumed by each atomic problem. Since the time
complexity of each atomic problem grows exponentially
with the number of candidate regulators, an information
theoretic strategy is applied to significantly shorten that
number. Two algorithms – TGS and TGS+ – are conceived
based on this framework. TGS most consistently outper-
forms ARTIVA and other algorithms in true positive detec-
tion power as well as in computational speed. However,
ARTIVA retains its superiority in false positive rejection
power. TGS+, on the other hand, consistently provides a true
positive detection power comparable to that of TGS and a
false positive rejection power comparable to that of ARTIVA.
As a result, TGS+ replaces ARTIVA in most consistently
achieving the highest F1-scores. Moreover, it replaces TGS
for being the fastest. Nevertheless, the flexibility and time-
efficiency of TGS and TGS+ come at the cost of their memory
requirements, which grow exponentially to the number of
genes. For these reasons, developing a flexible, time-efficient
as well as memory-efficient framework can be considered
as a timely contribution. (Please find a summary of the
discussed algorithms at Table 1.)

4 METHODS

In this section, the objective is to develop novel algorithms
that have equivalent learning power and speed to TGS and
TGS+ but significantly less memory requirements. For that
purpose, first, investigations are conducted to identify the
origin of the exponential memory requirements of TGS and
TGS+. Then novel algorithms are designed to overcome this
issue.

4.1 Investigations into the Origin of the Issue

An analytical study of the TGS algorithm with the max
fan-in1 restriction (‘Algorithm 4’ in Pyne et al. [14]) reveals
the origin of its high memory requirement. TGS has two
distinct steps. In the first step, for each node vj t(p+1) in G,
it generates a candidate regulator set, denoted by V(j;(p+1)).

1. ‘Fan-in’ of a node represents the number of regulators the node
has. The max fan-in restriction puts an upper bound on how many
regulators a node can have.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/755249doi: bioRxiv preprint

4

In the second step, it chooses the best set of regulators
for vj t(p+1) from V(j;(p+1)). The issue originates from the
second step (hereafter, the Bene step) where TGS employs
a Bayesian Network (BN) structure learning algorithm,
namely Bene, to choose the best set of regulators. Bene does
so by calculating BIC scores [20] of all subsets of V(j;(p+1))

and choosing the subset with the highest BIC score. For
that purpose, the Bene step requires 2|V(j;(p+1))| scores and
2|V(j;(p+1))| subsets to be held in memory (Section 4.1 of
the supplementary document). It results in an exponential
memory requirement w.r.t. the max fan-in parameter Mf ,
since |V(j;(p+1))| = O(Mf).

4.2 A Novel Idea for Resolving the Issue

A more memory-efficient algorithm (Algorithm 1) is de-
signed to replace the Bene step. It requires two point-
ers (curr.set and best.set), only two scores (curr.score and
best.score) and 2|V(j;(p+1))| subsets to be held in memory
(Figure 2A). Nevertheless, the number of subsets in memory
remains exponential w.r.t. Mf .

One naive way to reduce the number of subsets in
memory is to keep only the subsets pointed by curr.set and
best.set in memory and move the rest of the subsets to the
secondary storage (hereafter, disk). However, that strategy
will increase runtime significantly due to costly disk I/Os.

Keeping all the subsets in memory or performing disk
I/Os – both can be avoided if every subset can be generated
in real-time only when its BIC score needs to be calculated.
From Figure 2A, it is observed that every non-empty subset
can be generated by adding 1b to the Least Significant Bit
of its previous subset (Algorithm 2). Using this strategy,
a novel algorithm, namely Find-best-set-Lite (Algorithm 3),
is designed to find the highest scoring subset. It requires
a subset-generation script, only two scores (best.score and
curr.score) as well as only two subsets (curr.set and best.set)
to be held in memory (Figure 2B), resulting in a linear
memory requirement w.r.t. Mf .

4.3 Design of Novel Algorithms

TGS-Lite: A novel algorithm, namely ‘an algorithm for
reconstructing Time-varying Gene regulatory networks with
Shortlisted candidate regulators - which is Light on mem-
ory’ or TGS-Lite (Algorithm 4), is conceived by replacing
the Bene step in TGS with Find-best-set-Lite. Thus, TGS-
Lite is able to achieve a significantly lower memory foot-
print compared to that of TGS while reconstructing the
same time-varying GRNs. At the same time, TGS-Lite’s time
complexity (Equation 4.8 of the supplementary document)
remains same as that of TGS with the max fan-in restric-
tion (Equation 4.13 of the supplementary document) i.e.
o
(

V 2 lg V
)

.
TGS-Lite+: Since TGS-Lite reconstructs the same GRNs

as TGS, it suffers from the same issue of high false posi-
tives. A variant of TGS-Lite, namely ‘TGS-Lite Plus’ (TGS-
Lite+), is designed to mitigate this issue (Algorithm 5).
The only difference in this new variant is the addition
of the ARACNE step (Algorithm 5 lines 7 - 9), which is
shown to significantly reduce false positives at a reasonable
reduction in true positives [14]. Although the addition of the
ARACNE step increases the time complexity (Section 4.5 of

�

��

vi1 tp vi2 tp

��

��

1�

1�

1�

��

1�

curr.set

curr.score

Step 1

best.set

Choose
curr.set

Subsets of
���;�p+1))

Calculate BIC
score of curr.set

Step 3

Step 5

Step 7

Step 2

Step 4

Step 6

Step 8

best.score

B

��

vi1 tp vi2 tp

��

�� 1�

curr.set

curr.score

Step 2

best.set

Generate
curr.set

Subsets of
���;�p+1))

Calculate BIC
score of curr.set

Step 3

Step 1

Step 4

Step 7

best.score

Step 5

1� ��

Step 6

Step 8

Step 10

1� 1�

Step 9

G
E
N
-N
E
X
T
-S
E
T
$c
u
rr
.s
et
)

For every iteration, save the highest curr.score in
best.score and the corresponding curr.set in best.set

For every iteration, save the highest curr.score in
best.score and the corresponding curr.set in best.set

Fig. 2. Memory Footprints of Algorithm 1 and Algorithm 3: a comparison.
For illustration, it is assumed that V(j;(p+1)) = {vi1 tp, vi2 tp}. There-
fore, its subsets are {∅, {vi2 tp}, {vi1 tp}, {vi1 tp, vi2 tp}}. Each
subset is represented as a binary string of Boolean TRUE (1b) and
FALSE (0b) values, indicating whether a gene is present or not in that
subset, respectively. A) Memory footprint of algorithm 1: the algorithm
requires two pointers (curr.set and best.set), two scores (curr.score and

best.score) and 2|V(j;(p+1))| = 22 = 4 subsets to be held in memory. B)
Memory footprint of algorithm 3: it requires a subset-generation script
(GEN-NEXT-SET), two scores (curr.score and best.score) and only two
subsets (curr.set and best.set) to be held in memory. Here, curr.set holds
a subset whereas it holds a pointer to a subset in case of algorithm 1.
In algorithm 3, the value of curr.set is updated to the next subset by the
GEN-NEXT-SET script through in-place replacement, saving memory.
Both the algorithms also require data D∗ (not shown in figure) to be
stored in memory during the calculation of BIC scores.

the supplementary document), it helps to produce a shorter
list of candidate regulators for each gene [14], thus saving
time during the final selection of regulators.

5 RESULTS

In this section, two sets of experimental results are presented
for TGS-Lite and TGS-Lite+: one with three in-silico bench-

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/755249doi: bioRxiv preprint

5

Algorithm 1 Find-best-set

1: procedure FIND-BEST-SET(vj t(p+1),V(j;(p+1)),D
∗)

2: ## vj t(p+1) : regulatee gene;
3: ## V(j;(p+1)) : candidate regulators of vj t(p+1);
4: ## D∗ : data needed to calculate the required BIC
5: ## scores; in this particular case,
6: ## D∗ = D({vj t(p+1)}∪V(j;(p+1));{tp,t(p+1)};S) .

7: *******************************
8: curr.set← empty set.
9: best.set← curr.set.

10: best.score← BIC score of curr.set.
11: ⊲ (Section 4.2 of the supplementary

12: ⊲ document), TBIC

(

V ;T ;S;Mf ;~δ
)

.

13: for all non-empty subsets
14: curr.set ⊆ V(j;(p+1)) in lexicographic order do

15: ⊲ Θ
(

2|V(j;(p+1))| − 1
)

= O
(

2Mf − 1
)

16: ⊲ iterations.
17: curr.score← BIC score of curr.set.
18: ⊲ TBIC

(

V ;T ;S;Mf ;~δ
)

.

19: if curr.score > best.score then
20: best.score← curr.score.
21: best.set← curr.set.
22: end if
23: end for
24: *******************************
25: return best.set.
26: end procedure

mark datasets and the other with a real microarray dataset.

5.1 Results with In-silico Benchmark Datasets

The in-silico benchmark datasets used for this study are
known as Ds10n, Ds50n and Ds100n [14]. They are originally
published through DREAM3 In Silico Network Challenge
([21], [22], [23], [24]) for systematically comparing GRN
reconstruction algorithms. The challenge also published
the ‘true’ GRNs that generated the datasets. Although the
datasets are longitudinal, the true GRNs are time-invariant
in nature. A brief description of these datasets and corre-
sponding true GRNs are given in Table 2. Their detailed
description can be found in Pyne et al. [14]. Since the true
GRNs are time-invariant and the predicted GRNs are time-
varying, the predicted GRNs are ‘rolled’ into time-invariant
GRNs to determine their correctness. The rolling strategy
is a union operation over edges i.e. a directed edge from
gene vi to gene vj exists in the rolled GRN if and only if the
edge exists in at least one of the time-varying GRNs. Since
{TGS-Lite, TGS-Lite+, TGS, TGS+} require discretised data,
the 2L.wt algorithm [14] is used for data discretisation. The
metrics used for evaluating the correctness of the predicted
GRNs are described in Section 4.8 of the supplementary
document.

5.1.1 Preliminary Study against a Random Classifier

Before moving towards a comprehensive analysis, a pre-
liminary study is conducted to check whether the results
of TGS-Lite and TGS-Lite+ are better than random or not.

Algorithm 2 Gen-next-set

1: procedure GEN-NEXT-SET(curr.set)
2: ## curr.set: current candidate regulator set.
3: *******************************
4: l ← |curr.set|. ⊲ Θ(|curr.set|) = O (Mf).
5: Initialize the carry bit with TRUE i.e.
6: carry.bit← 1b.
7: ## 1b : Boolean TRUE, 0b : Boolean FALSE.
8: *******************************
9: for bit index i = l to 1 do ⊲ Θ(l) = O (Mf).

10: curr.bit← curr.set[i] where
11: curr.set[i] denotes the i -th bit of curr.set.
12: ## curr.set[l] = the least significant bit of curr.set.
13: ## curr.set[1] = the most significant bit of curr.set.
14: if curr.bit and carry.bit both are 0b then
15: curr.set[i]← 0b.
16: carry.bit← 0b.
17: else if curr.bit and carry.bit both are 1b then
18: curr.set[i]← 0b.
19: carry.bit← 1b.
20: else
21: curr.set[i]← 1b.
22: carry.bit← 0b.
23: end if
24: end for
25: *******************************
26: return curr.set.
27: ## It is an in-place replacement i.e. the input value
28: ## of curr.set is modified in-place to generate the
29: ## next value of curr.set, without creating any
30: ## additional variable.
31: end procedure

TABLE 2
A Summary of the chosen DREAM3 Datasets. V = number of genes. T

= number of time points. S = number of time series.

Dataset V T S No. of True Edges

Ds10n 10 21 4 10

Ds50n 50 21 23 77

Ds100n 100 21 46 166

For that purpose, TPR-vs-FPR chart of TGS-Lite and TGS-
Lite+ is plotted (Figure 3). These plots remain above the
random classifier’s line, signifying that the results are better
than random. Here, the random classifier line represents the
results of a classifier that randomly decides whether an edge
should be present or absent in the predicted network. Such
random classification tends to result in a line represented by
the equation TPR = FPR.

5.1.2 Comparative Study against Alternative Algorithms

Experimental Settings: Following the success of TGS-
Lite and TGS-Lite+ in the preliminary test, a comparative
study is conducted against a set of alternative algorithms,
which are {TGS, TGS+, ARTIVA, TVDBN-0, TVDBN-bino-
hard, TVDBN-bino-soft} (Figure 4). The results of these alter-
native algorithms are reproduced from Pyne et al. [14] since
the same hardware and Operating System are used. The
only difference is that those algorithms are interpreted in

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/755249doi: bioRxiv preprint

6

Algorithm 3 Find-best-set-Lite

1: procedure FIND-BEST-SET-LITE(vj t(p+1),V(j;(p+1)),D
∗)

2: ## vj t(p+1) : regulatee gene;
3: ## V(j;(p+1)) : candidate regulators of vj t(p+1);
4: ## D∗ : data needed to calculate the required BIC
5: ## scores; in this particular case,
6: ## D∗ = D({vj t(p+1)}∪V(j;(p+1));{tp,t(p+1)};S) .

7: *******************************
8: curr.set← empty set.
9: best.set← curr.set.

10: best.score← BIC score of curr.set.
11: ⊲ (Section 4.2 of the supplementary

12: ⊲ document), TBIC

(

V ;T ;S;Mf ;~δ
)

.

13: for loop counter = 2 to 2|V(j;(p+1))| do

14: ⊲ Θ
(

2|V(j;(p+1))| − 1
)

= O
(

2Mf − 1
)

15: ⊲ iterations.
16: curr.set← GEN-NEXT-SET(curr.set).
17: ⊲ Algorithm 2, O (Mf).
18: curr.score← BIC score of curr.set.
19: ⊲ TBIC

(

V ;T ;S;Mf ;~δ
)

.

20: if curr.score > best.score then
21: best.score← curr.score.
22: best.set← curr.set.
23: end if
24: end for
25: *******************************
26: return best.set.
27: end procedure

TGS-Lite	

TGS-Lite

Ran
dom

class
i�er'

s Lin
e

�PR

T
P
R

Ds10n

Ds50n

Ds100n

Ds100n

Ds50n

Fig. 3. The TPR-vs-FPR Plots of TGS-Lite, TGS-Lite+ and a random
classifier. Here, TPR = True Positive Rate, FPR = False Positive Rate.
The results of TGS-Lite for three distinct DREAM3 datasets are rep-
resented as three black squares. These squares are connected (inter-
polated) with a smooth line (Software used: LibreOffice Calc Version
5.1.6.2; Line type = Cubic spline, Resolution = 20; OS: Ubuntu 16.04.5
LTS). On the other hand, the results of TGS-Lite+ for three distinct
DREAM3 datasets are represented as three black triangles (the triangle
for Ds10n overlaps with the square for Ds10n and hence not visible).
These triangles are also connected with a smooth line.

R programming language [25] version 3.3.2 and {TGS-Lite,
TGS-Lite+} are interpreted in R version 3.5.1. For each of
{TGS-Lite, TGS-Lite+, TGS, TGS+}, the naming convention
used are as follows: no extension = serial execution with
Mf set to 14; ‘mf[X]’ = Mf set to ‘X’, e.g., TGS.mf24; ‘p[X]’
= parallel execution with number of cores set to ‘X’, e.g.,

Algorithm 4 TGS-Lite with the Max Fan-in Restriction

1: procedure TGS-LITE(D,Mf)
2: ## D : data; Mf : max fan-in.
3: Compute the Mutual Information (MI) matrix,

4: denoted by M . It is a (V × V) matrix. The (vi, vj)
th

5: cell of M , denoted by M (vi, vj), represents the
6: estimated MI value between vi and vj . ⊲ O

(

V 2
)

.
7: Initialize G ← a null graph over (V × T) nodes.
8: GCLR ← CLR (D,M).
9: ⊲ (Algorithm 2 of Pyne et al. [14]), O

(

V 2
)

.
10: *******************************
11: for each gene vj ∈ V do ⊲ (V) iterations
12: for each time interval

(

tp, t(p+1)

)

do
13: (where 1 ≤ p ≤ (T − 1)) ⊲ (T − 1) iterations
14: *******************************
15: if No. of neighbours of vj in GCLR > Mf then
16: From the set of neighbours of vj in GCLR,
17: generate a list Lj by selecting the top
18: Mf number of neighbours w.r.t. their
19: edge weights with vj in GCLR. Break
20: ties using the lexicographic order of
21: gene names or indices.
22: V(j;(p+1)) ←
23: {vi tp :
24: ((vi, vj) ∈ Edgeset (GCLR)) ∧ (vi ∈ Lj)}
25: where V(j;(p+1)) : The set of
26: candidate regulators of vj t(p+1).
27: ⊲ O (V).
28: else
29: V(j;(p+1)) ←
30: {vi tp : (vi, vj) ∈ Edgeset (GCLR)}.
31: ⊲ O (Mf).
32: end if
33: *******************************
34: best.set←
35: FIND-BEST-SET-LITE

(

vj t(p+1),V(j;(p+1)),

36: D({vj t(p+1)}∪V(j;(p+1));{tp,t(p+1)};S)

)

.

37: ⊲ Algorithm 3,

38: ⊲ TFind-best-set-Lite

(

V ;T ;S;Mf ;~δ
)

.

39: for each node in best.set do
40: ⊲ Θ(|best.set|) = O (Mf).
41: Add an edge in G
42: from that node to vj t(p+1).
43: end for
44: end for
45: end for
46: *******************************
47: return G.
48: end procedure

TGS-Lite.p10.

Lighter Memory Footprint: Figure 4A demonstrates a
significant reduction in memory usage in case of TGS-Lite
compared to TGS. For Mf = 24, TGS occupies 54.7% of
the main memory (∼ 32 GB) during the beginning of the
Bene step. Its memory usage rises to almost 100% as the
time goes on and finally reaches a ‘thrashing’ state [26]. At
that point, the TGS process is terminated. In comparison,

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/755249doi: bioRxiv preprint

7

Dataset TGS-Lite TGS-Lite.p10 TGS TGS-Lite� TGS-Lite�.p10 TGS� ARTIVA TVDBN-

0

TVDBN-

bino-

hard

TVDBN-

bino-

soft

Ds10n 8.9s 6.673s 5.789s 2.986s 6.028s 5.515s 10m 20s 2m 24s 2m 15.2s 2m 14.6s

Ds50n 3h 58m 2s 24m 45s 7m 36s 17.383s 9.025s 22.034s 4h 30m 15s 11m 59s 9m 38s 8m 8s

Ds100n 8h 41m 17s 1h 2m 3s 17m 49s 12m 12s 1m 25s 1m 4s 31h 52m 54s 52m 17s 2h 53m

32s

17m 20s

�

E

C
Ds10n

Ds50n

Ds100n

0
.2
3
1

0
.2
3
1

0.75 0.75

0 0

0
.1
2
5

0
.1
8
2

0
.0
4
2

0
.0
4
2

0
.0
5
7

0
.0
5
7

0
.0
8
6

0
.0
3
4

0
.0
2
6

0
.0
3
4

0
.0
3
4

0
.0
3
4

0
.0
9
5

0
.0
9
5

0
.0
8
1

0
.0
1
3

0
.0
2

0
.0
1
4

T
G
S
-L
it
e

T
G
S

T
G
S
-L
it
e
�

T
G
S
�

A
R
T
IV

A

T
V
D
B
N
-b
in
o
-h
a
rd

T
V
D
B
N
-b
in
o
-s
o
ft

P
re
ci
si
on

B

T
G
S
-L
it
e

T
G
S

T
G
S
-L
it
e
�

T
G
S
�

A
R
T
IV

A

T
V
D
B
N
-0

T
V
D
B
N
-b
in
o
-h
a
rd

T
V
D
B
N
-b
in
o
-s
o
ft

0
.3

0
.3

0
.3

0
.3

0 0

0
.1

0.20
.1
9
5

0
.1
9
5

0
.0
7
8

0
.0
7
8

0
.0
7
8

0
.0
9
1 0
.1
4
3

0.180
.1
6
9

0
.1
6
9

0
.1
1
4

0
.1
1
4

0
.0
8
4

0
.0
5
4

0
.1
5
7

0
.1
0
8

Ds10n

Ds50n

Ds100n

R
ec
al
l

T
G
S
-L
it
e

T
G
S

T
G
S
-L
it
e
�

T
G
S
�

A
R
T
IV

A

T
V
D
B
N
-0

T
V
D
B
N
-b
in
o
-h
a
rd

T
V
D
B
N
-b
in
o
-s
o
ft

0
.3

0
.3

0
.3

0
.3

0 0

0
.1

0.20
.1
9
5

0
.1
9
5

0
.0
7
8

0
.0
7
8

0
.0
7
8

0
.0
9
1 0
.1
4
3

0.180
.1
6
9

0
.1
6
9

0
.1
1
4

0
.1
1
4

0
.0
8
4

0
.0
5
4

0
.1
5
7

0
.1
0
8

Ds10n

Ds50n

Ds100n
T
G
S
-L
it
e

T
G
S

T
G
S
-L
it
e
�

T
G
S
�

A
R
T
IV

A

T
V
D
B
N
-0

T
V
D
B
N
-b
in
o
-h
a
rd

T
V
D
B
N
-b
in
o
-s
o
ft

D
Ds10n

Ds50n

Ds100n

T
G
S
-L
it
e

T
G
S

T
G
S
-L
it
e
�

T
G
S
�

A
R
T
IV

A

T
V
D
B
N
-0

T
V
D
B
N
-b
in
o
-h
a
rd

T
V
D
B
N
-b
in
o
-s
o
ft

F
1-
sc
or
e

0
.2
6
1

0
.2
6
1

0
.0
6
9

0
.0
5
7

0.429 0.429

0 0

0
.1
1
1 0
.1
9

0
.0
6
9

0
.0
6
6

0
.0
6
6

0
.0
8
2

0
.0
4
9

0
.0
4
4

0
.0
5
8

0
.0
5
7

0
.1
0
4

0
.0
8
3

0
.0
2
1

0
.0
3
5

0
.0
2
40
.1
0
4

�
of

m
em

or
y

3.9 �
0.7 �

7.5 �

0.7 �

14.9 �

0.7 � 0.7 � 0.7 �

20.5 �

54.7 �

TGS

TGS-Lite

20 21 22 23 24

Max fan-in (��)

Fig. 4. Comparative Performances of the selected Algorithms on the DREAM3 datasets. A) The percentages of memory used by TGS and TGS-
Lite for different max fan-in values. The percentages represent memory usage during the beginning of the Bene step (see Section 4.11 of the
supplementary document for more details). Dataset in use is Ds100n. B) Recall, C) precision, D) F1-score and E) runtime of the selected algorithms
are shown. Recall = TP / (TP + FN); Precision = TP / (TP + FP); F1-score = (2 x Recall x Precision) / (Recall + Precision); here, TP or True Positive
= number of true edges correctly predicted by the concerned algorithm; FN or False Negative = number of true edges that are not predicted; FP =
number of predicted edges that are not true.

TGS-Lite occupies a negligible amount of memory (0.7%)
and completes execution without any issue. Moreover, it
indicates the possibility of parallel executions with at most
⌊(100/0.7)⌋ ≃ 142 cores, significantly reducing runtime as
well. On the other hand, the heavy memory footprint of
TGS prevents it from taking advantage of such multicore
parallelisation schemes.

No Loss in the Learning Power: The memory efficiency
of TGS-Lite does not come at the cost of its learning power.
It provides the same recall, precision and F1-score as those
of TGS. Together they provide the highest recalls for all
three datasets (Figure 4B). In case of precision, only TGS-
Lite+ and TGS+ are able to outperform them for all datasets
(Figure 4C). Owing to such high precisions, coupled with
competitive recalls, TGS-Lite+ and TGS+ jointly obtain the
highest F1-scores for two out of three datasets (Figure 4D).
Only for Ds50n, ARTIVA provides the highest F1-score,
outperforming {TGS-Lite+, TGS+} by a margin of 0.016;
however for the other two datasets, the latter algorithms
supersede ARTIVA by larger margins (0.429 and 0.021).
Interestingly, only for Ds10n, TGS-Lite+ retains the recall
obtained by TGS-Lite (Figure 4B). The reason is that the

lower the number of feed-forward edges in the true net-
work, the lower the chances of the ARACNE step missing
true edges [14]. Since, the true networks of Ds50n and
Ds100n have large numbers of feed-forward edges (≃ 39%),
the ARACNE step misses a large number of true edges.
However, for Ds10n, whose true network has 10% feed-
forward edges, it misses only one true edge. The ARACNE
step compensates this small loss by helping TGS-Lite+ in
capturing a true edge that TGS-Lite misses. Thus, for Ds10n,
TGS-Lite+ predicts as many true edges as TGS-Lite’s (see Sec-
tion 4.10 of the supplementary document for more details).

Multicore Parallelisation: Although TGS-Lite shares
the same time complexity with TGS, it encounters larger
runtime than those of TGS (Figure 4E). The potential reason
being the difference in their implementations. While the
Find-best-set-Lite step in TGS-Lite is implemented with R

(except the function for BIC score computation which is in
C), its counterpart in TGS, the Bene step, is implemented
with C, which is expected to be significantly faster. To
alleviate this issue, another R implementation of TGS-Lite
is prepared with multicore parallelisation. The 10-core par-
allelised execution of TGS-Lite i.e. TGS-Lite.p10 reduces the

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/755249doi: bioRxiv preprint

8

Algorithm 5 TGS-Lite+ with the Max Fan-in Restriction

1: procedure TGS-LITE+(D,Mf)
2: ## D : data; Mf : max fan-in.
3: Compute the Mutual Information (MI) matrix,

4: denoted by M . It is a (V × V) matrix. The (vi, vj)
th

5: cell of M , denoted by M (vi, vj), represents the
6: estimated MI value between vi and vj . ⊲ O

(

V 2
)

.
7: Refine M by passing it through ARACNE i.e.
8: M ← ARACNE(M).
9: ⊲ (Algorithm 5 of Pyne et al. [14]), O

(

V 3
)

.
10: Initialize G ← a null graph over (V × T) nodes.
11: GCLR ← CLR (D,M).
12: ⊲ (Algorithm 2 of Pyne et al. [14]), O

(

V 2
)

.
13: *******************************
14: for each gene vj ∈ V do ⊲ (V) iterations
15: for each time interval

(

tp, t(p+1)

)

do
16: (where 1 ≤ p ≤ (T − 1)) ⊲ (T − 1) iterations
17: *******************************
18: if No. of neighbours of vj in GCLR > Mf then
19: From the set of neighbours of vj in GCLR,
20: generate a list Lj by selecting the top
21: Mf number of neighbours w.r.t. their
22: edge weights with vj in GCLR. Break
23: ties using the lexicographic order of
24: gene names or indices.
25: V(j;(p+1)) ←
26: {vi tp :
27: ((vi, vj) ∈ Edgeset (GCLR)) ∧ (vi ∈ Lj)}
28: where V(j;(p+1)) : The set of
29: candidate regulators of vj t(p+1).
30: ⊲ O (V).
31: else
32: V(j;(p+1)) ←
33: {vi tp : (vi, vj) ∈ Edgeset (GCLR)}.
34: ⊲ O (Mf).
35: end if
36: *******************************
37: best.set←
38: FIND-BEST-SET-LITE

(

vj t(p+1),V(j;(p+1)),

39: D({vj t(p+1)}∪V(j;(p+1));{tp,t(p+1)};S)

)

.

40: ⊲ Algorithm 3,

41: ⊲ TFind-best-set-Lite

(

V ;T ;S;Mf ;~δ
)

.

42: for each node in best.set do
43: ⊲ Θ(|best.set|) = O (Mf).
44: Add an edge in G
45: from that node to vj t(p+1).
46: end for
47: end for
48: end for
49: *******************************
50: return G.
51: end procedure

runtime by a factor of eight for larger datasets: Ds50n and
Ds100n (Figure 4E). An implementation of TGS-Lite with C
is planned for future which is likely to be even faster.

TGS-Lite+ finds a right amount of balance between the
memory efficiency and computational speed while provid-

ing the superior F1-score (Figure 4D). Its low runtime make
it the second fastest algorithm, slightly slower than TGS+
(Figure 4E) but without TGS+’s heavy memory footprint
[14]. The 10-core parallelised execution of TGS-Lite+ (TGS-
Lite+.p10) decreases the runtime further (Figure 4E). How-
ever, there is an interesting exception: for Ds10n, the parallel
execution takes more time than that of the serial execution.
This is because the dataset is so small that the communica-
tion overhead with multiple cores outweighs the reduction
in runtime due to parallelisation. For the larger two datasets,
parallelisation saves time, making the runtime competitive
to that of TGS+. Therefore, the parallel implementation
of TGS-Lite+ can be advantageous when there is a large
number of genes (50+) while the serial implementation is
sufficiently fast for smaller datasets.

Effect of Multicore Parallelisation: This paragraph
studies the effect of the multicore parallelisation on runtime
of TGS-Lite and TGS-Lite+ in more depth. The dataset cho-
sen for this study is Ds100n since it is the largest dataset. For
both the algorithms, the runtime strictly decrease with the
increase in the number of cores (Figure 5). The results with
a single core represent the serial executions, which can be
used as a baseline. Following that, the speed-up with three
and seven cores could be of interest to users with quad-core
and octa-core processors, respectively, since one core can be
left out for monitoring purposes.

Effect of Max Fan-in: In this paragraph, the effect of
the max fan-in parameter on the learning power and speed
of the TGS-Lite and TGS-Lite+ algorithms is studied. The
objective of this study is to set max fan-in for TGS-Lite and
TGS-Lite+ to values higher than 14, which is the largest
value with which TGS and TGS+ is hitherto studied without
any segmentation fault [14]. Dataset Ds100n is chosen for
that purpose since it is the only dataset for which the
maximum number of neighbours in GCLR of both TGS-Lite
and TGS-Lite+ exceeds 14 (Table 3). Therefore, the results
(Figure 6) are obtained by varying max fan-in from 14 to
min(84, 18) = 18. For TGS-Lite, the recall monotonically
increases with the increase in max fan-in; however, the
precision monotonically decreases, causing an upheaval in
F1-scores. On the other hand, TGS-Lite+ demonstrates a
relatively robust performance, since its recall, precision and
F1-score remain unchanged for the given range of max
fan-in. The effect of max fan-in on runtime is found to
be proportional for both the algorithms. This observation
complies with their time complexities.

TABLE 3
Maximum Number of Neighbours of a Gene in GCLR of the TGS-Lite

and TGS-Lite+ algorithms for a given dataset.

Dataset TGS-Lite TGS-LIte+

Ds10n 7 4

Ds50n 33 8

Ds100n 84 18

A Comparison with the DREAM3 Winner: An addi-
tional comparative study is conducted against the perfor-
mance of the winning team’s algorithm (hereafter, ‘BTA’)
in DREAM3 In Silico Network Challenge [27]. Since, BTA
reconstructs a summary GRN, it is compared against the

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/755249doi: bioRxiv preprint

9

� B

�2m �2s

4m 8s

�m 53s
�m 25s

Number of Cores

R
u
n
ti
m
e
�s
ec
)

Number of Cores

TGS-Lite	.mf14TGS-Lite.mf14
R
u
n
ti
m
e
�s
ec
)

8h 4�m �7s

3h 2m �6s

�h �9m �7s
�h 2m 3s

Fig. 5. Effect of the Multicore Parallelisation on the Runtime of TGS-Lite and TGS-Lite+. Dataset Ds100n is used. Max fan-in is set to 14.

R
u
n
ti
m
e
�s
ec
)

1
h
2
m

3
s

1
h
5
7
m

4
1
s

4
h
9
m

8
h
4
4
m

3
5
s

21h 30m 40s

R
u
n
ti
m
e
�s
ec
)

1
m

2
5
s

2
m

3
9
s

5
m

1
6
s

8
m

3
s

14m 6sTGS-Lite.p10 TGS-Lite.p10

� B

C D

TGS-Lite.p10 TGS-Lite.p10

0�114

0�104

0�095

Recall
F1-score
Precision

Recall
F1-score
Precision

0�169
0�175 0�175 0�175

0�187

0�057 0�056 0�054 0�052 0�054

0�034 0�034 0�032 0�031 0�031

Max fan-in Max fan-in

Max fan-in Max fan-in

Fig. 6. Effect of Max Fan-in on the Learning Power (A, B) and Speed (C, D) of the TGS-Lite and TGS-Lite+ algorithms. Dataset Ds100n is used
and number of cores is set to 10 for multicore parallelisation.

rolled GRNs of {TGS-Lite, TGS-Lite+}. The comparison
shows that BTA makes the highest true positive predictions
while also conceding the highest false positives. On the
contrary, TGS-Lite+ provides the best balance between true
and false positives; moreover, it achieves the lowest runtime.
This study strengthens the superiority of TGS-Lite+ (see
Section 4.9 of the supplementary document for details).

5.2 Results with a Real Microarray Dataset

The real microarray dataset used in this study is known as
DmLc3 [14]. It is originally produced by Arbeitman et al.
[28]. DmLc3 contains gene expressions of the Drosophila
melanogaster (Dm; fruit fly) life cycle. It is comprised of
four sub-datasets corresponding to four Dm life cycle stages:
DmLc3E (embryonic stage), DmLc3L (larval stage), DmLc3P
(pupal stage) and DmLc3A (adulthood) (Table 4). Each sub-
dataset contains the same 588 genes known to be involved

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/755249doi: bioRxiv preprint

10

TABLE 4
A Summary of the DmLc3 Sub-datasets. V = number of genes. T =

number of time points. S = number of time series.

Sub-dataset V T S

DmLc3E 588 6 5

DmLc3L 588 2 5

DmLc3P 588 3 6

DmLc3A 588 2 4

in the developmental process of Dm according to their
Gene Ontology (GO) annotations [29]. These sub-datasets
are used to study the learning powers of TGS and TGS+ in
Pyne et al. [14].

Evaluation Strategy: Since true GRNs are not known,
the authors follow the same strategy as Pyne et al. [14] to
evaluate the predicted GRNs. The strategy is based on a
chosen subset of 25 genes that are known to play regulatory
roles in Dm development. Hitherto experimentally verified
knowledge about these genes is retrieved from TRANSFAC
Public Database version 7.0 [30], which is claimed to be
the gold standard in the area of transcriptional regulation
[31]. The strategy is to find out whether these genes are
predicted to have regulatory roles (at least one regulatee) in
the known stages and whether they are predicted to regulate
their known regulatees, if any.

Selection of Max Fan-in: Pyne et al. [14] restricts the
max fan-in to 14 to avoid segmentation faults for TGS and
TGS+. In this study, the authors set the max fan-in to 15
since TGS-Lite and TGS-Lite+ do not require that restriction.
The primary objective of this study is to find out whether
TGS-Lite.mf15 can identify more true edges than TGS.mf14
does. The secondary objective is to assess whether TGS-
Lite+.mf15 can identify as many true edges as TGS-Lite.mf15
while incurring less false positives. However, it must be
noted that the prior knowledge only consists of a subset
of true edges. Hence, it is not possible to mark false positive
predictions. Therefore, the secondary objective is revised to
assess whether TGS-Lite+.mf15 can identify as many true
edges as TGS-Lite.mf15 while incurring a less number of
potentially false positive edges. Some of the findings are dis-
cussed below (see Table 3.1 of the supplementary document
for the complete set of findings).

Gene ‘Antp’: ‘Antp’ is known to be essential for
defining embryonal segment identity. In the embryonic
stage, TGS-Lite.mf15 identifies three regulatees of ‘Antp’
— ‘exu’, ‘opa’ and ‘aft’ — in addition to those identified
by TGS.mf14. Identification of these additional regulatees
is a potential true positive prediction since the regula-
tees are co-localized with ‘Antp’ in nucleus according to
their Gene Ontology (GO) annotations. Especially, ‘opa’
is highly likely to be a regulatee of ‘Antp’ since ‘opa’
acts as a pair-rule gene (a gene involved in the develop-
ment of segmented embryos) during early embryogenesis;
see Sections ‘Gene Snapshot’ and ‘GO Summary Ribbons’
of ‘Antp’ (http://flybase.org/reports/FBgn0260642), ‘exu’
(http://flybase.org/reports/FBgn0000615), ‘opa’ (http://
flybase.org/reports/FBgn0003002) and ‘aft’ (http://flybase.
org/reports/FBgn0026309). TGS-Lite+.mf15 also agrees with
this prediction, improving confidence in ‘opa’ to be a direct

regulatee of ‘Antp’. The experimental validation of this
prediction can be considered as a novel opportunity.

Gene ‘eve’: ‘eve’ is known to contribute to the de-
velopment of the central nervous system. The regulatees
of ‘eve’ predicted by TGS-Lite.mf15 agree with those of
TGS.mf14 with one exception: ‘capu’ is replaced with ‘mmy’
as a regulatee of ‘eve’ in the embryonic stage. The ‘eve’
to ‘mmy’ edge is potentially a true positive prediction
since ‘mmy’ is known to regulate axon guidance, which
is an essential part of neural development. Hence, it is
highly likely that there is a crosstalk between ‘eve’ and
‘mmy’; see Section ‘Gene Snapshot’ of ‘eve’ (http://flybase.
org/reports/FBgn0000606) and ‘mmy’ (http://flybase.org/
reports/FBgn0259749). On the other hand, the rejection of
‘eve’ to ‘capu’ edge might be a false negative prediction
since ‘eve’ is also known to repress segment polarity genes
whereas ‘capu’ is known to have necessary functions in
polarity establishment; see Sections ‘Gene Snapshot’ of ‘eve’
and ‘capu’ (http://flybase.org/reports/FBgn0000256). TGS-
Lite+.mf15 misses both ‘mmy’ and ‘capu’.

Gene ‘ey’: ‘ey’ is known to be a master regulator for eye
development [32]. For this gene, an interesting observation
is made in the larval stage where TGS.mf14, TGS-Lite.mf15
and TGS-Lite+.mf15 all agree that ‘ey’ regulates itself. There
are hitherto no experimental evidences of protein ‘ey’ bind-
ing to the TF-binding site of gene ‘ey’. However, there
is an experimental evidence of protein ‘ey’ autoregulating
its binding to its target proteins. This autoregulation takes
place through interactions of two distinct DNA-binding
domains of protein ‘ey’: Paired Domain (PD) and Home-
odomain (HD). ‘ey’ PD is essential for the expressions of
key TFs in retinal development. Tanaka-Matakatsu et al. [33]
suggest that ‘ey’ HD can physically interact with ‘ey’ PD, in-
hibiting ‘ey’ PD’s ability to bind to its targets. Given that ‘ey’
is a master regulator and autoregulates itself at the Protein-
Protein Interaction (PPI) level, the authors hypothesize that
‘ey’ autoregulates itself also at the Protein-DNA Interaction
(PDI) level. The experimental verification of this hypothesis
presents another novel opportunity for future.

Gene ‘prd’: ‘prd’ plays a regulatory role in the anterior-
posterior segmentation of embryos and gene ‘eve’ is known
to be one of its regulatees. Like TGS.mf14, TGS-Lite.mf15
correctly identifies ‘eve’ as a regulatee of ‘prd’ in the embry-
onic stage. However, TGS-Lite+.mf15 misses this regulatee.
Moreover, TGS-Lite.mf15 predicts ‘capu’ to be a regulatee
of ‘prd’ in the same stage whereas TGS.mf14 does not
make that prediction. Since ‘prd’ and ‘capu’ are known
to be essential for developing male and female fertility,
respectively, they are likely to have an inhibitory relation-
ship between them; see Section ‘Gene Snapshot’ of ‘prd’
(http://flybase.org/reports/FBgn0003145) and ‘capu’ (http:
//flybase.org/reports/FBgn0000256). If that is the case,
then it is a true positive prediction on TGS-Lite.mf15’s part.
TGS-Lite+.mf15 misses this potential regulatee as well. On
the other hand, TGS-Lite.mf15 predicts seven more regula-
tees than TGS-Lite+.mf15 in the embryonic stage. No sup-
porting information is found for these regulatees, suggest-
ing that TGS-Lite+.mf15 correctly rejects these potentially
false positive edges.

Summary of Findings: This study demonstrates that
TGS-Lite.mf15 predicts potentially more true edges com-

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/755249doi: bioRxiv preprint

11

pared to that of TGS.mf14. On the other hand, the set
of predicted edges by TGS-Lite+.mf15 is almost a proper
subset of that of TGS-Lite.mf15, resulting in a more precise
prediction with less true positives at the benefit of a less
number of potentially false positive edges.

Comparison with Alternative Algorithms: {TVDBN-
0, TVDBN-bino-hard, TVDBN-bino-soft} fail to process any
DmLc3 sub-dataset with the given memory. ARTIVA suc-
ceeds with DmLc3E and fails for other sub-datasets, poten-
tially due to implementation issues. A comparison between
{ARTIVA, TGS-Lite.mf15, TGS-Lite+.mf15} on DmLc3E re-
establishes TGS-Lite+’s superiority in terms of speed, and
balancing false with true positives (see Section 4.12 of the
supplementary document for details).

6 SUMMARY AND FUTURE WORK

In this paper, two novels algorithms, namely TGS-Lite and
TGS-Lite+, are proposed to reconstruct time-varying GRNs
underlying a given time series gene expression dataset. It
is assumed that the given dataset is complete (no miss-
ing values) and has multiple time series. The novelty of
the proposed algorithms is that they combine three de-
sired properties – flexibility, time-efficiency and memory-
efficiency – in a single framework. Among the prior state-
of-the-art algorithms, it is observed that the algorithms that
offer state-of-the-art reconstruction power follow flexible
frameworks where the ‘smoothly time-varying assumption’
is not enforced on the GRN structures. By employing such
a flexible framework, the proposed algorithms are able to
offer state-of-the-art reconstruction power in regard to three
benchmark datasets. Moreover, they offer such power at
state-of-the-art time complexities. It can be noted that there
are two prior state-of-the-art algorithms, namely TGS and
TGS+, that provide the same reconstruction power and time
complexities. However, their memory-requirements grow
exponentially with the number of genes; that of the pro-
posed algorithms grow only linearly.

While both of the proposed algorithms demonstrate
state-of-the-art reconstruction power, their strengths lie in
different areas. TGS-Lite specialises in true positive detec-
tion power, making it suitable for applications targeted to
discoveries of novel biomarkers. On the other hand, TGS-
Lite+ sacrifices a reasonable amount of true positive detec-
tion power to gain a considerable amount of false positive
rejection power. Thus, it specializes in overall correctness
(F1-score), making it state-of-the-art algorithm for recon-
structing time-varying GRNs as correctly as possible and as
efficiently as possible. The real-life applicability of TGS-Lite
and TGS-Lite+ is demonstrated with a D. melanogaster life
cycle dataset. Both the algorithms reconstruct meaningful
sequences of time-varying GRNs that help in explaining the
developmental process of D. melanogaster through different
stages of life.

The flexible framework underlying the proposed algo-
rithms decomposes the reconstruction problem into atomic
problems of identifying the regulators of every gene at every
time interval. These atomic problems are solved indepen-
dently of each other without imposing any global constraint,
thus providing flexibility. For solving each atomic problem,
a two-step learning strategy is deployed. In the first step, a

set of candidate regulators is shortlisted for the concerned
gene. In the final step, the highest scoring (w.r.t. the BIC
scoring function) subset of the shortlisted candidate set is
chosen as the final set of regulators for that gene during
the corresponding time interval. During this step, every
subset is generated in real-time, immediately before its score
needs to be calculated, and removed immediately after the
score is calculated. Thus, the proposed algorithms achieve a
significantly higher memory-efficiency than the prior state-
of-the-art algorithms that simultaneously hold all the sub-
sets and their scores in memory. On the other hand, the
shortlisting strategy in the first step significantly reduces
the time complexity of the second step, thus providing the
desired time-efficiency.

Nevertheless, there are opportunities for further im-
provements. The shortlist of candidate regulators which is
prepared for each gene in the first step, is time-invariant.
Therefore, the true regulators, which are active across a
small number of time intervals, may not get shortlisted.
To mitigate this issue, a novel shortlisting strategy can be
designed to accommodate time-interval-specific shortlists
for each gene. Moreover, the proposed shortlisting strategy
requires the data to be discretised, which may incur a
loss of information. The same issue is true for the sec-
ond step which requires discretised data for calculating
the BIC scores. Therefore, devising novel shortlisting and
scoring strategies that can deal with continuous data re-
mains another challenge. Next challenge lies in enhanc-
ing reconstruction power further by integrating time-series
gene expression data with auxiliary data, such as knock-
out gene expressions [27] and time-series protein expres-
sions [34]. Moreover, recently proposed deep learning-based
GRN analysis methods can be explored in the downstream
analysis of reconstructed GRNs such as discovering novel
biomarkers, functional communities of genes etc. ([35],
[36], [37]). Thus, the dedicated pursuit of a more powerful
framework is driven by the hope that its marriage with high-
throughput measurement techniques will pave the way for a
better understanding of temporal biological processes such
as development and pathogenesis.

ACKNOWLEDGEMENTS

The authors acknowledge the Department of Biotechnol-
ogy, Govt of India for the financial support for the project
BT/COE/34/SP28408/2018, and IITG for MHRD Fellow-
ships to SP.

REFERENCES

[1] G. Sanguinetti and V. A. Huynh-Thu, Eds., Gene Regulatory
Networks: Methods and Protocols, ser. Methods in Molecular Biology
book series. Humana Press, 2019, vol. 1883. [Online]. Available:
https://doi.org/10.1007/978-1-4939-8882-2

[2] U. Alon, An introduction to systems biology: design principles of
biological circuits. CRC press, 2006.

[3] M. Grzegorczyk and D. Husmeier, “Improvements in the re-
construction of time-varying gene regulatory networks: dynamic
programming and regularization by information sharing among
genes,” Bioinformatics, vol. 27, no. 5, pp. 693–699, 2011.

[4] J. Xiong and T. Zhou, “A kalman-filter based approach to identifi-
cation of time-varying gene regulatory networks,” PloS one, vol. 8,
no. 10, p. e74571, 2013.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/755249doi: bioRxiv preprint

12

[5] N. Friedman, K. Murphy, and S. Russell, “Learning the structure
of dynamic probabilistic networks,” in Proceedings of the Fourteenth
Conference Annual Conference on Uncertainty in Artificial Intelligence
(UAI-98), San Francisco, CA, 1998, pp. 139–147.

[6] J. W. Robinson and A. J. Hartemink, “Non-stationary dynamic
bayesian networks,” in Advances in Neural Information Processing
Systems 21, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
Eds., 2008, pp. 1369–1376.

[7] M. Grzegorczyk and D. Husmeier, “Non-stationary continuous
dynamic bayesian networks,” in Advances in Neural Information
Processing Systems 22, Y. Bengio, D. Schuurmans, J. D. Lafferty,
C. K. I. Williams, and A. Culotta, Eds., 2009, pp. 682–690.

[8] S. Lèbre, J. Becq, F. Devaux, M. P. Stumpf, and G. Lelandais, “Sta-
tistical inference of the time-varying structure of gene-regulation
networks,” BMC Systems Biology, vol. 4, no. 1, p. 130, Sep 2010.

[9] F. Dondelinger, S. Lèbre, and D. Husmeier, “Non-homogeneous
dynamic bayesian networks with bayesian regularization for in-
ferring gene regulatory networks with gradually time-varying
structure,” Machine Learning, vol. 90, no. 2, pp. 191–230, 2013.

[10] S.-C. Chan, L. Zhang, H.-C. Wu, and K.-M. Tsui, “A maximum
a posteriori probability and time-varying approach for inferring
gene regulatory networks from time course gene microarray data,”
IEEE/ACM transactions on computational biology and bioinformatics,
vol. 12, no. 1, pp. 123–135, 2015.

[11] Y. H. Chang, J. W. Gray, and C. J. Tomlin, “Exact reconstruction
of gene regulatory networks using compressive sensing,” BMC
bioinformatics, vol. 15, no. 1, p. 400, 2014.

[12] Y. Nie, L. Wang, and J. Cao, “Estimating time-varying directed
gene regulation networks,” Biometrics, 2017.

[13] L. Zhang, H.-C. Wu, C.-H. Ho, and S.-C. Chan, “A multi-laplacian
prior and augmented lagrangian approach to the exploratory anal-
ysis of time-varying gene and transcriptional regulatory networks
for gene microarray data,” IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, 2018.

[14] S. Pyne, A. R. Kumar, and A. Anand, “Rapid reconstruction of
time-varying gene regulatory networks,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, pp. 1–1, 2018, early
access.

[15] N. Jahnsson, B. Malone, and P. Myllymäki, “Duplicate detection
for bayesian network structure learning,” New Generation Comput-
ing, vol. 35, no. 1, pp. 47–67, Jan 2017.

[16] T. Silander and P. Myllymäki, “A simple approach for finding the
globally optimal bayesian network structure,” in Proceedings of the
Twenty-Second Conference on Uncertainty in Artificial Intelligence, ser.
UAI’06, 2006, pp. 445–452.

[17] V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts, “Infer-
ring regulatory networks from expression data using tree-based
methods,” PLOS ONE, vol. 5, no. 9, pp. 1–10, 09 2010.

[18] X. Zhang, K. Liu, Z.-P. Liu, B. Duval, J.-M. Richer, X.-M. Zhao,
J.-K. Hao, and L. Chen, “Narromi: a noise and redundancy re-
duction technique improves accuracy of gene regulatory network
inference,” Bioinformatics, vol. 29, no. 1, pp. 106–113, 2013.

[19] F. Liu, S.-W. Zhang, W.-F. Guo, Z.-G. Wei, and L. Chen, “Inference
of gene regulatory network based on local bayesian networks,”
PLOS Computational Biology, vol. 12, no. 8, pp. 1–17, 08 2016.

[20] F. Markowetz and R. Spang, “Inferring cellular networks – a
review,” BMC Bioinformatics, vol. 8, no. 6, p. S5, Sep 2007.

[21] DREAM3, “Dream3 in silico network challenge,” last accessed:
May 15, 2017. [Online]. Available: https://www.synapse.org/#!
Synapse:syn2853594/wiki/71567

[22] D. Marbach, R. J. Prill, T. Schaffter, C. Mattiussi, D. Floreano, and
G. Stolovitzky, “Revealing strengths and weaknesses of methods
for gene network inference,” PNAS, vol. 107, no. 14, pp. 6286–6291,
2010.

[23] D. Marbach, T. Schaffter, C. Mattiussi, and D. Floreano, “Generat-
ing Realistic In Silico Gene Networks for Performance Assessment
of Reverse Engineering Methods,” Journal of Computational Biology,
vol. 16, no. 2, pp. 229–239, 2009.

[24] R. J. Prill, D. Marbach, J. Saez-Rodriguez, P. K. Sorger, L. G. Alex-
opoulos, X. Xue, N. D. Clarke, G. Altan-Bonnet, and G. Stolovitzky,
“Towards a rigorous assessment of systems biology models: The
dream3 challenges,” PLOS ONE, vol. 5, no. 2, pp. 1–18, 02 2010.

[25] R Development Core Team, R: A Language and Environment for Sta-
tistical Computing, R Foundation for Statistical Computing, Vienna,
Austria, 2008.

[26] A. Silberschatz, P. B. Galvin, and J. L. Peterson, Operating system
concepts. Addison-Wesley,, 1991.

[27] K. Y. Yip, R. P. Alexander, K.-K. Yan, and M. Gerstein, “Improved
reconstruction of in silico gene regulatory networks by integrating
knockout and perturbation data,” PloS one, vol. 5, no. 1, p. e8121,
2010.

[28] M. N. Arbeitman, E. E. M. Furlong, F. Imam, E. Johnson, B. H.
Null, B. S. Baker, M. A. Krasnow, M. P. Scott, R. W. Davis, and
K. P. White, “Gene expression during the life cycle of drosophila
melanogaster,” Science, vol. 297, no. 5590, pp. 2270–2275, 2002.

[29] L. Song, M. Kolar, and E. P. Xing, “Keller: estimating time-varying
interactions between genes,” Bioinformatics, vol. 25, no. 12, pp.
i128–i136, 2009.

[30] B. GmbH, “Transfac public database version 7.0,” the user
requires to create a free-of-cost account to access the database.
Last accessed: Oct 10, 2017. [Online]. Available: http://
gene-regulation.com/cgi-bin/pub/databases/transfac/search.cgi

[31] “Genexplain transfac R©,” As of Oct 10, 2017, the webpage
claims that “TRANSFAC R© is the database of eukaryotic
transcription factors, their genomic binding sites and DNA-
binding profiles. Dating back to a very early compilation,
it has been carefully maintained and curated since then
and became the gold standard in the field, which can be
made use of when applying the geneXplain platform (http:
//genexplain.com/genexplain-platform).”. [Online]. Available:
http://genexplain.com/transfac/

[32] G. Halder, P. Callaerts, and W. Gehring, “Induction of ectopic
eyes by targeted expression of the eyeless gene in drosophila,”
Science, vol. 267, no. 5205, pp. 1788–1792, 1995. [Online]. Available:
http://science.sciencemag.org/content/267/5205/1788

[33] M. Tanaka-Matakatsu, J. Miller, and W. Du, “The homeodomain
of eyeless regulates cell growth and antagonizes the paired
domain-dependent retinal differentiation function,” Protein and
cell, vol. 6, no. 1, p. 6878, January 2015. [Online]. Available:
http://europepmc.org/articles/PMC4286722

[34] S. Jain, J. Arrais, N. J. Venkatachari, V. Ayyavoo, and Z. Bar-Joseph,
“Reconstructing the temporal progression of hiv-1 immune re-
sponse pathways,” Bioinformatics, vol. 32, no. 12, pp. i253–i261,
2016.

[35] Y. Li, C. Huang, L. Ding, Z. Li, Y. Pan, and X. Gao, “Deep learning
in bioinformatics: Introduction, application, and perspective in the
big data era,” Methods, 2019.

[36] F. A. Wolf, P. Angerer, and F. J. Theis, “Scanpy: large-scale single-
cell gene expression data analysis,” Genome biology, vol. 19, no. 1,
p. 15, 2018.

[37] Y. Li, H. Kuwahara, P. Yang, L. Song, and X. Gao, “Pgcn: Disease
gene prioritization by disease and gene embedding through graph
convolutional neural networks,” bioRxiv, p. 532226, 2019.

Saptarshi Pyne is a PhD student in Dr Ashish
Anand’s research group. His research area is
temporal progression modelling of biological
systems. Saptarshi believes in a future where
biomolecular signals are measured in-vivo and
analysed in near real time.
Website: http://sap01.github.io/

Ashish Anand is an associate professor at
the Department of Computer Science and En-
gineering, Indian Institute of Technology Guwa-
hati (IITG), India. Earlier, he was a member
of the European Consortium, BaSySBio at the
Systems Biology Lab, Institut Pasteur, Paris.
His main research area is temporal progression
modelling of biological systems.
Website: http://iitg.ac.in/anand.ashish/

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 5, 2019. ; https://doi.org/10.1101/755249doi: bioRxiv preprint

