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We study bipartite entangled states in arbitrary dimensions and obtain different bounds for the entanglement

measures in terms of teleportation fidelity. We find that there is a simple relation between negativity and tele-

portation fidelity for pure states but for mixed states, an upper bound is obtained for negativity in terms of

teleportation fidelity using convex-roof extension negativity (CREN). However, with this it is not clear how

to distinguish betweeen states useful for teleportation and positive partial transpose (PPT) entangled states.

Further, there exists a strong conjecture in the literature that all PPT entangled states, in 3 × 3 systems, have

Schmidt rank two. This motivates us to develop measures capable of identifying states useful for teleporta-

tion and dependent on the Schmidt number. We thus establish various relations between teleportation fidelity

and entanglement measures depending upon Schmidt rank of the states. These relations and bounds help us to

determine the amount of entanglement required for teleportation, which we call the “Entanglement of Telepor-

tation”. These bounds are used to determine the teleportation fidelity as well as the entanglement required for

teleportation of states modeled by a two qutrit mixed system, as well as two qubit open quantum systems.

PACS numbers: 03.65.Yz, 03.65.Ud, 03.67.Mn

I. INTRODUCTION

Entanglement [1] lies at the heart of quantum mechanics.

For a long time it was considered synonymous with quan-

tum correlations but is now regarded as a subset of quantum

correlations, see for example [2]. Entanglement plays a piv-

otal role in various information processing tasks, including,

among others, quantum teleportation [3], super dense coding

[4], remote state preparation [5], secret sharing [6], and quan-

tum cryptography [7].

In quantum teleportation, using entangled states as re-

source, it is possible to transfer quantum information from an

unknown qubit to another one placed at a distance. Thus, one

of the party, say, Alice makes a two qubit measurement on

her qubit and the unknown state in Bell basis, and sends the

measurement results through a classical channel to the sec-

ond party, say, Bob (who is located away from Alice). Ac-

cordingly, Bob makes appropriate unitary transformations to

obtain the desired state. Thus the ability of teleporting an un-

known state depends on the nature of entanglement of the re-

source state and is called teleportation fidelity.

The situation is very straight forward when we have an un-

known qubit to send with the help of a pure entangled state as

a resource. However, it is more involved when we have mixed

entangled states as a medium of teleportation. For a general

two qubit density matrix ρ = 1
4 [I ⊗ I +

∑

i ri(σi ⊗ I) +
∑

j sj(I ⊗ σj) +
∑

i,j tij(σi ⊗ σj)], the teleportation fidelity

is a function of the eigenvalues of correlation matrix T = [tij ].
Similarly, when we go from qubits to higher dimensional bi-

partite states the teleportation fidelity is expressed in terms of

the singlet fraction of the state. The relation between optimal

teleportation fidelity F (ρ) and maximal singlet fractionf(ρ)
in a d⊗ d system, if one performs quantum teleportation with

the state ρ, is [8]

F (ρ) =
df(ρ) + 1

d+ 1
. (1)

Here the singlet fraction is defined as, f(ρ) =
max|ψ〉〈ψ|ρ|ψ〉, and |ψ〉 is a maximally entangled state

in d ⊗ d. If f(ρ) > 1
d then the parties can perform quantum

teleportation with the average fidelity of the teleported qubit

exceeding the classical limit 2
d+1 .

In bipartite two qubit states it is known that the total amount

of entanglement present in the resource state is useful for tele-

portation. Then one can ask the following question: How

much entanglement is necessary for teleporting an unknown

state when we have a bipartite state in arbitrary dimensions?

To answer this question one has to quantify the entanglement

and find out for what range of entanglement the state can be

used as a resource for teleportation. In other words, one needs

to establish a relationship between the amount of entangle-

ment and teleportation fidelity. We establish various relations

between teleportation fidelity and entanglement measures de-

pending upon Schmidt rank [9, 10] of the states. These rela-

tions and bounds help us to answer the above question. Given

an arbitrary two-qudit state with Schmidt rank upto three we

can predict its utility as a resource for teleportation.

Negativity [11] is a measure of entanglement of a bipartite

quantum state described by the density operator ρ and is for-

mally defined in d× d systems as

N(ρ) =
||ρTA || − 1

d− 1
, (2)

where ρTA is a partial transpose of ρ with respect to the sys-

tem A and ||.|| denotes the trace norm. Negativity fails to

distinguish separable states from PPT entangled states, that is,

bound entangled states. This difficulty can be overcome by

the use of convex-roof extension of negativity (CREN) [12].

There is strong evidence in 3×3 systems that bound entan-

gled states exist only for states with Schmidt rank two [13].

Thus the entangled states with Schmidt rank three would, pre-

sumably, be useful for teleportation. This provides a strong

motivation to study the states with Schmidt rank three from

the perspective of teleportation fidelity. The Schmidt num-
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ber is a very useful entanglement measure [14]. In the liter-

ature, there exists different kinds of entanglement measures,

expressed in terms of Schmidt numbers, suitable for quantifi-

cation of the amount of entanglement present in the system.

We quantify the amount of entanglement present in the re-

source state to find out the bounds within which these states

can be useful for teleportation. Thus, we obtain relations con-

necting entanglement measures with teleportation fidelity us-

ing CREN as well as singlet fraction, expressed in terms of

Schmidt coefficients. Our results are obtained for arbitrary

dimensional bipartite states with at most three non vanish-

ing Schmidt coefficients. We implement our results to de-

tect mixed states useful for teleportation. A monotonous

relation between entanglement and teleportation fidelity in

mixed two qudit systems could be expected from [15], where

a monotonous connection between entanglement and singlet

fraction, and hence teleportation fidelity, was established for

two qubit mixed states.

The plan of the paper is as follows. In Section 2, we study

the relation between negativity and teleportation fidelity for

pure as well as mixed systems. Based on our conclusions

from Section 2, we establish a relation between singlet frac-

tion and different types of entanglement measures for arbitrary

dimensional pure two qudit system with a maximum of three

Schmidt coefficients in Section 3. Then we study the bounds

of teleportation fidelity and entanglement measures for two

special cases, i) arbitrary dimensional pure bipartite state with

two Schmidt coefficients, and ii) arbitrary dimensional pure

bipartite state with three Schmidt coefficients. These results

are used in section 3 (B) to arbitrary dimensional mixed bi-

partite systems with Schmidt coefficients two and three. In

section 4, we apply our results on examples of mixed states,

in particular, two qutrit mixed state with Schmidt rank two,

and two qubit mixed states generated dynamically by an open

system model. Finally, we conclude in section 5.

II. RELATION BETWEEN NEGATIVITY AND

TELEPORTATION FIDELITY FOR d⊗ d SYSTEMS

Here we study the relation between negativity and telepor-

tation fidelity for pure as well as mixed systems.

A. Pure Systems

LetHA andHB be two Hilbert spaces each with dimension

d. In d⊗ d system, any pure state |Ψ〉 can be expressed as

|Ψ〉 =
d
∑

i=1

√

λj |j〉|j〉. (3)

The negativity of the state |Ψ〉 is defined as

N(|Ψ〉) = 2

d− 1

∑

i<j

√

λiλj . (4)

The singlet fraction for any pure state in d⊗d system is given

by

f(|Ψ〉) = 1

d

(

d
∑

i=1

√

λi

)2

. (5)

The relation between negativity and singlet fraction is given

by [16]

N(|Ψ〉) = df(|Ψ〉)− 1

d− 1
. (6)

In terms of teleportation fidelity, Eq. (6) reduces to

F (|Ψ〉) = 2

d+ 1
+

(d− 1)N(|Ψ〉)
d+ 1

. (7)

Therefore, it follows that every entangled pure state in a d⊗ d
system is useful for teleportation.

B. Mixed Systems

A bipartite mixed state described can be described by the

density operator ρ

ρ =
∑

i

pi|Ψi〉〈Ψi|. (8)

The negativity of the mixed state ρ can be extended from the

pure state by means of convex roof, that is, convex-roof ex-

tended negativity (CREN) [12]:

N(ρ) = min
{pi,|Ψi〉}

∑

i

piN(|Ψi〉). (9)

The upper bound of the negativity of the mixed state ρ can be

expressed in terms of the singlet fraction as

N(ρ) = min
{pi,|Ψi〉}

∑

i

piN(|Ψi〉)

≤
∑

i

piN(|Ψi〉)

=
d

d− 1

∑

i

pif(|Ψi〉)−
1

d− 1
. (10)

In terms of teleportation fidelity, the bound on negativity is

N(ρ) ≤ d+ 1

d− 1

∑

i

piF (|Ψi〉)−
2

d− 1
. (11)

The above inequality (11) measures the upper bound of entan-

glement contained in the mixed state ρ. From this, it is clear

that CREN detects both PPT bound entangled states as well as

states useful for teleportation. However, it is not clear how to

distinguish between these two classes of states. Further, there

exists a strong conjecture in the literature [13] that all PPT

entangled states, in 3 × 3 systems, have Schmidt rank two.

This motivates us to develop measures capable of identifying

states useful for teleportation and dependent on the Schmidt

number.
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III. RELATION BETWEEN SINGLET FRACTION AND

DIFFERENT ENTANGLEMENT MEASURES FOR TWO

QUDIT SYSTEM WITH THREE SCHMIDT COEFFICIENTS

In this section we obtain an explicit relation that will con-

nect entanglement monotones with singlet fraction for a two

qudit system of arbitrary dimension. We obtain results in d⊗d
systems with two and three non zero Schmidt coefficients.

A. Bounds on entanglement measures for pure two qudit

systems useful for teleportation

Let us consider a bipartite d ⊗ d system in which three

Schmidt coefficients are non zero. Without any loss of gen-

erality we assume that the first three Schmidt coefficients are

non zero. Any pure two qudit system with three non zero

Schmidt coefficients λ1, λ2 and λ3 can be written in Schmidt

decomposition form as,

|Ψd〉 =
√

λ1|00〉+
√

λ2|11〉+
√

λ3|22〉, (12)

with the Schmidt coefficients summing to one, i.e., λ1 +λ2 +
λ3 = 1. To quantify the amount of entanglement in |Ψd〉 we

consider two different entanglement measures E(d,2)(|Ψd〉)
and E(d,3)(|Ψd〉) which can be defined as [17],

E(d,2)(|Ψd〉) =
√

2d

d− 1
(λ1λ2 + λ2λ3 + λ1λ3), (13)

E(d,3)(|Ψd〉) =
( 6d2

(d− 1)(d− 2)

)
1

3

(λ1λ2λ3)
1

3 . (14)

Here E(d,2)(|Ψd〉) and E(d,3)(|Ψd〉) denote entanglement

measure for a d ⊗ d dimensional pure system defined by tak-

ing the sum of the product of the Schmidt coefficients taken

two or three at a time, respectively. We note that for a Schmidt

rank two state, E(d,3)(|Ψd〉) = 0 but E(d,2)(|Ψd〉) 6= 0.

The singlet fraction for the state |Ψd〉 is defined as

f(|Ψd〉) = max
|Φ〉

|〈Φ|Ψd〉|2, (15)

where the maximum is taken over all maximally entangled

states |Φ〉 in d ⊗ d systems. The singlet fraction f(|Ψd〉) for

pure state |Ψd〉 can also be expressed in terms of Schmidt co-

efficients [18] as

f(|Ψd〉) = 1

d

(

√

λ1 +
√

λ2 +
√

λ3

)2

. (16)

Expanding the the right hand side part of Eq. (16) and using

λ1 + λ2 + λ3 = 1, we get

√

λ1λ2 +
√

λ2λ3 +
√

λ1λ3 =
df(|Ψd〉)− 1

2
. (17)

Also, we have the following identity

λ1λ2 + λ2λ3 + λ1λ3 = (
√

λ1λ2 +
√

λ2λ3 +
√

λ1λ3)
2

−2
√

λ1λ2λ3(
√

λ1 +
√

λ2 +
√

λ3).(18)

Using (13), (14), (16), (17) and (18) we have

(E(d,2)(|Ψd〉))2 =
d3

2(d− 1)

(

f(|Ψd〉)− 1

d

)2

− 4

d− 1

√

d(d− 1)(d− 2)

6
(E(d,3)(|Ψd〉)) 3

2

×
√

f(|Ψd〉). (19)

This establishes the required relationship between the en-

tanglement measures E(d,2)(|Ψd〉) and E(d,3)(|ψd)〉 with the

singlet fraction f(|Ψd〉) for a pure two qudit system |Ψd〉 with

three non vanishing Schmidt coefficients.

Next, we will consider separately the cases of states of

Schmidt ranks two and three, respectively. For purpose of

clarity, in the discussions to follow, we modify the notation of

the entanglement measures discussed above, as E
d,i
j , where

d stands for the d ⊗ d dimensional system, j indicates the

Schmidt rank of the state under consideration and i is the num-

ber of coefficients taken at a time.

1. States with Schmidt Rank Two

When one of the Schmidt coefficients (say, λ3) is zero, i.e.,

E
(d,3)
2 (|Ψd〉) = 0, from Eq. (19), we have

E
(d,2)
2 (|Ψd〉) =

√

d3

2(d− 1)

(

f2(|Ψd〉)−
1

d

)

, (20)

where, f2(|Ψd〉) denotes the singlet fraction of Schmidt rank

two state, and f2(|Ψd〉) > 1
d . If F2(|Ψd〉) denotes the telepor-

tation fidelity of Schmidt rank two states, then E
(d,2)
2 (|Ψd〉)

can be expressed in terms of F2(|Ψd〉) as

E
(d,2)
2 (|Ψd〉) =

√

d3

2(d− 1)

[

(d+ 1)F2(|Ψd〉)− 2

d

]

. (21)

This establishes the relation between the entanglement mono-

tone and teleportation fidelity of Schmidt rank two states. If

the state |Ψd〉 has Schmidt number two and useful for telepor-

tation, then we have [20]

1

d
< f2(|Ψd〉) ≤

2

d
. (22)

Eq. (22) can be recast in terms of teleportation fidelity as

2

d+ 1
< F2(|Ψd〉) ≤

3

d+ 1
. (23)

Using Eq. (23), E
(d,2)
2 (|Ψd〉) can be seen to be bounded as

0 < E
(d,2)
2 (|Ψd〉) ≤

√

d

2(d− 1)
. (24)

When the amount of entanglement lies in the above range we

can use the state for teleportation. This quantifies the entan-

glement required for teleportation for a pure qudit state with

two non-vanishing Schmidt coefficients.
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2. States with Schmidt Rank Three

Next we take up sates where none of the three Schmidt co-

efficients are zero, i.e., E
(d,3)
3 (|Ψd〉) 6= 0.

Using the well known result of arithmetic mean (AM) being

greater than or equal to geometric mean (GM) on three real

quantities
√
λ1λ2,

√
λ1λ3 and

√
λ2λ3, we have

√
λ1λ2 +

√
λ1λ3 +

√
λ1λ3

3
≥
(

√

λ1λ2
√

λ1λ3
√

λ2λ3

)
1

3

.

(25)

Using Eqs. (14), and (17), we have

f3(|Ψd〉) ≥
6

d

[

( (d− 1)(d− 2)

6d2

)
1

3

E
(d,3)
3 (|Ψd〉)

]

+
1

d
.(26)

Since, the singlet fraction f3(|Ψd〉) attains its maximum value

unity at λ1 = λ2 = λ3 = 1
d , we have

6

d

[

( (d− 1)(d− 2)

6d2

)
1

3

E
(d,3)
3 (|Ψd〉)

]

+
1

d

≤ f3(|Ψd〉) ≤ 1. (27)

In terms of teleportation fidelity F3(|Ψd〉), the above inequal-

ity can be expressed as

2

d+ 1
+

6

d+ 1

( (d− 1)(d− 2)

6d2

)
1

3

E
(d,3)
3 (|Ψd〉)

≤ F3(|Ψd〉) ≤ 1. (28)

Hence, pure entangled states with E
(d,3)
3 (|Ψd〉) satisfying Eq.

(28) and teleportation fidelity F3(|Ψd〉) > 2
d+1 are Schmidt

rank three states useful for teleportation.

B. Bounds on entanglement measures for mixed two qudit

systems useful for teleportation

In this section we would like to answer the following ques-

tions : (i) What is the minimum amount of entanglement

needed to perform teleportation when the mixed state eith

Schmidt rank two is used as a resource in a d ⊗ d system?

(ii) What is the minimum amount of entanglement needed to

perform teleportation when the mixed state with Schmidt rank

three is used as resource in a d⊗ d system?

Let us consider a mixed qudit state described by the den-

sity operator ρ =

n
∑

i=1

piρi, where
∑n
i=1 pi = 1 and ρi

(= |ψi〉〈ψi|) are composite pure states. The singlet fraction

f(ρ) of the state ρ is defined as

f(ρ) = max
U

〈ψ+|U † ⊗ IρU ⊗ I|ψ+〉, (29)

where U is the unitary matrix, I is the identity matrix and

|ψ+〉 = 1√
d

d−1
∑

k=0

|kk〉 represents a pure maximally entangled

state.

The entanglement measure E(d,2)(|Ψd〉) and E(d,3)(|Ψd〉)
given in Eqs. (13) and (14) for pure states can also be defined

for a mixed state ρ as

E(d,2)(ρ) = min

n
∑

i=1

piE
(d,2)(ρi), (30)

and

E(d,3)(ρ) = min

n
∑

i=1

piE
(d,3)(ρi). (31)

Here the minimum is taken over all pure state decompositions

of ρ. Now one may ask a question that, like entanglement

measures, does the singlet fraction f(ρ) also have the property

[19]

f(ρ) = min
∑

pif(ρi), (32)

where the minimum is taken over all decomposition of ρ. Un-

fortunately, the answer is no.

1. Two qudit mixed state of Schmidt rank two

From Eq. (19), E
(d,2)
2 (ρi) for any bipartite pure qudit state

with Schmidt rank two ρi whose f2(ρi) = 1
d , i.e., for states

not useful for teleportation, we have

E
(d,2)
2 (ρi) = 0. (33)

In general for any bipartite pure qudit state with Schmidt rank

two ρi useful for teleportation, the entanglement E
(d,2)
2 is

E
(d,2)
2 (ρi) =

√

d3

2(d− 1)

(

f2(ρi)−
1

d

)

. (34)

Using Eqs. (30) and (34), we have

E
(d,2)
2 (ρ) = min

∑

i

pi

√

d3

2(d− 1)

(

f2(ρi)−
1

d

)

≤
∑

i

pi

√

d3

2(d− 1)

(

f2(ρi)−
1

d

)

<

√

d

2(d− 1)
, (35)

where the last inequality follows from an application of Eq.

(22). Hence, if the mixed state ρ with Schmidt rank two in a

d⊗ d system is useful for teleportation then

0 < E
(d,2)
2 (ρ) <

√

d

2(d− 1)
. (36)
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2. Two qudit mixed state of Schmidt rank three

Using, once again, the result of arithmetic mean (AM) be-

ing greater than or equal to geometric mean (GM) on three

real quantities λ1λ2, λ1λ3 and λ2λ3 and Eqs. (13), (14) we

obtain the following bound on E
(d,3)
3 (ρ) for two qudit mixed

states with Schmidt rank three:

0 < E
(d,3)
3 (ρ) <

[d(d− 1)

6

]
1

6 1

(d− 2)1/3
. (37)

Comparing Eqs. (37) and (36), we can see that if the entangle-

ment lies in the range
√

d
2(d−1) to

[

d(d−1)
6

]
1

6 1
(d−2)1/3

it can

be concluded that the state is of Schmidt rank three.

IV. ILLUSTRATIONS AND APPLICATIONS

In this section we provide examples of qubit and qutrit

mixed states as applications of our results. This paves the

way for detecting states which are useful for teleportation as

well as to quantify the amount of entanglement required for

teleportation, in realistic settings.

A. Two qutrit mixed states with Schmidt rank two

We consider a two qutrit mixed state with Schmidt rank two

[10] given by

ρf =
5p

p+ 2
ρc +

2(1− 2p)

p+ 2
|φ〉〈φ|; 0 ≤ p ≤ 1

2
, (38)

where, ρc =
1
2 (|χ0〉〈χ0|+ |χ1〉〈χ1|). This decomposition for

state ρf is optimal. Here, |χ0〉 and |χ1〉 are of the form |χ0〉 =
√

3
5 |ψ〉+

√

2
5 |φ〉 and |χ1〉 =

√

3
5 |ψ〉 −

√

2
5 |φ〉, respectively,

and the states |ψ〉, |φ〉 are given by, |ψ〉 = 1√
3
(|00〉 + |11〉 −

e
iπ
3 |22〉) and |φ〉 = 1√

2
(|00〉 + |11〉). Also, p is the classical

probability of mixing.

We check whether the bounds on E
(3,2)
2 (ρi) works for the

above density matrix. For 3 ⊗ 3 dimension, E
(3,2)
2 (ρf ) (see

Eq. (35)) becomes

E
(3,2)
2 (ρf ) =

3
√
3

2

(

min
∑

i

pif2(ρi)

)

−
√
3

2

=
3
√
3

2

(

min
{p}

[

1 + p

2 + p

])

−
√
3

2

=

√
3

4
; for p = 0. (39)

In this calculation we have used the appropriate maximally

entangled basis given in [21]. From Eqs. (39) and (24), it can

be seen that the state (in Eq. (38)) is useful for teleportation.

B. States generated as a result of Two-Qubit Interaction with a

Squeezed Thermal Bath

Open quantum systems is the systematic study of the evo-

lution of the system of interest, such as a qubit, under the in-

fluence of its environment, also called the bath or the reser-

voir. This results in decoherence and dissipation. Consider

the Hamiltonian H = HS +HR +HSR; where S stands for

the system of interest, R for reservoir and SR for the system-

reservoir interaction. Depending upon the system-reservoir

interaction, open systems can be classified into two broad cat-

egories, viz., dissipative or QND (quantum non-demolition).

In case of QND dephasing occurs without damping the sys-

tem, i.e., where [HS , HSR] = 0 while decoherence along with

dissipation occurs in dissipative systems, i.e., [HS , HSR] 6= 0.

[22–24].

1. States generated as a result of Two-Qubit Open System

Interacting with a Squeezed Thermal Bath via a Dissipative

Interaction

Here we study the dynamics of the bound [Eq. (36)] for

a two-qubit open system interacting with a squeezed thermal

bath, modeled as a 3−D electromagnetic field (EMF), as well

as its specialization to a vacuum bath, where the bath squeez-

ing (r) and temperature (T ) are set to zero, and undergoing a

dissipative interaction [25]. The model Hamiltonian is

H = HS +HR +HSR

=

2
∑

n=1

~ωnS
z
n +

∑

~ks

~ωk

(

b
†
~ks
b~ks +

1

2

)

− i~
∑

~ks

2
∑

n=1

[~µn.~g~ks(~rn)(S
+
n + S−

n )b~ks − h.c.].(40)

Here ~µn are the transition dipole moments, dependent on the

different atomic positions ~rn and S+
n (= 1

2 |en〉〈gn|), and

S−
n (=

1
2 |gn〉〈en|) are the dipole raising and lowering op-

erators satisfying the usual commutation relations. Szn(=
1
2 (|en〉〈en| − |gn〉〈gn|)) is the energy operator of nth atom

and b
†
~ks

, b~ks are the creation and anihilation operators of the

field mode ~ks with the wave vector ~k and polarization index

s = 1, 2. A key feature of the model is that the system-

reservoir (S-R) coupling constant ~g~ks(~rn) is dependent on the

position of the qubit rn and is

~g~ks(~rn) =
( ωk

2ǫ~V

)
1

2

~e~kse
i~k.rn , (41)

where V is the normalization volume and ~e~ks is the unit po-

larization vector of the field. The position dependence of the

coupling leads to interesting dynamical consequences and al-

lows the entire dynamics to be classified into two categories,

that is, the independent regime, where the interqubit distance

is far enough for each qubit to locally interact with an indepen-

dent bath or the collective regime, where the qubits are close
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(i) (ii)

FIG. 1: Plot of (i) concurrence C (or E
(2,2)
2 ) and (ii) singlet fraction f with respect to the time of evolution t, respectively. Here

we consider the case of a vacuum bath (T = r = 0) and the collective decoherence model (r12 = 0.05).

enough for them to interact with the bath collectively. Asum-

ing an initial system-reservoir separable state, with the system

in a separable, and the bath in a squeezed thermal state, with

time the qubits develop correlations between themselves via a

channel setup by the bath. A master equation for the reduced

dynamics of the two qubit system is obtained by tracing out

the environment (bath), using the usual Born-Markov and ro-

tating wave approximation (RWA). This can be then solved to

obtain the dynamics of the reduced density matrix, whose de-

tails are presented in [25], for the general case of a squeezed

thermal bath at finite temperature as well as for a vacuum

reservoir.

Let the reduced two-qubit density matrix of the system be

ρf (t). Its spectral decomposition corresponding to its eigen-

values (λi(t)) is,

ρf (t) =
∑

i

λi(t)ρi(t). (42)

Here ρi(t) = |ψi(t)〉〈ψi(t)|, |ψi(t)〉 being the eigenvectors

corresponding to the eigenvalues λi(t) (
∑

i λi(t) = 1). For a

two qubit state the Eq. (36) becomes

0 ≤ E
(2,2)
2 (ρf (t)) ≤ 1. (43)

We can easily say that for two-qubit state E
(2,2)
2 is nothing

but concurrence C. If we look at the Figs. (1), and (2), for

the case of a vacuum bath (T = 0, r = 0), concurrence C
(or E

2,2
2 ) is seen to decrease with time of evolution t, with

a predominantly oscillatory behavior in the collective regime

(marked by the inter qubit distance r12 < 1). The singlet frac-

tion f also shows similar behavior. From these two figures, it

is clear that when and where C becomes zero, and f is equal

to 1
2 .

For the case of a squeezed thermal bath, as the system

evolves with time t, concurrence C and f exhibit damped

behavior, as seen in Figs. (3) and (4). If we increase the

inter-qubit distance r12, then the concurrence C for the sys-

tem suddenly falls to zero (i.e., sudden death of entanglement

in the system). Thus, the system can be used as a resource for

teleportation purpose in the range 0 ≤ r12 < rd. Here we

define a new term rd, such that at r12 = rd concurrence C of

the system becomes zero. Obviously this rd will be different

for different parameter (T, r) settings. The Figs. (4) depict

the abrupt decrease of concurrence C and singlet fraction f as

r12 increases. In Figs. (5), the behavior of C and f with re-

spect to environmental squeezing parameter r is shown. For r
between −0.02 to 0.02 both C and f remain almost constant,

thereby exhibiting the tendency of squeezing to resist environ-

mental degradation. Beyond this range there is a rapid fall of

the depicted quantities.

2. States generated as a result of Two-Qubit Open System

Interacting with a Squeezed Thermal Bath via Quantum

Nondemolition Interaction

Now we take up the Hamiltonian, describing a QND inter-

action of two qubits with the bath as

H = HS +HR +HSR

=
2
∑

n=1

~εnJ
n
z +

∑

k

~ωkb
†
kbk

+
∑

n,k

~Jnz (g
n
k b

†
k + gn∗k bk). (44)

Here HS , HR and HSR stand for the Hamiltonians of the sys-

tem, reservoir and system-reservoir interaction, respectively.

b
†
k, bk denote the creation and annihilation operators for the

reservoir oscillator of frequency ωk, gnk stands for the cou-

pling constant (again assumed to be position dependent) for

the interaction of the oscillator field with the qubit system and

are taken to be gnk = gke
−ik.rn , where rn is the qubit posi-

tion. Since [HS , HSR] = 0, the Hamiltonian [Eq. 44)] is of

QND type. In the parlance of quantum information theory,
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(i) (ii)

FIG. 2: Plot of (i) concurrence C (or E
(2,2)
2 ) and (ii) f with respect to the inter-qubit distance r12, respectively. Here we

consider the case of vacuum bath (T = r = 0) and system is at time t = 10.

(i) (ii)

FIG. 3: Plot of (i) concurrence C (or E
(2,2)
2 ) and (ii) singlet fraction f with respect to the time of evolution t, respectively, for a

squeezed thermal bath (T = 1, r = 0.1) in the collective regime (r12 = 0.05).

the noise generated is called the phase damping noise. The

position dependence of the coupling constant once more al-

lows for the dynamical classification into the independent and

collective regimes. In order to obtain the reduced dynamics of

the system , we trace over the reservoir variables, the details

of which can be found in [26].

Now we study the behavior of concurrence C (actually

E
2,2
2 ) and singlet fraction f as the two-qubit system evolves

with time t both for collective and localized (independent) de-

coherence model. It can be noticed from Figs. (6), and (7)

that the value of concurrence C is higher and lasts longer

in the case of collective decoherence model than in the case

of localized decoherence model. As expected, the the singlet

fraction f shows similar kind of behavior with time t. When

C becomes zero, f becomes equal to 1
2 , i.e., the system at

this particular time t cannot be useful for teleportation, other-

wise it is useful. Hence the system satisfies the lower bound

of Eq. (43), when concurrence C vanishes. The behavior of

C and f , under pure dephasing, with respect to environmental

squeezing parameter r is depicted in Figs. (8). For r between

−0.02 to 0.02 both C and f remain almost constant, thereby

exhibiting the tendency of squeezing to resist environmental

degradation. Beyond this range there is a fall of the depicted

quantities, though the degradation here is smoother than that

in Figs. (5).

V. CONCLUSION

We have made a study of entanglement of teleportation for

arbitrary d ⊗ d dimensional states having Schmidt rank upto

three. We found that there is a simple relation between neg-

ativity and teleportation fidelity for pure states but for mixed

states, an upper bound was obtained for negativity in terms of

teleportation fidelity using convex-roof extension negativity

(CREN). The existence of a strong conjecture in the literature

concerning all PPT entangled states, in 3× 3 systems, having

Schmidt rank two, motivated us to develop measures capable

of identifying states useful for teleportation and dependent on

the Schmidt number. This enabled a classification of entangle-

ment as a function of teleportation fidelity, the “Entanglement

of Teleportation”. These results were then extended to mixed

two qudit states, which we illustrated on specific examples of

a two qutrit mixed state with Schmidt rank two, and two qubit

states dynamically generated by interaction with an appropri-

ate reservoir, for both pure dephasing as well as dissipative
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(i) (ii)

FIG. 4: Plot of (i) concurrence C (or E
(2,2)
2 ) and (ii) f with respect to the inter-qubit distance r12, respectively, for a squeezed

thermal bath (T = 1, r = 0.1) and time of evolution t = 1.
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FIG. 5: Plot of (i) concurrence C (or E
(2,2)
2 ) and (ii) f with respect to the squeezing parameter r, respectively, for a thermal

bath (T = 5, r12 = 0.05) and time of evolution t = 2.

interactions. This work thus brings into focus the utility of

studying higher dimensional entangled states using measures

like “Entanglement of Teleportation” along with negativity.
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FIG. 8: Plot of (i) concurrence C (or E
(2,2)
2 ) and (ii) f as a function of squeezing parameter r. Here we consider the case of

QND interaction (T = 5), in the collective decoherence regime (r12 = 0.05) and time of evolution t = 2.
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