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Quasi-stable Localized Excitations in the β-Fermi Pasta Ulam Tsingou System
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The lifetimes of localized nonlinear modes in both the β-Fermi-Pasta-Ulam-Tsingou (β-FPUT)
chain and a cubic β-FPUT lattice are studied as functions of perturbation amplitude, and by
extension, the relative strength of the nonlinear interactions compared to the linear part. We
first recover the well known result that localized nonlinear excitations (LNEs) produced by a bond
squeeze can be reduced to an approximate two-frequency solution and then show that the nonlinear
term in the potential can lead to the production of secondary frequencies within the phonon band.
This can affect the stability and lifetime of the LNE by facilitating interactions between the LNE
and a low energy acoustic background which can be regarded as “noise” in the system. In the one
dimensional FPUT chain, the LNE is stabilized by low energy acoustic emissions at early times;
in some cases allowing for lifetimes several orders of magnitude larger than the oscillation period.
The longest lived LNEs are found to satisfy the parameter dependence A√

β ≈ 1.1 where β is the
relative nonlinear strength and A is the displacement amplitude of the center particles in the LNE.
In the cubic FPUT lattice, the LNE lifetime T decreases rapidly with increasing amplitude A and
is well described by the double log relationship log

10
log

10
(T ) ≈ −(0.15± 0.01)A√

β+(0.62± 0.02).

PACS numbers:

I. INTRODUCTION

The formation of highly localized bundles of energy
seems to be a universal feature of discrete lattices with
nonlinear couplings [1]. These energy packets, termed
LNEs, likely play a fundamental role in the transmission
of energy through anharmonic crystals and polymers as
well as the long-term relaxation of the system to thermal
equilibrium. LNEs have been observed experimentally in
micromechanical oscillator arrays with lifetimes that are
several thousand times larger than their oscillation pe-
riods [2]. LNEs appear across a broad range of systems
where both nonlinearity and discreteness contribute to
the system dynamics, some examples include microme-
chanical oscillator arrays [2], antiferromagnetic spin lat-
tices [3], organic conducting polymers [4], halide-bridged
transition metal compounds [5], high-temperature lattice
excitations in NaI [6], protein conformational dynamics
[7–10], site specific enzymatic activity [11, 12], and Bose-
Einstein condensates [13].
Unfortunately, a complete understanding of how LNEs

behave throughout the dynamical evolution of a nonlin-
ear lattice is yet to be developed [14]. Prior studies have
generally focused on finding the envelope function of a
breather solution to probe the dynamics of localized ex-
citations [15–19]. These breather solutions are a spe-
cial class of LNEs where the motion of the system is ex-
actly periodic, meaning that the set of frequencies present
within the breather are commensurate. This allows the
LNE solution to be described in terms of trigonomet-
ric or elliptic functions where the resulting behavior is
closely related to the phenomena of localized nonlinear
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modes. However, there does not appear to be a funda-
mental requirement for LNEs in general to be exactly
periodic. This lack of periodicity can complicate the sta-
bility analysis of LNEs since the standard approaches
such as Floquet theory test the stability of perturbed
periodic solutions. Furthermore, it is likely that the ab-
sence of exactly periodic motion is closely related to the
eventual break down of LNEs and approach to thermal
equilibrium observed in simulations on finite lattices.
Considering these points, we will forgo searching for ex-

act breather solutions here and instead focus our study
on LNEs created by simple initial conditions, such as
a bond squeeze, which can produce long lived excita-
tions that are not exactly periodic and eventually break
down as the system approaches equilibrium. It should
be stressed however, that instability does not imply that
the LNEs are short-lived. An interesting feature of LNEs
is their ability to maintain energy localization on time
scales many orders of magnitude longer than the oscilla-
tion period [2, 20].
Our goal is to both describe the long-term dynamics of

the LNEs observed as functions of the system parameters
and provide insight into the underlying physical mecha-
nisms which appear to control the lifetime of the LNEs
and hence how quickly the system approaches thermal
equilibrium. We will use the well known β-FPUT chain
for our model system since it defines both harmonic and
nonlinear potential terms in a simple manner. Specifi-
cally, the model consists of a one dimensional harmonic
oscillator chain with a symmetric fourth order potential
added on which can be understood as the first two terms
of a power series expansion of a general symmetric non-
linear potential. The long-term dynamics of the LNEs
are explored by numerical simulations. We use both the
NVE integrator in LAMMPS [21] and the 5th-order Gear
integrator in PULSEDYN [22] to run our simulations.
This redundancy can help minimize the possibility that



a particular solver is giving incorrect results. We find
that both methods give similar results for the LNE life-
times, amplitudes, and frequencies studied here.

II. THE MODEL

By appropriately scaling time, the equations of motion
for the system can be written in the following simplified
form,

ẍn = xn+1−2xn+xn−1+β
[

(xn+1 − xn)
3
+ (xn−1 − xn)

3
]

,

(1)
where the parameter β sets the relative strength of the
nonlinearity. Throughout this work, we will be concerned
with the dynamics of LNEs where the energy is concen-
trated among only a few particles; having mode profiles
with alternating sign. It is therefore beneficial to intro-
duce the parameter rn = (−1)n

√
β (xn+1 − xn) which

combined with Eq. (1) produces,

r̈n + rn+1 + 2rn + rn−1 + r3n+1 + 2r3n + r3n−1 = 0. (2)

LNEs can be generated by either waiting for them to
arise naturally during the dynamical evolution of a non-
equilibrium state [23, 24] or by initiating them from spe-
cific initial conditions [14, 19, 20]. We choose the latter,
following the referenced works, by either displacing a set
of chosen particles from equilibrium or by giving them an
initial velocity perturbation, while in both cases, the rest
of the chain is unperturbed. The resulting LNE will be
even-parity if x1(0) = −x0(0) = A/(2

√
β) with r0(0) =

2r1(0) = 2r−1(0) = A or ẋ1(0) = −ẋ0(0) = V/(2
√
β)

with ṙ0(0) = 2ṙ1(0) = 2ṙ−1(0) = V , and likewise will
be odd-parity if x0(0) = A/

√
β with r−1(0) = r0(0) = A

or ẋ0(0) = V/
√
β with ṙ−1(0) = ṙ0(0) = V . Here, we

have set n = 0 corresponding to the position of the LNE
where A and V are constants related to the initial am-
plitude and velocity respectively.
We find via dynamical simulations [22] that the LNEs

excited using the initial conditions described above tend
to consist of two major frequencies stemming from the
effective two degrees of freedom afforded to the LNE [17,
25] along with a collection of higher harmonics. The
long lived nature of the LNE implies that the system
is behaving approximately as a reduced, two degree of
freedom system, at least until the onset of delocalization.
Of course, this simplification can only be taken so far.
The LNE does radiate some energy into the rest of the
chain, and it is this radiation, even if it is weak, that
ultimately causes the LNE to break down.

Motivated by the numerical results, we consider the
motion of the LNE to consist of two dominant frequen-
cies ωa and ωb and that the LNE is confined to r0 and its
immediate neighbors. The even and odd parity motion
of the LNE considered under these assumptions is illus-
trated in Fig. 1. The motion of the even-parity LNE can
then be written as,





r−1

r0
r1



 =





a1 b1
a0 b0
a1 b1





[

cos(ωat)
cos(ωbt)

]

, (3)

while for the the odd-parity LNE,







r−2

r−1

r0
r1






=







a1 b1
a0 b0
a0 b0
a1 b1







[

cos(ωat)
cos(ωbt)

]

. (4)

We have ignored possible phase shifts in Eqs. (3 & 4)
since they appear to be quite small in our simulations
and add complexity to the solution which does not lead
to fundamentally different results. We generally consider
ωa as the stronger and higher frequency in the center
bond at r0 with ωb as the weaker and lower frequency.
In both cases, the symmetry of the system reduces the
number of coefficients to four. The primary difference is
that the even-parity LNEs are (particle) bond centered in
(r) x while odd-parity LNEs are (bond) particle centered
in (r) x.
Inserting Eqs. (3 & 4) into Eq. (2) gives,

Even Parity LNE

n = −1 n = 0 n = 1 n = 2

x−1 ≈ 0 x2 ≈ 0

Odd Parity LNE

n = −2 n = −1 n = 0 n = 1 n = 2

x−2 ≈ 0 x2 ≈ 0

FIG. 1: Approximate motion of an even and odd parity LNE.
The arrows above the particles show the direction of the in-
stantaneous motion. Particles with no arrows are considered
outside the LNE and approximated as being at rest.

[

2a1 +
(

2− ω2
a

)

a0
]

cos(ωat) +
[

2b1 +
(

2− ω2
b

)

b0
]

cos(ωbt)+

2 [a1 cos(ωat) + b1 cos(ωbt)]
3 + 2 [a0 cos(ωat) + b0 cos(ωbt)]

3 = 0,
(5)
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[

a1 +
(

3− ω2
a

)

a0
]

cos(ωat) +
[

b1 +
(

3− ω2
b

)

b0
]

cos(ωbt)+

[a1 cos(ωat) + b1 cos(ωbt)]
3
+ 3 [a0 cos(ωat) + b0 cos(ωbt)]

3
= 0.

(6)

The cubic terms can be expanded into their different frequency components using the relation,

[an cos(ωat) + bn cos(ωbt)]
3 =

1

4
a3n cos(3ωat) +

1

4
b3n cos(3ωbt) +

(

3

4
a3n +

3

2
anb

2
n

)

cos(ωat) +

(

3

4
b3n +

3

2
a2nbn

)

cos(ωbt)+

3

4
anb

2
n [cos([ωa − 2ωb]t) + cos([ωa + 2ωb]t)] +

3

4
a2nbn [cos([ωb − 2ωa]t) + cos([ωb + 2ωa]t)] .

(7)

For now, we will restrict our attention to the main fre-
quencies ωa and ωb by appealing to the rotating wave
approximation (RWA) where the contribution to the dy-
namics from frequencies beyond a predetermined thresh-
old are considered negligible [16, 26, 27]. Considering
that our initial guess for the dynamics only contains two
frequencies, it is reasonable to disregard higher multi-
ples of these frequencies since doing otherwise would im-
ply that the proposed ansatz is insufficient. To insure
harmonic balance is maintained, the coefficients for the
even-parity LNE must satisfy,

2a1 + (2− ω2
a)a0 +

3

2

(

a31 + a30 + 2a1b
2
1 + 2a0b

2
0

)

= 0,

(8a)

2b1 + (2− ω2
b )b0 +

3

2

(

b31 + b30 + 2a21b1 + 2a20b0
)

= 0,

(8b)

while for the odd-parity LNE,

a1 + (3− ω2
a)a0 +

3

4

(

a31 + 3a30 + 2a1b
2
1 + 6a0b

2
0

)

= 0,

(9a)

b1 + (3 − ω2
b )b0 +

3

4

(

b31 + 3b30 + 2a21b1 + 6a20b0
)

= 0.

(9b)

For notational convenience, we introduce the vari-
ables Λa+ = 2

3 (2 − ω2
a)a0 + a30 + 2a0b

2
0 and Λb+ =

2
3 (2 − ω2

b )b0 + b30 + 2a20b0 for the even parity LNEs and

Λa− = 4
3 (3 − ω2

a)a0 + 3
(

a30 + 2a0b
2
0

)

and Λb− = 4
3 (3 −

ω2
b )b0 + 3

(

b30 + 2a20b0
)

for the odd-parity LNEs, which
depend only on the parameters in r0. This reduces the
set of Eqs. (8 & 9) to the following pair of equations
which are valid for both types of LNEs:

a31 + 2

(

2

3
+ b21

)

a1 + Λa± = 0, (10a)

b31 + 2

(

2

3
+ a21

)

b1 + Λb± = 0. (10b)

This yields the amplitudes at the neighboring sites,

a1 =

√

−Λb± + b31
2b1

− 2

3
, (11a)

b1 =

√

−Λa± + a31
2a1

− 2

3
. (11b)

Note that only the positive solutions are taken in Eqs.
(11a &11b) since an & bn are considered positive num-
bers; this removes two solutions from the set of cubic
equations (10a & 10b).

At this point we should note that since a1 and b1 must
be real, Eqs. (11a & 11b) place a constraint on the al-
lowed frequencies and amplitudes of the LNE. This can
be combined with another constraint, where the frequen-
cies ωa and ωb must be above the phonon band, to give
the minimum LNE amplitude for maintaining energy lo-
calization. The phonon band for Eq. (1) spans the fre-
quencies from 0 to 2 and is fixed since the linear strength
is scaled to one. The upper frequency limit appears due
to the discreteness of the system where higher frequencies
would correspond to modes with wave numbers smaller
than the particle spacing. We see from numerical simu-
lations [22] that as the amplitude of the LNE is lowered,
the lower frequency ωb skims the top of the phonon band;
eventually becoming indistinguishable from ωa as the up-
per frequency likewise approaches the phonon band. This
leads to the inequality,

Λa± ≤ −a31 −
4

3
a1. (12)

For the even-parity LNE, inserting the initial condition
r0(0) = 2r1(0) = A into Eqs. (3 & 12) gives a minimum
amplitude of amin(+) =

4
3
√
3
, Repeating this for the odd-

partiy LNE gives a minimum amplitude of amin(−) =
2
3 . In the context of Eq. (1), the minimum energy of

the even-parity (odd-parity) LNE is 44
81 (5281 ). This shows

that even-parity LNEs generally require less energy to
excite than odd-parity LNEs, and helps to justify their
improved stability over their odd-parity counterparts [20,
23, 28].

Returning to Eqs. (11a & 11b), the amplitudes can be
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decoupled to produce the following equations for a1 & b1:

(

3

4
a31 +

1

3
a1 −

Λa±
4

)2 (

2a31 +
8

3
a1 + 2Λa±

)

+ Λ2
b±a

3
1 = 0,

(13)
(

3

4
b31 +

1

3
b1 −

Λb±
4

)2 (

2b31 +
8

3
b1 + 2Λb±

)

+ Λ2
a±b

3
1 = 0.

(14)

Eqs. (13 & 14) can be solved numerically for a known r0
to give the motion of the oscillator adjacent to the LNE
at r1. For example, we consider an even-parity LNE ini-
tiated by the perturbation r0(0) = 1 where the scaling
for r suggests that the linear and nonlinear forces are
commensurate at this amplitude. The LNE shows mo-
tion in the central bond corresponding to Eq. (3) with
a0 ≈ 0.64, b0 ≈ 0.058, ωa ≈ 2.160, and ωb ≈ 2.005.
The solution to Eqs. (13 & 14) with those parameters
is a1 ≈ 0.54 and b1 ≈ 0.02. A comparison between the
numerical solution and predicted motion of the neighbor-
ing oscillator is shown in Fig. 2. We see that at early
times the agreement is poor as the neighboring oscilla-
tor which was initially at rest tries to synchronize with
the perturbed center bond. This transient period lasts
for about 20 units of time, after which, the LNE settles
into its long-term quasi-periodic motion. The long-term
motion is well described by Eq. (3) using the coefficients
found from Eqs. (13 & 14) and captures a characteristic
beating that we commonly observe in our simulations of
LNEs. The agreement between the analytical and numer-
ical results help assure us that the assumptions leading
up to Eqs. (13 & 14) are reasonable. Similar results
were also reported in [29] where the LNE is considered
to be a composition of a stationary and moving breather.
This interpretation is also consistent with the same beat-
ing phenomenon seen in Fig. 2 as the moving breather
oscillates back and forth within the LNE.

III. LNE EMISSIONS AND STABILITY

Since the LNE is not an exact breather solution as
already discussed, some energy from the LNE will be
exchanged with the rest of the chain. This energy will
generally be much smaller than that contained within the
LNE due to its inherent localization properties. The na-
ture of the energy emissions from the LNE is determined
by the strength of the excitation. Weakly excited LNEs
will produce lower energy excitations in the neighboring
oscillators such that the linear terms in Eq. (2) will dom-
inate the dynamics. Hence these emissions are expected
to be primarily acoustic in nature. Conversely, strongly
excited LNEs will produce higher energy emissions such
that the nonlinear terms in Eq. (2) will become more
important. In these situations, we expect to see solitary
waves and other nonlinear objects become more prevalent
in the emission dynamics [14].

0 10 20 30 40 50 60 70 80 90 100

Time

-0.8

-0.6

-0.4

-0.2

0
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0.6

0.8

1r

Numerical

Predicted

FIG. 2: The motion of the LNE at r1 is shown from a numer-
ically generated solution and the predicted motion from Eqs.
(13 & 14). The agreement improves after an initial transient
period lasting until about t ≈ 20.

Before proceeding, we should clarify what constitutes
a “weakly” versus a “strongly” excited LNE. Our simula-
tions show that even-parity LNEs initiated by a pertur-
bation of r0(0) / 20, which has a nonlinear component
400 times larger than the linear component in the origi-
nal FPUT system, produce primarily acoustic emissions
with frequencies confined to the phonon band for the ma-
jority of the LNE’s lifetime. This is somewhat surprising,
given the large amount of energy required for such a per-
turbation (> 45000). Apparently, even fairly high energy
LNEs which would possess internal dynamics approach-
ing the purely nonlinear limit, still prefer to communicate
with the rest of the chain through the phonon band and
produce low energy, acoustic emissions up until delocal-
ization. This is consistent with what was found in [20]
where even a weak linear coupling (corresponding to both
large β and A in this work) had a significant effect on the
behavior and stability of an LNE. Hence, if one regards
the presence of phonons effectively as “noise,” the obser-
vations bring to focus the possible importance of noise
type effects on LNE stability [30]. Considering these re-
sults, we will mainly focus on the “weakly” excited LNEs,
which primarily produce acoustic emissions.

Even though the LNE tends to communicate through
the phonon band, this does not mean that nonlinear
effects are unimportant, especially within the LNE it-
self. From Eq. (7), it is apparent that the terms
cos([ωa − 2ωb]t) and cos([ωb − 2ωa]t) may introduce new
frequencies within the phonon conduction band. In gen-
eral, the localization property requires that both funda-
mental frequencies are above the phonon band, ωa >
ωb ≥ 2, since excitations with frequencies less than 2 will
strongly communicate with the phonon band [18, 31];
allowing energy to quickly flow from the LNE into the
normal modes of the system. Therefore, only the sec-
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FIG. 3: The frequencies ωa, ωb, and |ωa − 2ωb| of an even-
parity LNE are plotted for varying initial amplitude A. For
large A, the system approaches the purely nonlinear limit
where the fundamental frequencies linearly scale with ampli-
tude. The limiting behavior for ωa and ωb in the original
system is illustrated by comparison with the frequencies from
an LNE in the purely nonlinear case with the linear terms
absent in Eq. (2), ωa (NL) and ωb (NL).

ondary frequency |ωa − 2ωb| is expected to lie within the
phonon band. Meanwhile, the other secondary frequency
|ωb − 2ωa| will be a high frequency greater than the two
fundamental LNE frequencies ωa & ωb and should be ig-
nored according to the RWA.
In some cases, it is possible for the secondary frequency

|ωa−2ωb| to decouple from the phonon band. If ωa ≈ 2ωb

then the frequency |ωa − 2ωb| will move to the bottom
of the phonon band. This occurs for even parity LNEs
excited by a sufficiently large initial displacement A ' 6.
This is shown in Fig. 3 where the frequencies ωa, ωb,
and |ωa − 2ωb| are plotted for varying A. We see that
as the amplitude is increased, the secondary frequency
approaches zero. This corresponds with the scaling of
the two fundamental frequencies in the strongly nonlinear
limit. In this limit, time is scaled by the factor 1/A;
so frequency linearly scales with amplitude proportional
to A. The frequency scaling in the nonlinear limit is
found to follow ωa = (1.283± 0.001)A− (0.004± 0.006)
and ωb = (0.6428± 0.0032)A−(0.001± 0.024) where the
additive constant is close to zero as expected. It turns
out that the ratio of the scaling between ωa and ωb in this
limit is very close to 2 (specifically 1.996). This means
that for large enough A, the even-parity LNE effectively
decouples from the phonon band.
The presence of the lower secondary frequency presents

a pathway for energy to enter and leave the LNE through
weak excitations in the phonon band. This could affect
the stability of the LNE in two ways. If energy is allowed
to leave the LNE, this may help the LNE move into a
more stable configuration and increase its lifetime. Con-
versely, this energy pathway could make the LNE more

-1 0 1
Re( )

-1

-0.5

0

0.5

1

Im
(

)

-50 -25 0 25 50
N

-0.5

0

0.5
| |>1
| |<1

FIG. 4: (Left) Floquet eigenvalues for an LNE with param-
eters ωa = ωb ≈ 2.136, a1 = 1, a2 = 0.5, and b1 = b2 = 0.
Two pairs of eigenvalues corresponding to instabilities in the
LNE lie off of the unit circle and are indicated by “+” mark-
ers. Their approximate values are −0.9044 ± 0.5164i and
−0.8338 ± 0.4761i. (Right) Strain eigenvectors correspond-
ing to the two pairs of eigenvalues with |λ| 6= 1.

sensitive to low energy background fluctuations, which
would destabilize the LNE and decrease its lifetime.
The stability of a breather type LNE is often addressed

by studying the eigenvalues of the Floquet matrix corre-
sponding to the linearized phase space flow around the
LNE trajectory [31, 32]. If we consider a perturbation
to Eq. (2) of the form rn → rn + ǫn, then the dynamics
of the perturbation to first order are described by the
equations,

ǫ̇n = δn

δ̇n = −
(

1 + 3r2n−1

)

ǫn−1 −
(

2 + 6r2n
)

ǫn −
(

1 + 3r2n+1

)

ǫn+1.

(15)

Eqs. (15) can be written as the linear system,

d

dt

(

~ǫ(t)
~δ(t)

)

= F (t)

(

~ǫ(t)
~δ(t)

)

. (16)

According to Floquet theory, if F (t) is a T -periodic func-
tion then the solution to Eq. (16) is a linear combination
of functions of the form φn(t) exp(σnt) where the set of
functions φn(t) are also T -periodic. These functions are
the Floquet eigenfunctions of F (t) while λn = exp(σnt)
are the corresponding Floquet eigenvalues. The complex
eigenvalues λn of the Floquet matrix F (t) determine the
linear stability of the LNE. If all eigenvalues are of magni-
tude one, then the LNE is marginally stable. Otherwise,
perturbations exists which will grow in time and the LNE
is linearly unstable. The eigenvalues can be found by first
numerically integrating Eqs. (15) over one period T . The

resulting matrix
(

~ǫ(ti) ~δ(ti)
)T

over the time series {ti}
then has the set of eigenvalues corresponding to those of
the Floquet matrix {λn}.
Unfortunately, this approach is generally limited to

cases where it can be shown that the trajectory is closed
and the motion periodic in time [33]; such that the LNE
takes the form of a breather solution. This is only guar-
anteed if all pairs of frequencies comprising the LNE are
commensurate (fi/fj = Ni/Nj where both N are inte-
gers) such that a common period exists (T = Ni/fi =
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Nj/fj) which defines the Floquet matrix in Eq. (16).
Our numerical results indicate that the dominant fre-
quencies ωa & ωb are generally incommensurate for most
values of A. One exception is near A = 1 where the two
frequencies begin to merge near the top of the phonon
band (see Fig. 3). In this case, only a single frequency is
present ωa = ωb ≈ 2.136 and the corresponding parame-
ters from Eq. (3) are a1 = 1, a2 = 0.5, and b1 = b2 = 0.
The Floquet eigenvalues for this LNE are shown in Fig.
4. There are two pairs of eigenvalues which do not reside
on the unit circle and correspond to instabilities in the
LNE for the given parameters.

To probe the question of stability for the multi-
frequency LNEs with A > 1, simulations are run for
LNEs of varying amplitude in both a finite chain with
fixed boundaries and an “infinite” chain emulated by in-
troducing damping at the ends of the chain. This pre-
vents LNE emissions from returning at later times, simi-
lar to the case of an infinitely large system. The damping
is applied to 10 oscillators towards each end of the chain
and has the form −ηẋn where η starts at 0.1 and dou-
bles at each successive site. The particular form of the
damping had little effect on the results as long as it was
sufficient to absorb the bulk of the LNE emissions.

The finite chain will allow energy to be reflected back
from the boundaries and produce a weak background of
excitations around the LNE. This background will be
asymmetric so long as the LNE is not exactly centered
in the chain. We expect that any interactions between
the LNE and an asymmetric acoustic background will
work to drive the system towards equilibrium. Hence,
we expect the lifetime of the LNE to be shortened. Com-
plementing this, the infinite chain will allow the LNE to
release energy without this energy returning to the LNE.
If the LNE releases energy in a way which stabilizes it,
then the lifetime of the LNE should be longer than in the
finite chain. We define the LNE lifetime by the time re-
quired for a given percentage of initial energy in the LNE
to drop below a specified value. Since the energy cutoff
chosen is somewhat arbitrary, we consider three possible
values, 60%, 50%, and 40%, to illustrate how the mea-
sured lifetime may change with the cutoff value chosen.

For the case of an infinite chain, we find that the LNE
can persist for extremely long times (> 106). The LNE
initially releases a train of excitations into the rest of
the chain, which are absorbed by the damped oscillators
near the boundaries. Over time, these emissions become
quite weak and only a small amount of energy resides
outside the LNE. This behavior is shown in Fig. 5 where
around t = 8×104, the emission energies are about seven
orders of magnitude lower than the LNE energy. This
implies that the stronger emissions at early times may be
helping to stabilize the LNE; leading to its long lifetime.
This behavior was observed for several amplitudes from
1.0 to 10.0. All had lifetimes exceeding what we could
effectively simulate in a reasonable amount of time.

For the case of the finite chain, the lifetime of the LNEs
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FIG. 5: Energy per particle on log base 10 scale with damp-
ing near the boundaries. An even parity LNE is initiated with
r0(0) = 1.0. Energy is quickly released by the LNE and prop-
agates outward through the chain. At late times, emissions
from the LNE become extremely weak.
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FIG. 6: Energy per particle on log base 10 scale for a finite
chain. An even parity LNE is initiated with r0(0) = 3.0.
Energy is quickly released by the LNE and travels back and
forth through the chain. This eventually leads to the LNE
destabilizing and dissipating.

is generally much shorter. Which is a consequence of en-
ergy reflected by the boundaries colliding with and desta-
bilizing the LNE. Such a destabilization event is shown in
Fig. 6. The extent to which this occurs is dependent on
both the amplitude of the LNE and the size of the chain,
with longer chains allowing for longer lived LNEs. Fig.
7 shows the lifetime of a LNE as a function of amplitude
for a 100 particle chain with the LNE centered across
particles 66 & 67. The top panel shows the lifetime for
the original system defined by Eq. (2) while the bottom
panel considers a purely nonlinear system with the linear
terms in Eq. (2) absent.
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We see that there is a sudden increase in the lifetime of
the LNE for amplitudes greater than one in the original
system. This corresponds with the point where the sec-
ondary frequency enters the phonon band in Fig. 3. Note
that the LNE lifetime in the original system is roughly
2000 times larger than in the corresponding purely non-
linear system for amplitudes around 1.2. Since the purely
nonlinear system lacks a phonon band, it would appear
that the dramatic increase in lifetime is associated with
the presence of secondary frequency within the band. We
therefore conclude that communication between the LNE
and the phonon band through the secondary frequency is
helping to stabilize the LNE and that a possible increase
in the LNE’s susceptibility to noise from the phonon band
is less important [20].
After the initial increase in lifetime for A > 1, larger

values of A generally shorten the lifetime due to the larger
energy effectively speeding up the dynamics. This is illus-
trated by the lifetime dependence in the purely nonlinear
system which should scale with the inverse of amplitude.
A fit to this algebraic inverse scaling with A is shown
for both systems in Fig 7. The fit appears good for the
purely nonlinear system, giving a lifetime T that scales as
T ≈ (2200± 100) /A. For the original system however,
the inverse scaling overestimates the lifetime at larger
amplitudes. A better fit is given by an exponential scal-
ing law T ≈ (2.4± 0.8)×108 ·exp [− (3.5± 0.6)A]. How-
ever, the origin of this exponential scaling is not immedi-
ately apparent. We conclude this section by noting that
in terms of the original system variables where x1 − x0

has a dimensional amplitude A, we find that the LNE
lifetime is dependent on both the amplitude and non-
linearity parameter such that the lifetime is maximized
around A

√
β ≈ 1.1.

IV. EXTENSION TO HIGHER DIMENSIONAL

LATTICES

Similar trends in the LNE lifetime are also observed
in higher dimensions. Using the discrete element mod-
eling software lammps [21], LNEs were initiated in a
cubic FPUT lattice 50 particles on a side. Localiza-
tion is again only seen for sufficiently large initial per-
turbations [1]. The frequencies of interest are shown
for the cubic lattice case in Fig. 8. Similar to the
1D chain, the frequency scaling for the cubic lattice
in the nonlinear limit is linear with amplitude and fol-
lows ωa = (1.281± 0.007)A + (0.005± 0.008) and ωb =
(0.6432± 0.0132)A− (0.013± 0.037). Our numerical re-
sults show that the amplitude cutoff for localization is
very similar in the cubic lattice to that in the original
1D chain. Furthermore, the lower frequency ωb is again
found to stay above 2, indicating that the same con-
straints on localization in the 1D chain must apply to
higher dimensional lattices.
One explanation for these similarities is that the en-

ergy released by the LNE tends to move along a chain of
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FIG. 7: The lifetime of the LNE is plotted against the ampli-
tude A for a chain of 100 particles. The top panel considers
the original system defined by Eq. (2) while the bottom panel
considers a purely nonlinear system with the linear terms in
Eq. (2) absent. The lifetime is measured by the time required
for a given percentage of initial energy in the LNE to drop
below a specified value, either 60%, 50%, or 40%.

oscillators in the cubic lattice coincident with the LNE.
This would lead to similar dynamics in both the 1D and
3D models. Our numerical results support this idea. We
find that at late times but before the LNE delocalizes,
about 3% of the initial energy has dissipated from the
LNE and into the adjacent oscillators along the same
axis as the LNE. Meanwhile, about 0.5% of the energy
has dissipated into the rest of the entire lattice. This
observation is consistent with existing literature for 2D
lattices which show that localized excitations move and
disperse energy in a preferred direction along symmetries
of the lattice [34–36].
LNEs in the cubic lattice do not show the dramatic

increase in lifetime that was seen in the 1D chain at the
lowest amplitudes, rather, the lifetime monotonically de-
creases with amplitude. The extra degrees of freedom af-
forded in the cubic lattice likely offer more pathways for
energy to be exchanged between the LNE and the rest of
the system. This would allow the lower amplitude LNEs
to readily stabilize at early times, similar to how a sec-
ondary frequency in the phonon band helped to stabilize
the LNEs in the 1D chain. We expect that an increased
number of degrees of freedom should lead to a strong
decrease in the LNE lifetime for increasing amplitude.
Large energy LNEs are able to more effectively excite off
axis oscillations near the LNE which could quickly shunt
energy away from the LNE. Numerical results show that
the LNE lifetime in the 3D lattice does indeed quickly
decrease for large amplitudes. We find that the LNE
lifetime T is well described by the double log dependence
log10 log10(T ) ≈ −(0.075± 0.005)A+ (0.62± 0.02) as il-
lustrated in Fig. 9 where an energy cutoff of 50% is used.
In terms of the variables in Eq. (1), this dependence is
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FIG. 9: The lifetime of the LNE in a cubic FPUT lattice on
a log-log base 10 scale is plotted against the LNE amplitude.

log10 log10(T ) ≈ −(0.075±0.005)A
√
β+(0.62±0.02): in-

dicating a rapid decrease in the lifetime with increasing
amplitude and/or increasing nonlinear strength.

V. CONCLUSION

The dynamics of LNEs in the β-FPUT system are dis-
cussed in terms of the dependence of the LNE lifetime
on amplitude, and by extension the strength of the non-
linearity. We first show how the interaction of the two
fundamental frequencies within the LNE leads to the pro-
duction of secondary frequencies which can lie within the
phonon band. These frequencies are seen for LNEs in
both the 1D chain and 3D cubic lattice. The presence of
the secondary frequency within the phonon band is re-
lated to the problem of LNE stabilization since the LNE
emissions studied here are of low energy and hence pri-
marily acoustic. The question of how a resonance in the
phonon band may interact with the LNE and the acoustic
background is explored by comparing the lifetime of the
LNE in an emulated infinitely long chain, a finite chain,
and a purely nonlinear chain. We observe that LNEs in
the infinite chain are extremely long lived while LNEs in
the finite chain have lifetimes dependent on the LNE am-
plitude A and the nonlinear strength β, with the longest
lived LNEs satisfying A

√
β ≈ 1.1.

The LNE lifetime dramatically increases once the lower
secondary frequency enters the phonon band, leading us
to conclude that the location of this frequency within
the band opens a pathway for low energy excitations to
enter and leave the LNE at early times and improve its
stability. LNEs without this energy pathway, either in
the purely nonlinear system or with A√

β ≤ 1, are less
stable and prone to delocalize when energy reflected back
from the boundaries interacts with the LNE. We find
that after the initial increase in LNE lifetime, the lifetime
decreases exponentially with amplitude rather than by
an inverse relationship as in the purely nonlinear system.
In the cubic lattice, we find that LNEs have lifetimes
that scale with amplitude via a double log relationship.
The precise origin of these scaling relationships are still
unknown, which we believe presents an interesting topic
for future work.
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