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Abstract
The interplay between the various measures of quantum correlations are well known in stable optical and electronic systems.

Here, for the first time, we study such foundational issues in unstable quantum systems. Specifically we study meson-antimeson
systems, which are produced copiously in meson factories. We use the semigroup formalism to compute the time evolution
of several measures of quantum correlations for three meson systems (KK̄, BdB̄d and BsB̄s), circumventing difficulties which
arise using other methods due to the instability of these particles. We then compare these measures to one another and find
that the relations between them can be nontrivially different from those of their stable counterparts such as neutrinos.

PACS numbers: 03.65.Ta, 3.65.Yz, 14.40.Nd, 14.40.Df

I. INTRODUCTION

Quantum correlations in measurements performed on
multipartite systems provide a fertile testing ground for
foundational aspects of quantum physics. They are also
of central importance to potential applications such as
quantum communication, computation and cryptogra-
phy. They have been studied and applied in a variety
of physical contexts such as quantum optics and con-
densed matter systems (superconductors, spin systems,
etc.). More recently, attention has also been directed to-
wards subatomic physics [1–14], inspired by the technical
advances in high energy physics experiments, in particu-
lar the meson factories, reactor and accelerator neutrino
experiments.
The foundations of quantum mechanics are usually

studied in optical or electronic systems, where the inter-
play between the various measures of quantum correla-
tions is well know[15–20]. In these contexts, the detection
efficiency is much lower than that of the corresponding
detectors in high energy physics experiments, such as the
meson factories. It is therefore interesting and, as we will
see, fruitful to test the foundations of quantum mechan-
ics in unstable massive systems, such as the correlated
BB̄ and KK̄ systems, for which the interplay between
the various measures of quantum correlations have not
yet been studied.
Of course, testing quantum correlations requires a bi-

partite (or multipartite) system. B factories, electron-
positron colliders tailor-made to study the production
and decay of B mesons, and φ factories, which perform
the same function for K mesons, provide an ideal testing
ground. In the case of B factories, the collider energy is
tuned to the Υ resonance, so the first stage of the process
is e+e− → Υ. The Υ then decays into bb̄; these form a
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BqB̄q (q = s, d) pair through hadronization. All this hap-
pens essentially instantaneously. The B mesons then fly
apart and decay on a much longer time scale. An impor-
tant feature of these systems for the study of correlations
is the oscillations of the bottom and strangeness flavors
b ↔ s, giving rise to BB̄ oscillations, which have been
crucial to the study of CP violation in these systems.
Here we study a number of well-established measures of
quantum correlations in the B and K meson systems.
Such a study is complicated by the inherently unstable
nature of these particles, as a result of which the standard
Weisskopf-Wigner approach to time evolution [21, 22] re-
sults in ambiguities due to probability loss caused by the
decrease of the trace of the density matrix.

The treatment of unstable systems has a long and dis-
tinguished history [21–32], and continues to be of inter-
est today [33]. The requirement of causality prohibits a
physical state with complex energy [23], while the study
of decay of unstable states is facilitated by the use of
the density matrix formalism. This view is supported by
work on decaying systems using dynamical semigroups
[34], where deep theorems from analysis, such as the Sz.-
Nagy dilation theorem [35], were used to show that a uni-
tary evolution of an unstable system along with its decay
products is not feasible. Thus a decaying system is intrin-
sically an open system, even without explicitly invoking
an external environment, and as a result it can have sur-
prises not seen in its stable counterpart. This work [34]
also motivates the development of a feasible theory of
such systems using a semigroup approach, which in turn
is related to a superselection rule with respect to time
reversal symmetry. The Langer-Sz.-Nagy-Foias theorem
[35] theorem is used to provide the splitting of a semi-
group generator into unitary and non-unitary parts.

In this work we make use of the probability-preserving
formalism of decaying systems [34, 36] to study various
measures of quantum correlations in B and K mesons.
We find that the quantum correlations for these unsta-
ble systems can be nontrivially different from their sta-
ble counterparts. Also, it is not obvious how to perform
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experiments testing nonlocality, as quantified by Bell’s
inequality, for B mesons due to the absence of active

measurements [7, 8]. Despite this hurdle, the frame-
work of open quantum systems [16, 18, 37], adapted
to the probability-preserving formalism of decaying sys-
tems, enables us to make quantitative statements about
Bell inequality violations for correlated neutral K and
B mesons. The theory of open quantum systems asserts
that any real system interacts with its environment (here,
fluctuations of the quantum mechanical vacuum), result-
ing in loss of quantum coherence and the transformation
from pure to mixed states [38]. Thus this work elucidates
fundamental aspects of quantum mechanics of correlated
neutral meson systems, and more generally of unstable
quantum systems.

The notion of quantum entanglement was implicit in
the seminal 1935 paper of Einstein, Podolsky and Rosen
[39]. It was Schrödinger who later that year first coined
the term “entanglement” in a series of papers wherein he
also introduced his eponymous cat thought experiment
[40]. The subject was further developed with the con-
ception of experimental tests of quantum mechanics vs.

hidden-variable theories, in particular Bell’s inequality
[41] and refinements resulting in the Bell-CHSH (Clauser-
Horn-Shimony-Holt) inequalities [42]. Until recently, en-
tanglement was considered synonymous with quantum
correlations in that it was thought that one necessarily
implied the other. With the advent of quantum discord
[43–46], which quantifies the difference between the quan-
tum generalizations of two classically equivalent formula-
tions of mutual information, it became clear that quan-
tum correlations are broader than entanglement. In gen-
eral, it is very difficult to obtain an analytical formula for
quantum discord because it involves an optimization over
local measurements, requiring numerical methods [47].
To overcome this difficulty, another measure of quantum
correlation called geometric discord was introduced in
[48]. This quantifies the amount of non-classical correla-
tion of an arbitrary quantum composite system in terms
of its minimal distance from the set of classical states.
Along with these measures, another important facet of
quantum correlations is its operational aspect. Telepor-
tation fidelity occupies an important place here and was
developed to provide an operational meaning to entan-
glement [19, 49].

The plan of this work is as follows. In the next section
we set up the two-meson system, treating each meson
as a state in a Hilbert space consisting of one-particle
and zero-particle sectors. The relevant tool for comput-
ing quantum correlations is the density matrix projected
down to the two-particle sector. In the following sec-
tion various correlation measures are computed. We then
summarize our results and highlight the main surprising
result, which is that the relations between the correla-
tion measures we consider can be different from the cor-
responding relations for stable systems.

II. MM̄ AS AN OPEN QUANTUM SYSTEM

For the B system, imagine the decay Υ → bb̄ followed
by hadronization into a BB̄ pair. In the Υ rest frame,
the mesons fly off in opposite directions (left and right,
say); since the Υ is a spin-1 particle, they are in an anti-
symmetric spatial state. The same considerations apply
to the K system, with the Υ replaced by a φ meson.
The flavor-space wave function of the correlated MM̄

meson systems (M = K, Bd, Bs) at the initial time t = 0
is

|ψ(0)〉 = 1√
2

[∣

∣MM̄
〉

−
∣

∣M̄M
〉]

, (1)

where the first (second) particle in each ket is the one
flying off in the left (right) direction and |M〉 and

∣

∣M̄
〉

are flavor eigenstates. As can be seen from (1), the initial
state of the neutral meson system is a singlet (maximally
entangled) state. The usual analysis of such systems is
done using a trace-decreasing density matrix description
of the state (see for example [31]). However, such an ap-
proach may not be very useful for calculating quantum
correlations, the subject of interest in this work. This
is because the usual methods for computing quantum
correlations require a trace-preserving, completely posi-
tive description of the system. The semigroup formalism
enables the calculation of a trace-preserving density ma-
trix. We also incorporate the effects of decoherence in our
calculations, providing a uniform formalism for studying
correlations in neutral meson systems.
The Hilbert space of a system of two correlated neutral

mesons, as in (1), is

H = (HL ⊕H0)⊗ (HR ⊕H0) , (2)

where HL,R are the Hilbert spaces of the left-moving and
right-moving decay products, each of which can be either
a meson or an anti-meson, and H0 is that of the zero-
particle (vacuum) state. Thus the total Hilbert space
can be seen to be the tensor sum of a two-particle space,
two one-particle spaces, and one zero-particle state. The
initial density matrix of the full system is

ρH(0) = |ψ(0)〉 〈ψ(0)| . (3)

The system, initially in the two-particle subspace,
evolves in time into the full Hilbert space, eventually (af-
ter the decay of both particles) finding itself in the vac-
uum state. As can be appreciated from basic notions of
quantum correlations such as entanglement, one needs to
have two parties to correlate. For this we need to project
from the full Hilbert space (2) down to the two-particle
sector HL⊗HR, resulting in the following density matrix
for the correlated neutral meson system:

ρ(t) =
1

4







a− 0 0 −a−
0 a+ −a+ 0
0 −a+ a+ 0

−a− 0 0 a−






, (4)
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where we have used the basis
{|MM〉 ,

∣

∣MM̄
〉

,
∣

∣M̄M
〉

,
∣

∣M̄M̄
〉

} and a± = 1 ± e−2λt.
This expression is trace-preserving and is obtained by
writing ρH(t) in the operator-sum representation and
then performing the partial trace. We have neglected
the effects of CP violation; however, its inclusion would
not affect our results significantly.
The approach used here can also be effectively applied

to study observables of central importance in particle
physics [50]. For example, several important observables
that are used to characterize meson decay processes can
be developed using the above density matrix. Any physi-
cal observable of the neutral B-meson system is described
by a suitable hermitian operator O. Its evolution in time
can be obtained by taking its trace with the density ma-
trix ρ(t), Tr [Of ρ(t)], and from this standard results per-
tinent to the meson systems can be derived. Hence, both
quantum correlations as well as standard studies in par-
ticle physics can be carried out in a unified manner with
the formalism used in this work.

III. INTERPLAY OF QUANTUM CORRELA-

TIONS IN NEUTRAL MESON SYSTEMS

Using the density matrix (4), we study the interplay
of quantum correlations in our systems. We begin with
Bell’s inequality which was one of the first tools used to
analyze and detect entanglement. Its physical content is
that a system that can be described by a local realistic
theory will satisfy this inequality. However, quantum
mechanics seems to take delight in violating it [51]! It
is worth testing for such a violation in EPR-correlated
B and K meson systems. Given a pair of qubits in the
state ρ, we define the correlation matrix T by Tmn =
Tr [ρ(σm ⊗ σn)]; let ui (i = 1, 2, 3) be the eigenvalues of
the matrix T †T . Then the Bell-CHSH inequality can be
written M(ρ) < 1, where M(ρ) = max(ui + uj) (i 6= j)
[19]. For the state (4), M(ρ) is given by

M(ρ) = (1 + e−4λt). (5)

Since Bell’s inequality is not able to detect all possible
entangled states, there is a need for some kind of measure
which will quantify the amount of entanglement present
in the system. A well-known measure of entanglement is
concurrence, which for a two-qubit system is equivalent
to the entanglement of formation. For a mixed state ρ of
two qubits, the concurrence is [52]

C = max(λ1 − λ2 − λ3 − λ4, 0), (6)

where λi are the square root of the eigenvalues, in
decreasing order, of the matrix ρ

1

2 (σy ⊗ σy)ρ
∗(σy ⊗

σy)ρ
1

2 where ρ is computed in the computational basis
{|00〉, |01〉, |10〉, |11〉}. For the state (4), concurrence has
the simple analytical form

C = e−2λt. (7)

A similar result was also obtained in [4]. The entangle-
ment of formation can then be expressed as a monotonic
function of concurrence C as

EF = −1 +
√
1− C2

2
log2(

1 +
√
1− C2

2
)

−1−
√
1− C2

2
log2(

1−
√
1− C2

2
). (8)

As noted above, entanglement and quantum correla-
tions need not be identical. Quantum discord attempts to
reveal the quantum advantage over classical correlations.
For the case of two qubits, geometric discord was shown
[48] to be DG(ρ) =

1
3
[‖~x‖2 + ‖T‖2 − λmax(~x~x

† + TT †)]
where T is the correlation matrix defined above, ~x is the
vector whose components are xm = Tr(ρ(σm ⊗ I2)), and
λmax(M) is the maximum eigenvalue of the matrix M .
Here it can be seen that DG(ρ) =M(ρ)/3, in consistence
with the findings in [53].
Teleportation provides an operational meaning to en-

tanglement. The classical fidelity of teleportation in the
absence of entanglement is 2/3. Thus, whenever Fmax >
2/3, teleportation is possible. Interestingly, this does not
rule out the possibility of entangled states that, while
they do not violate Bell’s inequality, can nonetheless be
useful for teleportation. Fmax is easily computed in terms
of the eigenvalues {ui} of T †T mentioned earlier: it is
Fmax = 1

2

(

1 + 1
3
N(ρ)

)

where N(ρ) =
√
u1 +

√
u2 +

√
u3.

The calculation of Fmax for the state (4) gives

Fmax =
1

12

[

6 + 2e−2λt +
√
2

√

α−
√

β +
√
2

√

α+
√

β
]

,

(9)
where

α = 1 + cosh(4λt)− sinh(4λt), (10)

β = 3− 2α+ cosh(8λt)− sinh(8λt). (11)

Thus we see that for λ = 0, EF = Fmax. A useful in-
equality involving M(ρ) and Fmax is [19]:

Fmax ≥ 1

2

(

1 +
1

3
M(ρ)

)

≥ 2

3
if M(ρ) > 1. (12)

We will see that this can be violated for unstable systems.
To take into account the effect of decay in the systems

under study, the various correlations are modified by the
probability of survival of the pair of particles up to that
time, which can be shown to be e−2Γt, where Γ is the
meson decay width. For the K meson, Γ = 1

2
(ΓS + ΓL)

(where ΓS and ΓL are the decay widths of short and
long neutral kaon states, respectively); its value is 5.59×
109 s−1 [54]. The decay widths for Bd and Bs mesons are
6.58× 1011 s−1 and 6.61× 1011 s−1, respectively [55].
The parameter λ models the effect of decoherence. In

the case of the K meson system, its value has been ob-
tained by the KLOE collaboration by studying the in-
terference between the initially entangled kaons and the
decay product in the channel φ→ KSKL → π+π−π+π−

[56]. The value of λ is restricted to 1.58 × 109 s−1 at
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3σ. In the case of B meson systems, the decoherence
parameter is determined by using time-integrated dilep-
ton events. The value of λ, for Bd mesons, is determined
by the measurement of ratio of the total same-sign to
opposites-sign semileptonic rates, Rd, and is restricted
to 2.82 × 1011 s−1 at 3σ [57]. However there has been
no experimental update for Rd since [58] two decades.
For Bs mesons, to the best of our knowledge, there is no
experimental information about λ so we will take it to
be zero in what follows. The results for K and B meson
systems are shown in Fig. 1.

The nonclassicality of quantum correlations, in the
neutral mesons, can be characterized in terms of nonlo-
cality (which is the strongest condition), entanglement,
teleportation fidelity or weaker nonclassicality measures
like quantum discord. The fall in the pattern of the av-
erage value of these correlations, as shown in Fig. 1, are
in accord with the fact that here we are dealing with un-
stable particles, which decay with time. From the left
panel of Fig. 1, one can see that until about 50% of the
average life time of KS meson in the presence of deco-
herence and about 60% in its absence, Bell’s inequality
is violated. This means that, in the conventional sense,
until this time, the time evolution cannot be simulated
by any local realistic theory. However, we find that even
if Bell’s inequality is violated (M(ρ) > 1), the telepor-
tation fidelity Fmax could be below the classical value of
2/3. For example, from the left panel of Fig. 1, it is seen
that, in the absence of decoherence, Fmax drops below
2/3 as M(ρ) drops below 1.3, in violation of the inequal-
ity (12) [19] according to which the cutoff is M(ρ) = 1.
This violation is slightly reduced, but nonetheless still
occurs, even in the presence of decoherence, starting at
M(ρ) ≃ 1.2. This is consistent with the degradation of
correlations with decoherence.

The violation can be understood mathematically since
the individual measures of correlation are modulated by
a factor e−2Γt. Since (12) contains constant terms which
are not modulated, it is affected by these modulations.

Thus we see that the study of quantum correlations
in unstable systems is nontrivially different from their
stable counterparts. However, there are some similarities
as well. In particular, the average geometric discord is
always bounded from above by the average entanglement
of formation. This is consistent with the fact that discord
is a weaker measure of quantum correlations compared
to entanglement [53]. From the middle and right panel
of Fig. 1, we see that the above conclusions hold also for
Bd and Bs meson systems, respectively. Here we would
like to point out that the nontrivial differences between
the meson systems and their stable counterparts is only
due to the decaying nature of the system and not due to
oscillations. This is borne out by the fact that a study of
quantum correlations in a stable, oscillating subatomic
system such as a neutrino, shows no such deviation [14].

From Fig. 1, we see that the spread in the various
correlations, corresponding to 3σ upper bound on the
decoherence parameter λ, is more prominent for the Bd,

compared to the K meson system. This is because of
the choice of time scales used in the plots. In the case
of K mesons, the time scale is 10−10s, which is roughly
the average lifetime of the KS mesons; whereas in the
case of Bd and Bs mesons, the time scale is picosecond,
which is roughly the average life time of these mesons.
As can be seen from (4), the coherences in the system,
of which the correlations would be a function, depend
upon the evolution time t and the decoherence parameter
λ, as a function of λt. Thus from the values of λ’s for
these systems (see below (4)), it can be easily inferred
that the effect of decoherence is more prominent, in the
chosen time scales, for the Bd meson as compared to the
K meson system. This is consistent with Fig. 1.

IV. CONCLUSIONS

To conclude, in this work we have studied a number of
aspects of quantum correlations in correlated neutral me-
son systems, viz. neutral K, Bd and Bs mesons. This is
nontrivial given the fact that the mesons decay with time.
This was accomplished by using the semigroup formal-
ism, well known in the study of open quantum systems.
We have also studied the impact of decoherence on vari-
ous correlation measures in these systems. We found that
the quantum correlations here can be nontrivially differ-
ent from their stable counterparts. This was made ex-
plicit by the interplay between Bell’s inequality and tele-
portation fidelity. On average, Bell’s inequality in these
correlated-meson systems is violated for about half of the
meson lifetime. One particularly surprising result is that
teleportation fidelity does not exceed the classical thresh-
old of 2/3 for all Bell’s inequality violations. This behav-
ior, not seen in stable systems, is interesting since one of
the cornerstones in the field of quantum information is
the interplay between Bell’s inequality and teleportation
fidelity. This surprising behavior is due to the decaying
nature of the parent system and not due to flavor os-
cillations. There are some similarities as well. This is
particularly seen by the fact that entanglement provides
an upper bound to discord at all times. This is the crux
that provides insight into the differences/similarities in
quantum correlations in these meson systems in compar-
ison to their stable counterparts. Thus this work provides
important insight into foundational issues in the context
of quantum mechanics of unstable subatomic particles,
and presumably other unstable systems as well.
On the experimental front, our results can impact

probing the nonlocality of B mesons, in particular the
Bell’s inequality, which, at present, leads to difficulties
due to the lack of active measurements. Also, the mea-
surement of decoherence parameter in the Bs mesons can
provide insight into the fundamental nature of these sys-
tems. This work could hopefully motivate future experi-
ments (or reanalysis of past experimental results such as
the wealth of results from decommissioned B factories)
to probe these issues.
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FIG. 1. (color online) Average correlation measures as a function of time t. The left, middle and right panels correspond to the
correlations of a KK̄, BdB̄d and BsB̄s pair created at t = 0, respectively. The four correlation measures are (top to bottom):
M(ρ) (Bell’s inequality; blue band), Fmax (teleportation fidelity; red band), EF (entanglement of formation; grey band) and
DG (geometric discord; green band). For KK̄ pairs, left panel, time is in units of 10−10 seconds whereas for the BdB̄d and
BsB̄s pairs, time is in units of 10−12 seconds (in all cases, the approximate lifetime of the particles). In the left and middle
panels, the bands represent the effect of decoherence corresponding to a 3σ upper bound on the decoherence parameter λ. The
right panel has no such bands because there is currently no experimental evidence for decoherence in the case of Bs mesons;
for this case, Fmax = EF .
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