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Abstract

Existing algorithms that fuse level-2 and level-3 fingerprint match scores perform well when the number of features are
adequate and the quality of images are acceptable. In practice, fingerprints collected under unconstrained environment nei-
ther guarantee the requisite image quality nor the minimum number of features required. This paper presents a novel
fusion algorithm that combines fingerprint match scores to provide high accuracy under non-ideal conditions. The match
scores obtained from level-2 and level-3 classifiers are first augmented with a quality score that is quantitatively determined
by applying redundant discrete wavelet transform to a fingerprint image. We next apply the generalized belief functions of
Dezert–Smarandache theory to effectively fuse the quality-augmented match scores obtained from level-2 and level-3 clas-
sifiers. Unlike statistical and learning based fusion techniques, the proposed plausible and paradoxical reasoning approach
effectively mitigates conflicting decisions obtained from classifiers especially when the evidences are imprecise due to poor
image quality or limited fingerprint features. The proposed quality-augmented fusion algorithm is validated using a com-
prehensive database which comprises of rolled and partial fingerprint images of varying quality with arbitrary number of
features. The performance is compared with existing fusion approaches for different challenging realistic scenarios.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Biometrics is one of the most widely used approaches for identification and authentication of individuals. It
uses a person’s physiological or behavioral characteristics such as fingerprint, face, iris, gait, and signature for
authentication [1]. Most of the biometric systems use fingerprint for authentication as it is unique for every
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individual, easy to capture, and is universal. Law enforcement applications also involve identification using
rolled and partial fingerprints obtained from different surfaces [2].

Fingerprint features are divided into three categories: level-1, level-2, and level-3 features [2]. Level-1 fea-
tures represent the ridge-flow pattern and general morphological information. These features are not unique
for establishing identity but are used for broad classification of fingerprints into different classes such as left
loop, right loop, whorl, arch, and tented arch. Level-2 features represent the minutiae information such as
ridge endings and bifurcations. Level-3 features are obtained from the sweat pores and ridges present in fin-
gerprints [3,4]. These features represent the intricate details of a fingerprint such as the dimensional attributes
and structure of pores and ridges which are the most discriminating among all three levels of features. Despite
their discriminating property, current automatic fingerprint identification systems (AFIS) focus on determin-
ing the similarity or dissimilarity between fingerprints using level-1 and level-2 features and do not use level-3
for establishing identity. This is because level-1 and level-2 features can be extracted from a 500 pixels per inch
(ppi) image but extracting level-3 features requires high resolution images such as a 1000 ppi fingerprint image.
Fig. 1a shows a 500 ppi fingerprint image, from which level-1 and level-2 features can be extracted but the
quality is not adequate to extract level-3 information reliably. Fig. 1b shows a partial fingerprint with
level-3 features such as pores and ridge structure. In this case, level-1 and level-2 features cannot be used
for recognition. Matching is performed using only level-3 features. Fig. 1c shows a 1000 ppi fingerprint image
containing both level-2 and level-3 features.

Researchers have proposed fingerprint recognition algorithms which use level-3 features such as ridge
counts and sweat pores for matching [5–8] but very limited research has been undertaken to scientifically ana-
lyze the effectiveness of combining level-2 and level-3 features [9]. Another challenge with fingerprint recogni-
tion is the quality of images [10,11]. Fingerprint images shown in Fig. 1 are of varying quality and these non-
ideal, partial, and low quality fingerprints can affect the overall performance of the system.

In this research, we propose a fusion algorithm to efficiently combine level-2 and level-3 fingerprint features
by incorporating image quality. We first compute the quality score of fingerprint image using the proposed
redundant discrete wavelet transform (RDWT) based quality assessment algorithm [11]. This quality score
provides the degree of imprecision for the extracted information. We then extract the level-2 and level-3 fea-
tures from fingerprint image using existing minutiae [12,13] and pores [7,8] based recognition algorithms.
These algorithms provide matching scores for both level-2 and level-3 features which are further normalized
using quality scores to generate the quality-augmented match scores. There are several fusion algorithms in
literature that fuse two or more biometric information. These algorithms are generally based on statistical
rules such as sum rule [10,14,15], min–max rule [14,15], product rule [14,15], or learning techniques [16]. Both
the existing statistical and learning based rules can not efficiently handle the imprecise and incomplete infor-
mation. The performance deteriorates if information on any of the features is missing or highly conflicting. In
our approach, we efficiently fuse the imprecise and incomplete information for fingerprint recognition by
applying the Dezert–Smarandache (DSm) theory of paradoxical reasoning [17,18] to the quality-augmented
match scores. DSm theory based match score fusion algorithm computes the final match score and determines
the verification accuracy. To validate the proposed algorithms, we use a database of 500 classes obtained from
Fig. 1. (a) A poor quality fingerprint image which cannot be used for level-3 feature extraction; (b) a partial fingerprint image containing
pores and ridges (level-3 features) but no minutiae (level-2 features); and (c) a fingerprint image containing both level-2 and level-3
features.
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law enforcement agencies. The performance of the proposed algorithms is evaluated on fingerprint images
with varying amount of level-2 and level-3 features. We also show the effectiveness of the proposed reasoning
theory based match score fusion algorithm by comparing with other existing fusion algorithms.

Section 2 presents the proposed fingerprint image quality assessment algorithm using RDWT. In Section 3,
we describe the proposed match score fusion algorithm for level-2 and level-3 features using DSm theory. Sec-
tion 4 presents the algorithms and the database used for validation and the experimental results are summa-
rized in Section 5.

2. Image quality assessment using RDWT

The performance of a fingerprint recognition system depends on the quality of images. For example, poor
quality images may lead to spurious minutiae and thus lower the recognition performance. Image quality may
be degraded due to several factors, such as noise in sensor, wetness, and dryness. To determine the fingerprint
image quality, we need to determine the edge information, along with smoothness and noise present in the
image. Further, in biometric image quality assessment, unlike the standard image quality assessment tech-
niques, we do not have the flexibility of having a reference image to compute the degree of irregularity present
in the image. To address these challenges, we use our previously proposed quality assessment algorithm [11]
for fingerprint images using redundant discrete wavelet transform (RDWT) [19,20].

RDWT can be considered as an approximation to DWT that removes the downsampling operation from
DWT. The transform captures both the frequency content of the input image by examining it at different
scales and the temporal content. Further, in RDWT subband, coefficients in the subbands are large for edges,
and zero or close to zero for non-edge regions. This property is helpful in determining the edge and non-edge
regions present in the image. Another property of RDWT is that the distortion in the original image from
noise in a single RDWT subband depends only on the decomposition scale at which the subband resides
and is independent of other subbands. This property is known as per-subband noise relationship [20].

Let I be the input fingerprint image of size n � n. This image is decomposed to l levels of RDWT using db9/
7 mother wavelet [21]. Eq. (1) represents the l level decomposition of image I
½IAj; IHj; IVj; IDj� ¼ RDWTðIÞ ð1Þ

where j = 1,2, . . . , l represents the level of decomposition and i = A,H,V,D denotes the approximation, hor-
izontal, vertical, and diagonal subbands at l levels of decomposition. Quality factor of the approximation and
detailed subbands, qi, are computed using the following equation:
qi ¼
Xl

j¼1

Xn

x;y¼1

I ijðx; yÞ ð2Þ
We then compute the weight factor, wi, of each subband using the following equation:
wi ¼
Xl

j¼1

1

1þ
Pn

x;y¼1rI ijðx; yÞ
ð3Þ
where j represents the level of decomposition and $ represents the gradient operation. The quality factors, qi,
of each subband augmented with the corresponding weight factors, wi, are combined to compute the final
weighted quality score Q.
Q ¼
P

iwiqiP
iwi

ð4Þ
This weighted quality score ensures proper weight to the four subbands at each level depending on the infor-
mation contained in each of the bands. The quality score is then normalized using tanh normalization method
[22]
Qnorm ¼
1

2
tanh

Q� l
r

� �
þ 1

� �
ð5Þ
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Fig. 2. Images with quality scores computed using the proposed RDWT based quality assessment algorithm.

54 M. Vatsa et al. / Internat. J. Approx. Reason. 50 (2009) 51–61
where l and r are mean and standard deviations of quality scores obtained from good quality training finger-
print images. Normalized quality score Qnorm lies in the range of [0, 1], where 0.5 represents the best quality
image and 0 & 1 represent worst quality image. Fig. 2 shows fingerprint images of different quality and their
quality scores computed using the proposed RDWT quality assessment algorithm with 3-levels of RDWT
decomposition.

3. Biometric information fusion using Dezert–Smarandache (DSm) theory

Due to the presence of multiple evidences or information, fusion from two different biometric evidences
provides higher accuracy [15]. However, researchers have shown that fusion of two or more biometric evi-
dences does not necessarily give better performance in comparison to a uni-modal biometric system [23,24].
The performance in this case is highly dependent upon the fusion algorithms and the biometric sources. Fur-
ther, in multimodal biometric fusion, individual biometric information can sometimes be highly conflicting or
imprecise, thereby affecting the overall decision and performance. For example, in multiple classifier finger-
print recognition, one classifier may generate a match score which yields the decision of perfect accept,
whereas another classifier may generate a match score which yields the decision of perfect reject. In this sit-
uation, both the information are highly conflicting. Imprecision can occur during match score generation
due to the noise present in the images, non-ideal imaging, or inherent limitations of recognition algorithms.
In such cases, fusion algorithms have to deal with imprecise and conflicting information. Considering these
factors, we propose a multimodal biometric fusion algorithm which is based on the DSm theory [17,18].
DSm theory is a mathematical tool that can be applied to efficiently fuse conflicting and imprecise informa-
tion. In this section, we first present a brief mathematical overview of the DSm theory followed by the pro-
posed quality-augmented multimodal biometric match score fusion algorithm.

3.1. Overview of Dezert–Smarandache theory

Dezert–Smarandache (DSm) theory is a powerful approach for representing and fusing uncertain knowl-
edge. DSm theory is an extension of the Dempster–Shafer theory of evidence [25]. It can solve complex static
or dynamic fusion problems using plausible and paradoxical reasoning [17,18]. Since biometric verification is a
two-class problem with the classes being genuine and impostor, DSm theory is explained on a two class
problem.

DSm theory is based on Dedekind’s lattice, DH, also known as hyperpower set of the frame of discernment
H. It is defined as a finite set of exhaustive and exclusive elements, hi. Let H = {h1,h2} consists of a finite set of
hypothesis, then DH = {;,h1,h2,h1 [ h2,h1 \ h2}. DH is closed under [ and \, and h1 \ h2 – ;. A mapping,
m(�) is defined on H, m(�) = DH ? [0,1], such that m(;) = 0 and

P
A2DHmðAÞ ¼ 1. m(A) is called generalized

basic belief assignment (gbba) of A. A generalized belief function, Bel, is a mapping function Bel:
DH ? [0,1] such that
BelðAÞ ¼
X

X # A;X2DH

mðX Þ ð6Þ
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More specifically,
BelðAÞH;D
H

y;t ½Ey;t�ðw0 2 AÞ ¼ x ð7Þ
This equation denotes the degree of belief x of the classifier y at time t when w0 belongs to A, where A 2 DH.
Belief is based on evidential corpus Ey,t held by y at time t where Ey,t represents all what y knows at time t. To
simplify, generalized belief function can also be written as Bel(A). Further, generalized belief function Bel un-
iquely corresponds to generalized basic belief assignment m and vice versa.

Fusion in DSm theory starts with the notion of free DSm model Mf(H), and considers H as a frame of
exhaustive elements hi that can potentially overlap. This model is free because no other assumption is made
on the hypothesis. Given two independent sources of evidence over the same frame H and belief functions
associated with generalized basic belief assignment m1(�) and m2(�), classical DSm rule of combination is oper-
ated on Mf(H) and is written as
mMf ðHÞðAÞ � mðAÞ ¼
X

X ;Y2DH;X\Y¼A

m1ðX Þm2ðY Þ ð8Þ
This combination rule ensures that m(�) is a proper generalized belief assignment. The rule is commutative and
associative, and can always be used for fusion of different sources. However, it is possible that the free model
does not hold depending on the intrinsic nature of elements of the fusion problem under consideration. This
happens when some subsets of H contain elements known to be truly exclusive but also actually non-existing
at a given time. Therefore, some constraints are introduced explicitly and formally in Mf(H) in order to adapt
as close as possible with reality. The new model M(H) is thus constructed on which the combination can be
efficiently performed and M(H) – Mf(H). In such cases, the hybrid DSm rule of combination [17,18] is defined
as
mMðHÞðAÞ ¼ wðAÞ½S1ðAÞ þ S2ðAÞ þ S3ðAÞ� ð9Þ
where w(A) is the characteristic non-emptiness function of A defined as
wðAÞ ¼
1 if A R ;
0 otherwise

�
ð10Þ
and S1(A),S2(A),S3(A) are defined as
S1ðAÞ ¼
X

ðX ;Y2DHX\Y¼AÞ

m1ðX Þm2ðY Þ

S2ðAÞ ¼
X

ðX ;Y2U;½t¼A�_½ðt2UÞ^ðA¼I tÞ�Þ
m1ðX Þm2ðY Þ

S3ðAÞ ¼
X

ðX ;Y2DH;X[Y¼A;X\Y2UÞ

m1ðX Þm2ðY Þ

ð11Þ
where It is total ignorance on H and is the union of all hi, i.e. It = h1 [ h2. U = {U,/}, U is the set of all ele-
ments of DH which are empty under the constraints of some specific problem, and / is empty set.
t = u(X) [ u(Y), where u(X) is the union of all singletons hi that compose X and Y. Here, S1(A) corresponds
to the classical DSm rule on the free DSm model Mf(H),S2(A) represents the mass of all relatively and abso-
lutely empty sets which is transferred to the total or relative ignorance, and S3(A) transfers the sum of relative
empty sets to the non-empty sets. Further, hybrid DSm rule of combination holds the property
X

A2DH

mMðHÞðAÞ ¼ 1 ð12Þ
Comparing DSm theory with probability theory and Dempster–Shafer theory over H = {h1,h2}, probability
theory deals with basic probability assignment m(�) 2 [0, 1] such that
mðh1Þ þ mðh2Þ ¼ 1 ð13Þ

while Dempster–Shafer theory [25] deals with basic belief assignment m(�) 2 [0, 1] such that



Fi

56 M. Vatsa et al. / Internat. J. Approx. Reason. 50 (2009) 51–61
mðh1Þ þ mðh2Þ þ mðh1 [ h2Þ ¼ 1 ð14Þ

In contrast, the DSm theory is capable of dealing with imprecise, conflicting, and uncontrolled evidences aris-
ing from different sources of information which do not have access to the absolute and same interpretation of
the element of H. DSm theory deals with belief function associated with the generalized basic belief assignment
m(�) such that
mðh1Þ þ mðh2Þ þ mðh1 [ h2Þ þ mðh1 \ h2Þ ¼ 1 ð15Þ

In biometrics, h1 \ h2 belongs to the genuine–impostor region of overlap which is very critical in ensuring the
robustness of the system. Both probability theory and Dempster–Shafer theory do not incorporate the belief
induced by the region of overlap. Hence DSm theory is more useful than probability theory or Dempster–Sha-
fer theory.

3.2. Proposed multimodal biometric fusion algorithm

One of the major problems with multimodal biometrics is unbalanced systems where two different classifiers
have uncertain and highly conflicting results. In such cases, the performance of fixed-rule biometric fusion
algorithms such as sum rule, product rule and min–max rule degrades drastically. However, the performance
can be enhanced if the fusion algorithm is capable of fusing information correctly even when discrepancy
between sources exist. We propose to apply plausible and paradoxical reasoning of DSm theory for fusing
biometric information. Furthermore, we associate quality score of input image to increase robustness of
the proposed fusion algorithm. In this section, we describe the proposed DSm theory based multimodal bio-
metric fusion algorithm using image quality scores.

Fig. 3 shows the proposed match score fusion algorithm using DSm theory [17,18] to combine the outputs
of minutia-based and pore-based fingerprint verification algorithms. Minutia-based fingerprint verification
algorithm [12,13] and pore-based verification algorithm [7,8] are used as the primary classifiers. Both the clas-
sifiers generate similarity based matching scores which are normalized in the range of 0–1, where 0 represents
perfect reject and 1 represents perfect accept. Let the matching score generated by the classifiers be Sj, where
j = 1,2 represents the fingerprint classifiers. The quality score Qnorm computed in Section 2 is augmented with
the matching score Sj of both the fingerprint verification algorithms to generate the quality-augmented match
score Sqj.
Sqj ¼
QnormSj

0:5
if 0 6 Qnorm 6 0:5

ð1�QnormÞSj

0:5
if 0:5 < Qnorm 6 1

(
ð16Þ
In the proposed DSm theory based match score fusion algorithm, we define the frame of discernment,
H = {hgenuine, himpostor} and Dedekind lattice, DH = {hgenuine, himpostor, hgenuine [ himpostor, hgenuine \ himpostor}.
Further, for every input fingerprint image, each classifier assigns a label true or 1 to proposition a,a 2 H and
the remaining classes are labeled as false or 0. Thus, there are two focal elements for each fingerprint verifi-
Minutiae
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g. 3. DSm theory based fusion of quality-augmented match scores obtained from the two fingerprint verification algorithms.
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cation algorithm, a and :a (:a = H � a). a is for confirming and :a is for denying a proposition for mass
assignment in the DSm theory. For every verification algorithm or classifier, we compute the respective pre-
dictive rates which are used to assign their gbba. Let an input pattern belonging to class i(i 2 DH) be classified
as one of the k(k 2 DH) classes. Then, the predictive rate [26] of a classifier Pk for an output class k is the ratio
of the number of input patterns classified correctly to the total number of patterns classified as class k where
input patterns belonging to all classes is presented to the classifier.

In the proposed reasoning based approach, when the jth fingerprint verification algorithm classifies the
result k 2 DH over the normalized matching score Sqj, it is considered that for all instances the likelihood
of k being the actual class is Pkj and the likelihood of k not being the correct class is (1 � Pkj) [26]. For the
jth fingerprint verification algorithm, the generalized basic belief assignment or mass mj(k) is computed using
Eq. (17) by multiplying Pkj with the quality-augmented normalized match score Sqj
mjðkÞ ¼ P kj � Sqj ð17Þ
Here j = 1,2 corresponds to the two fingerprint verification algorithms. Similarly, the disbelief is assigned to
mj(:k) with m(H) = 1. Further, the mass of each evidence or classifier is combined to generate the generalized
basic belief assignment of the fused information, mfinal using the following equation:
mfinal ¼ m1 � m2 ð18Þ

where � represents the hybrid DSm rule of combination defined in Eq. (9). The final verification result is ob-
tained by applying the threshold t to pignistic probability, BetP(mfinal)
Decision ¼
Accept if BetP ðmfinalÞP t

Reject otherwise

�
ð19Þ
4. Algorithms and database used for validation

The proposed quality-augmented match score fusion algorithm is validated using existing fingerprint
verification algorithms and fingerprint database obtained from the law enforcement agencies. In this section,
we briefly describe the verification algorithms and the database used for validation.

4.1. Fingerprint verification and fusion algorithms

Two fingerprint verification algorithms are used as primary classifiers in the proposed DSm theory based
fusion algorithm. These are minutia-based (level-2 features) and pore-based (level-3 features) algorithms.

4.1.1. Minutia-based verification algorithm

To extract minutiae from a fingerprint image, a ridge tracing minutiae extraction algorithm [13] is used. The
extracted minutiae are then matched using a dynamic bounding box based matching algorithm [12]. This algo-
rithm generates a match score which is then normalized in the range of [0, 1] using score normalization tech-
nique [22]. The score 0 represents perfect reject and 1 represents perfect accept.

4.1.2. Pore-based verification algorithm

To extract the level-3 features, we use the pore-based verification algorithm described by Kryszczuk et al.
[7,8]. This algorithm extracts pore information from the high resolution fingerprint images using different tech-
niques such as correlation based alignment, Gabor filtering, binarization, morphological filtering and tracing.
The match score obtained from this algorithm is a similarity score in the range of [0, 1].

4.1.3. Existing fusion algorithms used for comparison
To compare the performance of the proposed quality-augmented DSm fusion algorithm, we use six existing

fusion algorithms namely min–max rule [14,15] product rule [14,15] sum rule [14,15], quality based sum rule
[10], quality based SVM fusion [16], and Dempster–Shafer theory fusion algorithm [27]. Min–max rule, prod-
uct rule, sum rule, and quality based sum rule are fusion algorithms based on statistical rules. Quality based
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SVM fusion algorithm is learning based fusion algorithm and Dempster–Shafer theory fusion algorithm is
based on theory of evidence.

4.2. Fingerprint database

To validate the proposed quality-augmented fusion algorithm, a fingerprint database obtained from law
enforcement agencies is used. This database contains images from 500 different classes. For each class, there
are five rolled and five slap fingerprints. The resolution of fingerprint images is 1000 ppi to facilitate the extrac-
tion of both level-2 and level-3 features. From each class, two rolled fingerprints are selected as training and
gallery data and the rest of the images are used as the test or probe data. Further, to highlight the advantages
of the proposed DSm theory based fusion algorithm with limited evidence, we generated partial fingerprint
databases by cropping rolled and slap fingerprint images with respect to the center of images. In this manner,
we created two partial fingerprint datasets, one with fingerprints having 5–10 minutiae and another with fin-
gerprints having no minutia, with the constraint that the size of the cropped image is at least 64 � 64. Thus we
have four sets of probe dataset:

(1) Rolled fingerprint images from 500 classes with three images for each class.
(2) Slap fingerprint images from 500 classes with five images for each class.
(3) Partial fingerprints with 5–10 minutiae from 500 classes with eight images for each class.
(4) Partial fingerprints with 0 minutia from 500 classes with eight images for each class.

5. Experimental results

Performance of the proposed quality-augmented DSm fusion algorithm is validated using fingerprint ver-
ification algorithms and the databases described in Section 4. In the experiments, we compute the verification
accuracy of all the algorithms at 0.01% false accept rate (FAR). Experimental results are divided into three
parts. In the first part, we compute verification accuracy when the test images are rolled fingerprints, i.e.
for matching rolled fingerprint with a rolled fingerprint. The results for this experiment are summarized in Sec-
tion 5.1. In the next experiment explained in Section 5.2, we compute the verification accuracy for test images
containing reduced information or evidences, i.e. verification accuracy for matching rolled fingerprint with
slap fingerprint. The last experiment described in Section 5.3 evaluates the effectiveness of the proposed algo-
rithm when the number of minutia features is relatively very small, i.e. verification accuracy of matching rolled
fingerprints with partial fingerprints.

5.1. Matching rolled fingerprints

For matching rolled fingerprints, minutia-based verification algorithm [12,13] gives an accuracy of 90.04%
and pore-based algorithm [7,8] gives an accuracy of 88.45%. Receiver operating curve (ROC) in Fig. 4 shows
that the proposed quality-augmented DSm fusion algorithm provides a significant improvement of 7.94% in
the verification accuracy compared to the best performance obtained when either minutiae or pores are used.
We study the performance when the match scores obtained from minutia and pore features are fused. ROC in
Fig. 5 shows that the existing statistical fusion rules such as min–max rule, product rule and sum rule [14,15]
increase the verification performance by 1–3%. Quality based sum rule [10] and quality based SVM rule [16]
show an improvement of around 6% and the Dempster–Shafer theory based fusion algorithm [27] improves
the performance by 6.43% compared to the performance of minutia-based verification algorithm. Among the
fusion algorithms, the proposed quality-augmented DSm fusion algorithm outperforms other existing algo-
rithms by at least 1.6%.

5.2. Matching rolled fingerprints with slap fingerprints

The matching of slap fingerprints with rolled fingerprints is challenging because of the limited features
available. In this experiment, the gallery database comprises of rolled fingerprints and the probe dataset is
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the slap fingerprint dataset. Experimental results summarized in Table 1 show that on matching rolled finger-
prints with slap fingerprints, a marginal decrease in the verification accuracy is observed. Statistical rule based
fusion algorithms yield verification accuracies in the range of 90–92%, whereas quality based sum rule and
quality based SVM rule improve the accuracy to 95.31% and 95.28%, respectively. Further, Dempster–Shafer
theory based fusion algorithm gives an accuracy of 95.85%. The existing fusion algorithms show a decrease in
verification accuracy compared to the accuracy of matching rolled fingerprints. The decrease in verification
accuracy using existing algorithms is in the range of 0.38–0.73%, whereas the decrease in accuracy of the pro-
posed quality based DSm fusion algorithm is only 0.02%. This indicates that even with partial information, the
verification accuracy is not compromised.

5.3. Matching rolled fingerprints with partial fingerprints

The effectiveness of the proposed quality-augmented DSm fusion algorithm is further studied when the
number of minutia features is small. This is likely to be the case with latent fingerprints collected at a crime
scene. Specifically, the performance of the fusion algorithm is studied when the number of minutiae is between
5 and 10. Experimental results show that while the performance of existing fusion algorithm decreases by
1.31% to 1.9% compared to the performance of using complete rolled fingerprints, the proposed DSm fusion



Table 1
Comparison of verification accuracies of the proposed quality-augmented DSm fusion algorithm with existing fusion algorithms using
fingerprints with varying number of features

Algorithm Rolled to rolled
fingerprint (%)

Rolled to slap
fingerprint (%)

Rolled to partial print
with 5–10 minutiae (%)

Rolled to partial print
with 0 minutia (%)

Level-2 minutiae [12,13] 90.04 89.91 65.52 0.00
Level-3 pores [7,8] 88.45 88.30 88.21 87.93
Min–max fusion rule [14,15] 91.17 90.79 89.47 51.64
Product fusion rule [14,15] 92.01 91.56 90.69 0.00
Sum fusion rule [14,15] 92.76 92.07 91.38 52.40
Quality – sum fusion rule [10] 96.03 95.31 94.14 55.29
Quality – SVM fusion rule [16] 96.01 95.28 94.13 55.27
Dempster–Shafer theory based fusion [27] 96.43 95.85 95.52 87.93
Proposed quality-augmented DSm fusion 97.98 97.96 97.89 91.35

Verification accuracy is computed with FAR = 0.01%.
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algorithm is able to compensate for the limited partial information with superior performance. A drop of only
0.09% in verification accuracy is observed.

In the worst case when no minutia exists, level-2 features are non-existent. The algorithm depends on only
the level-3 features related to pore information. Clearly, minutia-based algorithm fails to perform a match.
However, pore-based matching algorithm yields an accuracy of 87.93%. Table 1 summarizes the results of this
experiment. Existing statistical and learning based fusion algorithms perform poorly with accuracy ranging
from 0% to 55%. Dempster–Shafer theory fusion performs similar to pore-based algorithm because it is based
on the theory of evidence. In contrast, the proposed DSm fusion with image quality assessment performs the
best with further improvement in accuracy of around 3% compared to the pore-based recognition algorithm.

6. Conclusion

Current automatic fingerprint identification systems (AFIS) use only level-2 fingerprint features to perform
recognition. However, these systems fail when the number of level-2 features falls below a certain threshold or
the quality of image is poor. Fingerprints that are collected in an uncontrolled environment such as crime
scenes, do not guarantee the quality or the minimum number of level-2 features needed for an AFIS to per-
form matching. To address this issue, we proposed a quality-augmented match score fusion algorithm which
fuses match scores obtained from matching level-2 and level-3 features. We used redundant discrete wavelet
transform to assess the image quality by determining the presence of noise, smoothness, and edge information
in a fingerprint image and compute a quality score. The quality-augmented match scores of level-2 and level-3
feature matching algorithms were fused using Dezert–Smarandache theory. The proposed algorithm was val-
idated experimentally using a comprehensive fingerprint database containing rolled, slap, and partial finger-
prints with varying quality and varying number of features. We compared the performance of our
approach with existing statistical and learning based fusion algorithms. The results showed that the proposed
quality-augmented DSm fusion algorithm enhanced the performance of rolled and slap fingerprints by
approximately 8% whereas existing algorithms only increased the performance by 6%. For partial fingerprints,
the performance of level-2 feature based verification algorithm significantly reduced with decreasing number
of minutiae. This also decreased the performance of fusion using statistical and learning algorithms. The per-
formance of fusion algorithm using Dempster–Shafer theory was similar to the performance of level-3 feature
based recognition algorithm. However, the proposed quality-augmented DSm fusion algorithm further
enhanced the performance by 3% even when no minutia was present in the image and only level-3 features
were present. Thus, the proposed quality-augmented fusion algorithm was able to perform well even in the
presence of imprecise, inconsistent, and incomplete fingerprint information.
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