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A set of schemes for secure quantum communication are analyzed under the influence of non-Markovian

channels. By comparing with the corresponding Markovian cases, it is seen that the average fidelity in all

these schemes can be maintained for relatively longer periods of time. The effects of non-Markovian noise

on a number of facets of quantum cryptography, such as quantum secure direct communication, deterministic

secure quantum communication and their controlled counterparts, quantum dialogue, quantum key distribution,

quantum key agreement, etc., have been extensively investigated. Specifically, a scheme for controlled quantum

dialogue (CQD) is analyzed over damping, dephasing and depolarizing non-Markovian channels, and subse-

quently, the effect of these non-Markovian channels on the other schemes of secure quantum communication

is deduced from the results obtained for CQD. The damped non-Markovian channel causes, a periodic revival

in the fidelity; while fidelity is observed to be sustained under the influence of the dephasing non-Markovian

channel. The depolarizing channel, as well as the other non-Markovian channels discussed here, show that the

obtained average fidelity subjected to noisy environment depends on the strength of coupling between the quan-

tum system with its surroundings and the number of rounds of quantum communication involved in a particular

scheme.
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Keywords: non-Markovian channel, depolarizing channel, quantum cryptography, secure quantum communication

I. INTRODUCTION

Quantum cryptography, after its inception in 1984 [1], has

been flourishing over the last decade. The prime reason is

the possibility of unconditional security, a task unachievable

in the domain of classical physics. This fact and already

available marketable products based on quantum cryptogra-

phy have motivated further research in this field. To name

a few, apart from the initial interest in quantum key distribu-

tion (QKD) [1–5], various schemes concerning direct commu-

nication (secure communication circumventing the need of a

prior shared key) [6–11], quantum key agreement (QKA) [12],

quantum secret sharing [13], have been proposed in the recent

past (see [14] for details). Specifically, in the direct communi-

cation, the receiver may or may not require an additional clas-

sical information to decode the message sent by the sender;

depending upon this, the protocol falls under the category of

deterministic secure quantum communication (DSQC) [10]

and quantum secure direct communication (QSDC) [6–9], re-

spectively. There is another novel technique of direct commu-

nication, quantum dialogue (QD) [15], where both the users

can send their information simultaneously, with no need of a

prior shared key.

All these schemes for secure direct quantum communica-

tion, provide us a vast potential for extension and modification

to design protocols required in various real life scenarios. One

such important facet of quantum cryptography provides solu-

tions for maintaining the hierarchy in offices or government,

in terms of the information accessible to each user. Hierarchi-
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cal quantum communication schemes are aimed to deal with

these problems, when either only single sender holds all the

information [16] or it is distributed among two of them [17].

We may consider another important scenario, where a con-

troller supervises the communication among all the remain-

ing users, and he can maintain his control by making sure

that the communication is not accomplished without his con-

sent [11, 18, 19]. Further, a scheme for quantum controlled

communication based on a quantum cryptographic switch has

been proposed recently, which allows the supervisor to con-

trol even the amount of information he wishes to share with

the other users in a continuously varying degree [18, 19].

It would be worth summarizing that the security achieved

in all the cryptographic schemes is based on the principle of

splitting the whole information in many pieces, and the whole

information can only be extracted if all the pieces are avail-

able simultaneously. Usually, one of the parties prepares an

entangled state to be used as a quantum channel and shares

it with all other parties in a secure way. By secure, we mean

that a proper eavesdropping checking technique is employed,

after inserting the decoy qubits with the entangled qubits to

ensure the absence of Eve. Once this channel is shared the

legitimate parties can securely share their secrets, either by

teleportation or encoding their information using Pauli opera-

tions and sending the qubits to the receiver again in a secure

manner. An interesting observation, we would like to exploit

here, is that if we start with a controlled quantum dialogue

(CQD) scheme, we can reduce it to almost all the schemes

of secure quantum communication. This point is discussed in

detail in the forthcoming sections.

The feasibility of implementation of various quantum com-

munication schemes when subjected to noisy environment has

been analyzed in the past. In particular, the schemes of QKD

[20], QKA [20], controlled DSQC (CDSQC) [19], QSDC

[20], CQD [18], QD [20], asymmetric QD (AQD) [21], con-
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trolled bidirectional remote state preparation [22], among oth-

ers, have been considered under the influence of both purely

dephasing and damping noises. Most of these investigations

(cf. [18–21]) were restricted to the domain of Markovian en-

vironments [23, 24], though, some attempts have been made

to study the effects of non-Markovian environments on quan-

tum communication schemes, such as teleportation [25, 26],

densecoding [26] and entanglement swapping [27, 28]. The

security of a QKD protocol has also been analyzed over non-

Markovian depolarizing channel [29]. All these attempts (ex-

cept Ref. [29]) to examine the usefulness of entangled states

under the influence of non-Markovian environments were re-

stricted to insecure quantum communication, where security

is not required. However, in the secure quantum communica-

tion protocols, it becomes relevant to differentiate the distur-

bance caused due to eavesdropping and the effects of noise.

This sets the motivation for this work, where we wish to an-

alyze the effect of non-Markovian noisy environment con-

sidering the scenario when no eavesdropping has been at-

tempted. This would provide a threshold of error due to dis-

turbance from a non-Markovian environment; errors exceed-

ing this could be attributed to the presence of an eavesdrop-

per. Specifically, we would consider pure dephasing, damping

and depolarizing interactions with a non-Markovian reservoir.

Though entanglement can only be maintained for relatively

longer time due to dephasing non-Markovian interaction [30],

it can show revival under dissipative interactions [31]. As we

are essentially using entangled states and entanglement re-

vival could be an interesting feature to affect the feasibility

of quantum cryptographic schemes, we would like to address

the problem here.

Non-Markovian noise has been attracting a lot of interest

from both quantum optics and quantum information commu-

nities, theoretically as well as experimentally. A paradigm

for studying non-Markovian evolution is the quantum Brown-

ian motion [32–34]. Specifically, degradation of purity and

nonclassicality of Gaussian states have been studied under

the effect of non-Markovian channels [35]. Dynamics of en-

tanglement has been discussed in both discrete [31, 36–38]

and continuous [39] variable channels. Recently, dynamics

of multipartite entanglement and its protection have been ad-

dressed [40]. The additional problems due to non-Markovian

noise in quantum error correction [41] and dynamical deocu-

pling [42, 43] have also been discussed in the past. The

non-Markovianity was also characterized from an informa-

tion theoretic approach in terms of quantum Fisher informa-

tion flow [44]. A number of beautiful experiments depict-

ing non-Markovian nature of the system-reservoir interaction

have been performed [45–47].

First, the Kraus operators of non-Markovian dissipative and

dephasing noise models are discussed in a concise manner

(in Section II). In Section III, we introduce, briefly, a CQD

scheme (III A) using Bell states and based on the quantum

cryptographic switch. Then, we study the effect of non-

Markovian noise on the feasibility of the CQD scheme. To

quantify the effect of noise, a distance-based measure known

as fidelity has been calculated. Next, we reduce the scheme

of CQD to design a CDSQC protocol (in Section III B), a QD

protocol (in Section III C), a DSQC and QSDC protocols (in

Section III D), a QKA protocol (in Section III E), and finally,

two well known QKD protocols (in Section III F). The QKD

protocols discussed here are well known as BB84 [1] and

BBM [5] protocols. The feasibility of all these schemes un-

der the action of non-Markovian channels are also analyzed.

Finally, we conclude the paper in Section IV.

II. NON-MARKOVIAN NOISE MODELS

We briefly discuss below, a few non-Markovian models that

are subsequently used to study the performance of various

quantum cryptographic schemes. The dynamics of a system

interacting with its surroundings can be expressed in terms of

Kraus operators as

ρ (t) =
∑

i

Ki (t) ρ (0)K
†
i (t) (1)

(see [48] for a review). Here, we use this approach to de-

scribe the dissipative and purely dephasing interactions with

non-Markovian environments. The Kraus operators for the

damping noise under non-Markovian effects are given by [31]

K0 = |0〉〈0|+√
p|1〉〈1|, K1 =

√

1− p|0〉〈1|, (2)

where p ≡ p (t) = exp (−Γt)
{

cos
(

dt
2

)

+ Γ
d sin

(

dt
2

)}2
with

d =
√

2γΓ− Γ2. Here, Γ is the line width which depends

on the reservoir correlation time τr ≈ Γ−1; and γ is the cou-

pling strength related to qubit relaxation time τs ≈ γ−1. In

the domain of large reservoir correlation time in comparison

to qubit relaxation time, memory effects come into play. The

memory effects are characteristic of non-Markovian nature of

dissipation. Interestingly, taking p = 1 − η, the results ob-

tained for amplitude damping noise under Markovian regime

can be deduced, with η being the decoherence rate of ampli-

tude damping channel.

Similarly, the Kraus operators for purely dephasing non-

Markovian noise are [30]

K0 = |0〉〈0|+ p|1〉〈1|, K1 =
√

1− p2|1〉〈1|, (3)

where p ≡ p (t) = exp
[

− γ
2

{

t+ 1
Γ (exp (−Γt)− 1)

}]

. All

the parameters have the same meaning as above. As in the

case of dissipative noise, the result for the well known phase

damping channel can be obtained from Eq. (3) by consider-

ing p =
√
1− η. In what follows, we consider an indepen-

dent environment for each qubit as it travels through different

channels; a similar assumption has been made in [49, 50].

Finally, a non-Markovian depolarizing channel can be de-

scribed by the Kraus operators Ki =
√
Piσi, where σ0 ≡ I

and σis are the three Pauli matrices. The Pis should remain

positive to ensure the complete positivity for all values of
γj

Γj

and are given by [51]

P1 =
1

4
[1 + Ω1 − Ω2 − Ω3] ,
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P2 =
1

4
[1− Ω1 +Ω2 − Ω3] ,

P3 =
1

4
[1− Ω1 − Ω2 +Ω3] ,

and

P4 =
1

4
[1 + Ω1 +Ω2 +Ω3] .

Here, Ωi = exp
(

−Γt
2

)

[

cos
(

Γdit
2

)

+ 1
di

sin
(

Γdit
2

)

]

with

di =

√

16
(

γ2

j

Γ2

j

+
γ2

k

Γ2

k

)

− 1 for i 6= j 6= k [51]. Further, γ

is the coupling strength of the system and Γ is the noise band-

width parameter. It should be noted that the Markovian case

can be deduced from the above by taking Ωi = exp
(

− γit
2

)

with γi =
4
Γ

(

γ2j + γ2k
)

for i 6= j 6= k [51].

III. EFFECT OF NON-MARKOVIANITY ON THE
SECURE QUANTUM COMMUNICATION SCHEMES

In what follows, we consider a set of quantum crypto-

graphic protocols and analyze the feasibility of their imple-

mentation over the above discussed non-Markovian channels.

For all the one-way schemes for quantum cryptography that

are discussed here, we consider Alice as the sender and Bob

as the receiver, unless stated otherwise; whereas, Charlie is

the third party supervising the protocol and referred to as the

controller. However, for two-way schemes (e.g., QD, CQD),

both Alice and Bob are considered to play dual roles of re-

ceiver and sender.

A. CQD

Let us start with a three party protocol for quantum cryp-

tography, where two parties (Alice and Bob) wish to commu-

nicate simultaneously under the control of a third party (Char-

lie). In fact, all the controlled communication protocols work

under an assumption that all the parties are semi-honest. Oth-

erwise, Alice and Bob can share a quantum state of their own

and circumvent Charlie’s control. In literature, this is some-

times viewed as Alice and Bob lacking resources for state

preparation, and consequently, they do not set up a quantum

channel between them, rather they rely on Charlie to prepare

it for them.

To begin with, we consider a CQD scheme recently pro-

posed by some of the present authors [18]. Charlie prepares n
copies of a Bell state and makes two strings SA and SB of all

the first and second qubits. Subsequently, he sends both the

strings to Bob, only after permuting SB
1. Bob will encode his

1 Here, and in what follows, all the qubits traveling from one party to other

are sent in a secure manner, i.e., to send a sequence of n travel qubits,

message by using Pauli operations on the qubits in string SA.

Subsequently, Bob sends SA to Alice, who returns it to him

after encoding her secret message as Bob did. It is pre-decided

that Pauli operations I , X, iY , and Z correspond to encoded

bit values 00, 01, 10, and 11, respectively. Finally, Charlie

discloses the permutation operator, and using this information

Bob performs a Bell measurement on the partner qubits (Bell

pairs). When Bob announces the measurement outcome, both

Alice and Bob can extract each other’s message using their

own encoding information and the knowledge of initial Bell

state prepared by Charlie. If the choice of Bell state prepared

by Charlie is made public, it leads to some leakage, which

is often considered to be an inherent characteristic of schemes

for QD and its variants. However, such leakage can be circum-

vented if Charlie chooses the Bell state randomly and sends

his choice to Alice and Bob by using a scheme of DSQC or

QSDC [21]. In fact, the schemes of QD are the most efficient

protocols without involving prior key generation.

Suppose Charlie started with the initial state ρ = |ψ〉〈ψ|,
where |ψ〉 ∈ {|ψ±〉, |φ±〉}, and |ψ±〉 = |00〉±|11〉√

2
, |φ±〉 =

|01〉±|10〉√
2

. The transformed density matrix over the noisy

channel would become

ρ′ =
∑

An,Bn

∑

i,j,k,l

(Kl (p4)⊗ I)UAn
(Kk (p3)⊗ I)UBn

× (Ki (p1)⊗Kj (p2)) ρ ((Ki (p1)⊗Kj (p2)))
†

× ((Kl (p4)⊗ I)UAn
(Kk (p3)⊗ I)UBn

)
†
,

(4)

where Kis are the Kraus operators for a specific kind of noise

discussed in the previous section and Ujs are the Pauli op-

erations by Alice and Bob with j ∈ {j00, j01, j10, j11} for

{I,X, iY, Z}. Here, we have used different values of pis cor-

responding to each operation of the Kraus operator (from Eq.

(2), (3) or the depolarizing channel) on the initial quantum

state as the coupling strength during various rounds of the

quantum communication is assumed to be different. It may

be noted that the second summation in the right hand side of

Eq. (4) ensures that the map is positive while the first summa-

tion corresponds to the average over all the possible encoding

operations that Alice and Bob are allowed to perform. Thus,

the fidelity that we are discussing here, and in the rest of the

paper, is the average fidelity. Further, here, we have assumed

that the qubits not traveling through a quantum channel are

not affected by noise. There are various distance-based mea-

sures to quantify the effect of noise on the quantum state, such

as trace distance, fidelity, and the Bures distance [53]. The

fidelity of the transformed density matrix with the quantum

state in the ideal situation (i.e., in the absence of noise) would

be [48]

F = 〈ψ′|ρ′|ψ′〉, (5)

where the expected quantum state |ψ′〉 = UAn
UBn

|ψ〉.

an equal number of decoy qubits are inserted randomly in the original se-

quence of the travel qubits, and subsequently, these decoy qubits are mea-

sured to check the existence of eavesdropper(s). Various choices of decoy

qubits and the corresponding principles of security are discussed in [52].
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The fidelity of the quantum state transformed under the

damping effect of non-Markovian environment is

F =
1

4
[1 + 2

√
p1p2p3p4 + p1p3p4 (2p2 − 1) + p3p4 (1− p2)] ,

(6)

when the initial quantum state prepared by Charlie is |ψ±〉.
As the choice of initial state is solely a decision of Charlie, an

independent choice of the initial state, i.e., |φ±〉, would lead

to the following expression of fidelity

F =
1

4
[1 + 2

√
p1p2p3p4 + p1p3p4 + p3p4 (p2 − 1)] . (7)

If the state prepared by Charlie were subjected to a non-

Markovian dephasing noise, the fidelity would be

F =
1

2
[1 + p1p2p3p4] . (8)

It is interesting to see that the obtained fidelity is independent

of the choice of the initial Bell state by Charlie. This is also

seen in analogous scenarios of Markovian dephasing noise in

[17, 18, 20, 21, 52] and references therein. If we now consider

that the system has evolved under the effect of a depolarizing

channel, then following the above prescription, the analytical

expression for fidelity can be obtained as

F =
1

2

[

1 + Ω4
1 +Ω4

2 +Ω4
3

]

. (9)

It is interesting to observe the appearance of fourth order

terms in all the non-Markovian fidelities, a signature of four

noisy channels acting on the, four, different rounds of quan-

tum communication. It should be mentioned here that instead

of sending both the strings to Bob, Charlie could have sent

SA to Alice and SB to Bob. Subsequently, Alice would have

sent SA to Bob after encoding her message and Bob would

have encoded his message before performing the measure-

ment. The obtained fidelity expressions in this case turns out

to be the same as that of the CDSQC protocol, discussed in

the next subsection. The effect of noise in the case discussed

here is more than that in the case of CDSQC. Making use of

this observation, we analyze the scheme of CQD, described

above, in detail as the results obtained in the following sub-

sections can be reduced from it.

Now, we will discuss the fidelities for different scenar-

ios depicted in Eqs. (6)-(9), for both Markovian and non-

Markovian noises. The case of the non-Markovian damp-

ing/dephasing channels are also considered for strong and

weak coupling regimes. Specifically, we obtain results in

the strong and weak coupling regimes over non-Markovian

damping channels Γ = 0.01γ and Γ = 0.1γ, whereas for

very high values, such as Γ = 5γ, it is found to reduce to

Markovian case. In the following figures, we have used the

notation NM, M, and NMS, which correspond to the non-

Markovian, Markovian, and non-Markovian (under strong

coupling strengths) regimes of interactions, respectively.

A comparative analysis of the effects of non-Markovian (for

both strong and weak couplings) and Markovian noise can

be seen from Figs. 1-4. In this case, though four different

coupling regimes are possible, one for each pis, we have re-

stricted ourselves, for simplicity, to the scenario of Charlie to

Bob quantum channel having the same coupling strength for

both the travel qubits. Similarly, Bob to Alice quantum chan-

nel has the same coupling strength as that for the other way

round. We explicitly mention the two choices of regimes in

Fig. 1. Specifically, Fig. 1 (a) and (b) show the effect of

damping quantified by fidelity on the CQD scheme for differ-

ent choices of initial Bell states, i.e., |ψ±〉 and |φ±〉, respec-

tively. It is interesting to observe that when both the qubits

undergo damping, either in Markovian or in strong coupling

non-Markovian regimes, the choice of initial Bell states be-

comes irrelevant (see red (dashed) and orange (large dashed)

curves in Fig. 1 (a) and (b)). However, this initial choice be-

comes considerably important for all the remaining cases, and

|ψ±〉 states are seen to be preferable as these states are less af-

fected by non-Markovian damping noise than |φ±〉. Further, it

is seen that, due to non-Markovian effects, the fidelity can be

maintained for a relatively larger period of time (i.e., the quan-

tum state decoheres slowly in non-Markovian environments in

comparison to the corresponding Markovian environments),

a feature that depends on the coupling strength (cf. Fig. 1

(a) and (b)). Another interesting characteristic of this kind of

non-Markovian noise is periodicity [31] and the kinks present

in Fig. 1 (a) and (b) are its signature. In Ref. [20] it was

shown that the dilapidating influence of decoherence, due to

Markovian damping, can be checked using squeezing. Here,

it is seen that the same task can also be achieved by exploiting

non-Markovianity.

The effect of noisy environment is independent of the ini-

tial Bell state over dephasing channel and the fidelity is ob-

served to improve gradually with non-Markovian effects and

coupling strength (cf. Fig. 1 (c)). Periodicity in the time

variation of fidelity, when all interactions are (strong) non-

Markovian is not visible in the time scale of Fig. 1 (a) and

(b). For larger time scales, this can be observed in Fig. 1

(d), where fidelity over both the damping and dephasing non-

Markovian channels is shown together. It can be seen that the

fidelity under the effect of the damping noise decays faster

than that over dephasing channel. At times, the fidelity over

damping channel is observed to be much larger than that over

dephasing channels, which remains constant at 1/2.

To analyze the effect of the coupling strength with varying

time, we depict, in Fig. 2, a contour and a 3 dimensional plots.

The ripple like plot (cf. the blue-colored surface plot in Fig.

2 (b)) shows that with decreasing coupling strength the am-

plitudes of the revived fidelity gradually become smaller. The

same fact is also illustrated through a contour plot shown in

Fig. 2 (a), where we can see that the area of the light-colored

region reduces as we move from bottom to top. Physically,

this corresponds to a transition from strong to weak coupling

non-Markovian regime and finally into Markovian regime.

A similar analysis of the fidelity expression for the depo-

larizing channel is illustrated in Fig. 3. In Fig. 3 (a), homo-

geneous depolarizing noise is assumed γi = γ ∀i ∈ {1, 2, 3},

for which γ ≤
∣

∣

∣

∣

√

1+(π/ log 3)2

32

∣

∣

∣

∣

to ensure that the dynamical

map is completely positive [29, 51]. Interestingly, it can be
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Figure 1: (Color online) The variation of the average fidelity obtained for CQD protocol with respect to the dimensionless quantity γt is

depicted when the travel qubits undergo a damping or dephasing interaction with its surroundings. In (a) and (b), both the travel qubits may

have different coupling strengths during their various rounds of travels under damping effects, which are characterized by pi : i ∈ {1, 2, 3, 4}.

The values of coupling strength for strong (weak) regime of non-Markovian effect is chosen as Γ = 0.01γ (Γ = 0.1γ), and Γ = 5γ for

Markovian regime. In (a) and (b), the choice of initial Bell states by Charlie is |ψ±〉 and |φ±〉, respectively. (c) Shows similar cases over the

dephasing channels. In (d), both purely dephasing and damping effects are shown together for strong non-Markovian and Markovian regimes.

seen from Fig. 3 (a) that the fidelity falls gradually with the

parameter γ
Γ , which determines the fluctuation due to the de-

polarizing channel. However, it can be noted that for all the

cases, the fidelity under non-Markovian environment is al-

ways greater than that for the corresponding Markovian case,

till all the plots merge, with time, to a single value. Further, for

the case of inhomogeneous fluctuations [29, 51], we observe

revival in the fidelity in Fig. 3 (b). From Fig. 3, it can be

summarized that non-Markovian depolarizing channel affects

the system less than the corresponding Markovian channel.

The change in coupling strength controls the transition from

non-Markovian to Markovian regime for both damping and

depolarizing channels. This dependence has been illustrated

in Fig. 4. Initial small changes in the value of coupling

strength changes considerably the nature of the obtained fi-

delity, i.e., the periodicity and maximum value of fidelity af-

ter revival show ample changes for even a small change of

coupling strength. However, for small values of the coupling

strength, this change becomes less sensitive as reflected in the

dense black lines corresponding to smaller values of coupling

strengths.

A similar comparison of the effect of non-Markovian and

Markovian depolarizing channels shows that the fidelity sus-

tains for a longer period of time under the influence of a

non-Markovian depolarizing channel, and is more sensitive to

small changes in the noise parameter, which controls the fluc-

tuation. For higher values of noise parameter, the variation

due to small changes in noise parameters becomes negligible

in both Markovian and non-Markovian depolarizing channels.

In the following subsections, we will deduce corresponding

results for the remaining cryptographic tasks from the results

obtained in this section for the fidelity (for the CQD scheme)

over the various non-Markovian channels.

B. CDSQC

A protocol of CDSQC, based on quantum cryptographic

switch, can be obtained from the CQD scheme discussed in

the previous subsection, i.e., when only a single party encodes

and sends his/her message in a secure manner via the quantum

channel, which is decoded by the other party [11]. To be pre-
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Figure 2: (Color online) The dependence of the obtained fidelity over

the damping channel on the coupling strength and rescaled time is

illustrated through a contour plot in (a). (b) depicts the variation of

the fidelity for varying coupling strength and time for both purely

dephasing and damping non-Markovian channels in light (yellow)

and dark (blue) colored surface plots, respectively.

cise, Charlie initially follows the same steps as in Section III A

but rather sends the two strings SA and SB to Alice and Bob,

respectively. Alice encodes her message as usual and sends

the encoded qubit to Bob, who decodes the secret by perform-

ing Bell state measurement on partner pairs with the help of

Charlie [11].

The CDSQC scheme and the effect of noise can be summa-

rized as follows

ρ′ =
∑

An

∑

i,j,l

(Kl (p4)⊗ I)UAn
(Ki (p1)⊗Kj (p2)) ρ

× ((Kl (p4)⊗ I)UAn
(Ki (p1)⊗Kj (p2)))

†
,

(10)

where all the parameters have the same meaning as in Section

III A. It is interesting to observe that the transformed density

matrix in Eq. (10) can be obtained from Eq. (4) just by con-

sidering p3 = 1 and UBn
= I . The fidelity can be calculated

with the quantum state expected in the ideal situation, i.e.,

|ψ′〉 = UAn
|ψ〉.

Due to this observation, the fidelity of the quantum states

���

���

Figure 3: (Color online) (a) The effect of non-Markovian depolar-

izing channel on the CQD scheme has been illustrated for differ-

ent values of the dimensionless quantity γ
Γ

indicated in the plot. (a)

shows the case of homogeneous non-Markovian depolarizing chan-

nel (i.e.,
γi
Γi

=
γ
Γ
∀i ∈ {1, 2, 3}). (b) illustrates a comparison be-

tween inhomogeneous case of non-Markovian and Markovian de-

polarizing channels. In (a), the constant c = Γ

∣

∣

∣

∣

√

1+(π/ log 3)2

32

∣

∣

∣

∣

,

which is the maximum value ensuring completely positive map for

all times for the homogeneous case; in (b), the noise parameters are
γ3
Γ3

= 5, γi
Γi

= 0.2 for i ∈ {1, 2}.

affected by the non-Markovian noise, for the CDSQC scheme

can be obtained from the corresponding CQD expressions by

taking p3 = 1, in Eqs. (6)-(8). Interestingly, for the case of

the depolarizing channel, the fidelity can be shown to be

F =
1

2

[

1 + Ω3
1 +Ω3

2 + Ω3
3

]

, (11)

where the presence of cubic terms manifests the fact that the

number of rounds of quantum communication involved in this

scheme is less than that for the scheme discussed in the previ-

ous subsection. Specifically, the scheme for CDSQC requires

three rounds of quantum communication, while the scheme

for CQD requires four rounds.

The qubit traveling through the noisy channel may have dif-

ferent coupling strength during each round of travel. Here,
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Figure 4: The effect of a change in the coupling strength on the fi-

delity is illustrated here with a set of plots for damping and dephas-

ing non-Markovian noise in (a) and (b), respectively. Specifically,

the parameter of the coupling strength Γ/γ varies from 0.001 to 0.03

in steps of 0.001 in both the plots.

we wish to emphasize this point with the help of three possi-

ble coupling strengths for three noisy channels acting on the

travel qubits. The observations made above for the extreme

cases, i.e., the qubits traveling through either non-Markovian

channels with strong coupling or Markovian channels all the

time, remain valid here as well. Nevertheless, it cannot be

conjectured that the more the number of non-Markovian chan-

nels, the higher the fidelity. In particular, the large dot-dashed

(purple) curve in Fig. 5 (a) and (b) establishes that even lower

fidelity is observed with lesser number of Markovian chan-

nels acting on the travel qubits. In fact, Fig. 5 (b) shows that

the obtained fidelity for parity 1 Bell states (i.e., |φ±〉) is less

for all the cases when various noise channels had different

coupling strengths than that for the case of the travel qubits

subjected to noisy channels with the same coupling strength.

However, no such nature is visible in Fig. 5 (c) for dephasing

channels. It is worth stressing here that out of the three pos-

sible choices for different coupling regimes corresponding to

each pi, we have emphasized only on the interesting cases and

mentioned them accordingly in Fig. 5.

Interestingly, the fidelity in the CDSQC protocol falls be-

low the corresponding Markovian value, under the influence

of the non-Markovian depolarizing channel, when all three

noise parameters have different values (cf. Fig. 5 (d)). This

nature can be attributed to the presence of cubic terms in the

fidelity, Eq. (11).

C. QD

A CQD scheme can be viewed as a QD scheme under the

supervision of a controller. Therefore, a QD scheme can be

easily derived from the CQD scheme if we consider the sce-

nario that one of the two communicating parties (i.e., either

Alice or Bob) prepares and measures the quantum state, while

both the parties encode their secret on the same qubits. This

QD scheme, which is obtained as a result of reduction from

the CQD scheme described above, can be easily recognized to

be equivalent to the first QD protocol proposed by Ba An [15].

The effect of noise on this scheme for QD can be obtained

by considering p1 = p2 = 1 in all the expressions of Sec-

tion III A. This would imply that the initial state is prepared

by one of the communicating parties (say, Bob). Then the

transformed density matrix and the fidelity expressions over

non-Markovian channels can be deduced from Eqs. (4)-(8).

Here, it is important to note that the effect of noise is inde-

pendent of the choice of initial Bell state by Charlie/Bob in all

the schemes other than CQD and CDSQC. Similarly, under

the effect of depolarizing channels, the expression of fidelity

turns out to be

F =
1

2

[

1 + Ω2
1 +Ω2

2 + Ω2
3

]

, (12)

due to two rounds of quantum communication of a travel

qubit.

D. QSDC/DSQC

As mentioned beforehand in Section III B, a CDSQC

scheme can be viewed as a CQD scheme, where only one

party is allowed to encode. In the same way, a QSDC scheme

(say, a Ping Pong protocol [6]) can be viewed as a scheme for

QD [15], where one party (say Bob) is restricted to encode

Identity only. Therefore, all the expressions of the fidelity for

a QSDC scheme are exactly the same as those for the scheme

of QD.

A DSQC scheme can be reduced from the above men-

tioned protocols if Bob incorporates information splitting in

two quantum pieces and sends them one after the other in two

different rounds of Bob to Alice communication [14]. Specif-

ically, Bob prepares two strings as in Section III C and sends

the first string to Alice. He subsequently sends the second

string to Alice only if the first quantum part is received by

Alice undisturbed. The effect of non-Markovian noisy envi-

ronment on this DSQC scheme can be obtained from the cor-

responding expressions for the CQD scheme obtained in Sec.
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Figure 5: (Color online) The dependence of the average fidelity obtained for the CDSQC protocol on the coupling strength is illustrated through

its variation with the dimensionless quantity γt, when the travel qubits undergo damping (in (a) and (b)) or dephasing (in (c)) interaction with

their ambient surroundings. In (a) and (b), the initial state chosen by Charlie was |ψ±〉 and |φ±〉, respectively. Here, we have chosen different

values of all the coupling constants in various regimes, i.e., non-Markovian with strong and weak couplings as well as for the Markovian case.

All the values of coupling strengths corresponding to various regimes are the same as used in the previous plots. In (d), time variation of the

fidelity for the CDSQC protocol over a depolarizing channel is shown corresponding to the values used in Fig. 3 (b).

III A, if we consider p1 = p4 = 1 and p2 = p′3 in Eqs. (6)-

(8). Here, p′3 is used to show the effect of noise on the second

qubit traveling from Bob to Alice in the first round. In fact,

it turns out to be exactly similar to what is obtained for the

QSDC scheme. Interestingly, in case of depolarizing noise, all

the expressions for fidelity are found to be the same for QD,

QSDC and DSQC schemes. For the convenience of discussion

for the DSQC scheme, we have chosen Bob (Alice) as the

sender (receiver).

So far, we have discussed quantum communication

schemes where prior key generation is circumvented by

proper use of quantum resources. We may now proceed to

key generation schemes and investigate the effect of non-

Markovian environment on them.

E. QKA

A QKA scheme provides equal power to all the parties tak-

ing part in the key generation process, and does not allow

members of a proper subset of the set of all users to solely

decide the final key. Here, we consider a completely orthog-

onal QKA scheme proposed in [12]. In this QKA protocol, a

party (say Alice) sends her raw key to another party (say Bob)

by using a QSDC protocol, while the other party publicly an-

nounces his key. The security of the final key is achieved

by the unconditional security of Alice’s transmission of raw

key using quantum resources (i.e., from the security of the

QSDC/DSQC scheme used by Alice and Bob for Alice to

Bob communication). Specifically, Alice transmits a key kA
to Bob in a secure manner, whereas Bob announces his key

kB , publicly, and for all future communication they use a key

kAB = kA ⊕ kB , where ⊕ denotes a bitwise XOR operation.

Although, Eve knows kB , she cannot obtain any information

about kAB as she knows nothing about kA. Thus, the security

of kAB depends on the security of kA. In other words, uncon-

ditional security of the QSDC scheme involved here would

ensure the security of the protocol for QKA. Interestingly, in

Ref. [20], the present authors had already shown that the ef-

fect of noise on this scheme is identical to the QSDC scheme

discussed in the previous Section III D. Since the observations

made there remain valid here, we do not discuss it in further
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detail.

F. QKD

Any discussion on quantum cryptography remains incom-

plete without discussing a protocol that changed the course

of cryptography by establishing the feasibility of uncondi-

tional security. In this section, we discuss two QKD proto-

cols, which can be viewed as the variants of the same scheme,

differing only in the measurement procedure. Specifically, the

BB84 [1] and BBM [5] QKD protocols are discussed here.

Before we proceed further, it would be apt to note that in

contrast to the fidelity expressions obtained in the earlier sec-

tions (which were average over all the encoding operations),

for QKD protocols, the average fidelity is obtained over all

possible equally probable measurement outcomes.

In the BBM protocol [5], Alice prepares n Bell states and

sends all the first qubits to Bob, and both of them measure

the qubits of the shared Bell states randomly in computational

({|0〉, |1〉}) and diagonal ({|+〉, |−〉}) basis. Using the out-

come of these measurements, they finally obtain an uncondi-

tionally secure quantum key for those cases where both Alice

and Bob perform measurement using the same basis.

The BB84 protocol can also be viewed along the same lines,

where Alice first measures her qubit (i.e., second qubit) of

each Bell state randomly either in computational or diagonal

basis and then sends the other qubit to Bob. Finally, they can

obtain a key by using the measurement outcomes of half of

those cases, where they have chosen the same basis. The other

half of the cases should be used for eavesdropping check.

Specifically, when Alice and Bob have performed measure-

ment in the same basis, in the absence of Eve, their measure-

ment outcomes should match and a mismatch would indicate

the presence of Eve.

Interestingly, for the BBM protocol, the effect of noise can

be considered by taking p1 = p2 = p4 = 1 in Eqs. (6)-

(8). Similarly, the effect of depolarizing channel reduces the

fidelity to

F =
1

2
[1 + Ω1 +Ω2 +Ω3] . (13)

A similar study for the BB84 protocol results in the following

fidelity over damping non-Markovian channels

F =
1

4
[2 +

√
p3 + p3] , (14)

while, for the dephasing channel the fidelity is

F =
1

4
[3 + p3] . (15)

Further, the fidelity when the travel qubit is subjected to a

depolarizing channel is

F =
1

2
[2 + Ω1 +Ω3] . (16)

Additionally, the present results can also be used to deduce

the fidelity for a few other quantum cryptographic schemes,

which will reflect quantitatively the effect of non-Markovian

channels on the corresponding scheme. For example, the ef-

fect of noise on Ekert’s QKD protocol [2] can also be deduced

from the results in Sec. III A, by taking p3 = p4 = 1 as the

source of entanglement is between both the parties, and both

the entangled qubits travel to Alice and Bob from there. Sim-

ilarly, the feasibility of the B92 protocol [3] can also be an-

alyzed over the non-Markovian channels in analogy with the

study for BB84 protocol by only considering two of the four

single qubit states (one each chosen from computational and

diagonal basis).

Finally, we perform a comparative study for the fidelity

obtained in each cryptographic scheme to reveal the general

nature of the effect of non-Markovian channels on all these

schemes (shown in Fig. 6). Interestingly, the effect of noise

depends on the number of rounds a qubit is required to travel

through the noisy channel. This fact is consistent with the re-

cent observations on a set of Markovian channels [20]. Specif-

ically, in the CQD scheme, one qubit travels from Charlie

to Bob, while another qubit travels from Charlie-Bob-Alice-

Bob. Therefore, the maximum number of rounds of travels in

the set of secure quantum communication schemes discussed

here is four for CQD scheme, which decreases to three for

CDSQC. It further reduces to two for QD, QSDC, DSQC,

and QKA schemes. The same fidelity for all these schemes

further establish this point. Finally, BBM and BB84 QKD

protocols require only one round of quantum communication.

In fact, BBM and BB84 protocols use entangled and single

qubit states, respectively, to accomplish the same task. Out of

these two schemes, the BB84 QKD scheme is least affected

by noise as it uses single qubit states, which were shown to be

less affected due to Markovian channels in [20].

In Fig. 6 (a) and (b), the fidelity variation over non-

Markovian channels due to the strong coupling of the travel

qubits with the environment is depicted. Similarly, the effect

of different noise parameters corresponding to depolarizing

channel is shown in Fig. 6 (c). Also shown is the effect of

Markovian environment on the fidelity in all three cases, de-

picted by thin smooth (black) lines. For all cases of Markovian

dynamics, the observation that the effect of noise depends on

the rounds of quantum communication remains valid.

From Fig. 6 (a), the revival in the fidelity over non-

Markovian damping channel is seen to decrease with an in-

crease in the number of travel qubits. Similarly, the fidelity

falls with increasing rounds of quantum communication when

subjected to dephasing non-Markovian channel, as shown in

Fig. 6 (b). Out of the set of fidelities, over the depolarizing

channel, those having odd power terms, such as for the CD-

SQC and QKD protocols, show fidelity less than that for the

corresponding Markovian case. Otherwise, in all the remain-

ing cases, the fidelity over non-Markovian channels is more

than that for the corresponding Markovian channels (cf. Fig.

6 (c)).
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Figure 6: (Color online) A comparative analysis of all the quan-

tum cryptographic schemes discussed so far over the non-Markovian

channels. Each line in all three plots corresponds to the different

cryptographic scheme mentioned in the plot legend at the bottom of

the figure. The light black lines in all three plots represent the cor-

responding Markovian cases, and the black lines from bottom to top

show the average fidelity for CQD, CDSQC, QD, BBM QKD, and

BB84 QKD protocols. The fidelity obtained for QSDC, DSQC, and

QKA schemes is exactly the same as that of the QD protocol.

IV. CONCLUSION

The present study on the effect of a set of non-Markovian

channels on various schemes for secure quantum communi-

cation tasks led to a number of interesting results. Specifi-

cally, we have considered here a damping, a purely dephas-

ing and a depolarizing non-Markovian channel to analyze the

feasibility of some quantum cryptographic schemes evolving

under the influence of the non-Markovian environments. We

have started with a CQD scheme, based on a quantum crypto-

graphic switch that uses Bell states. Later, this scheme is mod-

ified to deduce the results for other quantum cryptographic

tasks, such as, CDSQC, QSDC, DSQC. Apart from these

direct communication schemes, the effect of non-Markovian

noise on some protocols of QKD and QKA is also analyzed.

It has been established that the effect of non-Markovian

noise depends on the number of rounds of the travel qubits.

We have observed that the BB84 QKD scheme is least affected

due to non-Markovian channels, while the CQD scheme

shows a maximum fall in the fidelity. In fact, from the re-

sults obtained here one can also show that the AQD scheme

[21] will have the same effect as that on the QD protocol if

the number of travel qubits is kept unchanged. This fact is

consistent with the results obtained here, that the fidelity for

QSDC, DSQC, and QKA schemes are exactly the same as that

for the QD protocol. In the recent past, we have established

that squeezing is a useful quantum resource for quantum cryp-

tography as it can help to stop decoherence. Here, we have

shown that non-Markovianity can also be used to accomplish

a similar task.

Interestingly, the effect of noise on the CQD and CDSQC

schemes is found to depend on Chalie’s initial choice of the

Bell state, while it is independent of this in all the remaining

schemes. Finally, our analysis has also revealed that the fi-

delity obtained in the case of damping and dephasing chan-

nels depends on the coupling strength. We hope these re-

sults would bring out the importance and utility of the non-

Markovian behavior in the understanding of quantum crypto-

graphic protocols from the perspective of their practical im-

plementation.
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