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strongly nonlinear chains

Rahul Kashyapa,∗, Surajit Sena,b

aDepartment of Physics, State University of New York at Buffalo, Amherst, NY

14260-1500, USA
bDepartment of Physics, Brock University, St. Catharines, Ontario, Canada L2S 3A1

Abstract

We introduce PULSEDYN, a particle dynamics program in C ++, to solve
many-body nonlinear systems in one dimension. PULSEDYN is designed to
make computing accessible to non-specialists in the field of nonlinear dynam-
ics of many-body systems and to ensure transparency and easy benchmarking
of numerical results for an integrable model (Toda chain) and three non-
integrable models (Fermi-Pasta-Ulam-Tsingou, Morse and Lennard-Jones).
To achieve the latter, we have made our code open source and free to dis-
tribute. We examine (i) soliton propagation and two-soliton collision in
the Toda system, (ii) the recurrence phenomenon in the Fermi-Pasta-Ulam-
Tsingou system and the decay of a single localized nonlinear excitation in
the same system through quasi-equilibrium to an equipartitioned state, and
SW propagation in chains with (iii) Morse and (iv) Lennard-Jones poten-
tials. We recover well known results from theory and other numerical results
in the literature. We have obtained these results by setting up a parameter
file interface which allows the code to be used as a black box. Therefore, we
anticipate that the code would prove useful to students and non-specialists.
At the same time, PULSEDYN provides scientifically accurate simulations
thus making the study of rich dynamical processes broadly accessible.
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Toda lattice
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Title: PULSEDYN
Licensing provisions: GNU General Public License 3 (GPL)
Programming Language: C++
Supplementary Material: user manual, documentation
Operating Systems: Windows, Linux

Memory required: Dependent on system size. For 5000 particle chain
around 2MB is required.

Running time: Dependent on simulation parameters. For a 100 particle
chain with polynomial potential run time was 20 min to run over 2 × 106

iteration while writing data every 1000 iterations.

Nature of the problem: We solve a Newtonian particle dynamics problem
in one dimension for a variety of commonly used nonlinear manybody sys-
tems. The goal is that the user should be able to run scientifically accurate
simulations with minimal effort. Benchmarking should also be easy to per-
form by different users running simulations across different platforms.

Solution method: The code uses a parameter file interface with a set of
commands for a range of pre-built functionalities. By providing the code and
the needed parameter file to the user we hope to make scientifically accurate
simulations easier to perform. We provide the Gear 5th order predictor-
corrector algorithm as well as the velocity-Verlet algorithm and the following
potentials - the Toda potential, Morse Potential, Lennard-Jones Potential
and a polynomial potential up to 4th order. To make benchmarking consis-
tent we release the software as open source and free to distribute.

1. Introduction

The importance of computational power and techniques to analyze many-
body nonlinear systems (MBNS) simply cannot be overstated. Major discov-
eries in many-body physics such as the famous Fermi-Pasta-Ulam-Tsingou
(FPUT) paradox [1, 2, 3] have been explored via numerical means. Some-
times, numerical techniques have been used in conjunction with analytical
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descriptions to provide evidence of phenomena [4, 5, 6, 7, 8, 9, 10]. How-
ever, a great number of times, numerical solutions are our only tool to ex-
plore the physics of a system when analytical techniques become unwieldy
[11, 12, 13, 14, 15, 16, 17, 18, 19].

There is significant effort and interest in developing a particle dynamics
(PD) code to accurately solve coupled dynamical equations in MBNS over
long time scales while retaining strict control over error propagation. PULSE-
DYN as a tool provides a solution to this issue and can be used readily to
carry out detailed investigations of important MBNS such as the Toda chain
system [4], polynomial potentials, Morse potential and the Lennard-Jones
potential [20]. The differential equation solvers currently available in the
code are the Gear 5th predictor-corrector method [21] and the velocity-Verlet
algorithm [22] which is a commonly used modification of the Störmer-Verlet
algorithm [23, 24]. Interested readers can find comparisons of these algo-
rithms in standard textbooks such as [25].

PULSEDYN currently is available for Windows (testing performed on
Windows 10) and Linux (testing performed on Ubuntu 14.04 LTS) and we
plan to add MacOS support in the future. In addition to containing the
potentials and solvers listed above, it also contains features such as external
forcing and dissipation [14]. It would allow one to vary a wide variety of
parameters and set up highly accurate simulations with minimal effort. The
code is also open source. Hence users with experience in C ++ will be able
to modify the same for specific purposes across different platforms. Further,
we believe it could serve as a tool to benchmark other codes designed for the
same purpose.

In Section 2 we discuss the class of problems that the program is designed
to solve. We then describe the details of the programming and how to im-
plement the same in Sections 3 and 4. We show results obtained from the
code in Section 5 for test cases of the potentials built into the system. We
test the four potentials provided in the program and show that the numeri-
cal results match the results in the literature. First, we show results for the
Toda chain system which is integrable and compare the well known Toda
soliton solution from simulations to theoretical predictions [3, 4, 26]. Here
by soliton we mean a non-dispersive energy bundle that does not interact
with another identical energy bundle except for a trivial phase lag that is
induced by a slowdown during the collision, which is a property of integrable
systems. Next, we consider non-integrable systems starting with the FPUT
system and show the recurrence phenomenon, localized excitations and SW
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collisions in the lattice [1, 2, 27, 28]. We then show SW propagation through
the Morse and Lennard-Jones lattices and demonstrate that the simulations
done using PULSEDYN are in agreement with established results from the
literature [20]. Typically, SWs interact when they collide [28, 29, 30]. Finally,
in Section. 6, we turn our attention to a problem of historical importance -
namely equipartition of energy in the FPUT system [1, 2]. We show that the
results we have obtained using PULSEDYN demonstrate conclusively that
the purely nonlinear β-FPUT system goes to equilibrium at late times and
energy is equipartitioned in the system [31, 32, 33, 34, 35]

2. Problems and Background

MBNS are set up by defining a Hamiltonian and by then writing down
the corresponding force equations. This gives rise to a set of coupled differ-
ential equations which are solved numerically using a well chosen integration
algorithm depending on the problem at hand [25, 36]. We have included the
following potential functions into PULSEDYN,

a) Toda Potential [3, 4],

Vi,i+1 =
k1
k2

e−k2(xi+1−xi) + k1(xi+1 − xi)−
k1
k2

, (1)

b) FPUT Potential (α + β model) [1, 2], where α, β were used in the
original and many subsequent works to denote the prefactors of the cubic
and quartic terms in the potential, respectively,

Vi,i+1 = k1(xi+1 − xi)
2 + k2(xi+1 − xi)

3 + k3(xi+1 − xi)
4, (2)

c) Morse Potential [20, 37],

Vi,i+1 = k1(e
−k2(xi+1−xi) − 1)2, (3)

d) and the Lennard-Jones Potential [20, 38],

Vi,i+1 = k2

[(

k1
k1 + xi+1 − xi

)12

− 2

(

k1
k1 + xi+1 − xi

)6

+ 1

]

. (4)

In the potentials listed above, k1, k2 and k3 (k3 is only in Eq. 2) set the
parameters of the potential. In the case of the Lennard-Jones potential,
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k1 sets the bond length in the chain explicitly so care must be taken with
initial conditions when setting the energy scales of the system. In the other
potentials, bond length is not explicitly specified and the scales can be set
arbitrarily. Additionally, in the case of the FPUT potential, the cubic term
can cause instabilities if set incorrectly. So care must be taken to provide
appropriate values of k2 when using the FPUT potential. In our studies,
we have set only positive k1, k2 and k3. However, negative values of the
parameters are not necessarily unphysical. Therefore, the code does not
prohibit the user from setting negative parameter values. However, care must
be taken when setting the values of the parameters and initial conditions so
that the simulations remain stable.

Some discussion about numerical instability is warranted here. If two
particles come too close to each other the magnitude of force can increase
drastically. This can cause numerical instability due to floating point calcu-
lation errors if the parameters are not chosen carefully. For instance, if the
energies are set too high, the time scales of interest in the dynamical studies
may become too small to be resolved by the time step set in the parameter
file. This would cause the simulation to become unstable. Another source of
error could be the bond length being set too low for a given amount of energy.
In PULSEDYN, If the bond lengths are set to be too small, particles can try
to cross each other. This can lead to instability since particle crossover is
not physical and hence not realizable without incurring errors in this code.
For numerical stability, |xi+1 − xi| < |k1| for the Lennard-Jones potential at
all times during the simulation.

In addition, some problems also involve an external driving force and can
include dissipation. The code solves the following force problem

mid
2xi

dt2
= −V ′(xi − xi−1) + V ′(xi+1 − xi) + Fdissipation + Fexternal. (5)

Here, mi and xi are the mass and displacement of the ith particle.
V ′(xi+1 − xi) is the derivative dV (r)/dri where ri = xi+1 − xi.

The user can add external forcing and dissipation in the form of sinusoidal
forces and velocity dependent damping terms respectively. These additional
terms may be added to individual particles as well as to the entire system.
We have also provided a method of external forcing called chirping. Under
the right circumstances, it can help precipitate intrinsic localized modes or
localized nonlinear excitations [13, 14].
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3. Code Architecture

The code is written in an object oriented style to allow for good organi-
zation and legibility. The code contains 11 source file and 11 header files and
the list is provided in the documentation pdf accompanying the software. It
is distributed as a Code::Blocks project fully compiled and accompanied by
an executable.

Any user with a basic knowledge of C + + but lacking time to develop
an entire program from scratch, can modify and add more features to these
source files and customize it. The software is generous with comments in
the source files. Every effort has been made to ensure the implementation
is clear and self-explanatory. We request any user to give attribution to this
work when reporting results using PULSEDYN or any edited version of the
same.

The implementation also emphasizes encapsulation. For, instance, a user
need only add to modify the boundary condition files and update the input
file interface in order to impose custom boundaries on the system. The rest
of the files need not be modified. More experienced users of C + + may of
course be willing to modify the software extensively to customize it to their
needs including optimizations for speed, additional models, algorithms etc.
A detailed documentation of all the features is also provided with the code.
The organization of the code is described next.

3.1. Particle class

The Particle class, as the name suggests, defines a particle in a chain. A
Particle object carries the following information about each particle in the
chain,
a) Position,
b) Velocity,
c) Acceleration,
d) Mass,
e) Kinetic energy and
f) Boundary information (useful only for boundary particles).

The following functions are included in the Particle class
a) Getter and setter functions for each member,
b) Kinetic energy calculator
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Figure 1: Shown here is the Particle class layout in the software.

For a chain of particles, a C ++ vector of such objects is created and the
dynamical quantities are updated in each iteration of the algorithm. Further
details are given in Section 3.4. The organization of the class is shown in
Fig. 1.

3.2. Potential classes

The System class is an umbrella class that contains all the potentials
which are written as subclasses of the System class. The information about
the parameters in the potential are stored by an object of any of these sub-
classes. The functions for force and potential energy corresponding to each of
these models are written as member functions of their own classes. There are
4 classes for each of the four potentials provided in the software. The classes
are todaPotential, fpuPotential, morsePotential and lennardJonesPotential.
An object of any of the Potential classes stores the following members,
a) Parameters of the potential and
b) Potential energy.

Each of the potential classes contains the following functions, a) Getter
and setter functions for each member,
b) Acceleration function and
c) Potential energy function.

The acceleration function calculates the right hand side of Eq. 5 exclud-
ing the driving and dissipation forces i.e. the force due to the potential.
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Figure 2: Shown here is the layout for each of the Potential classes in PULSEDYN.

When required, the function is able to call the boundary conditions func-
tions detailed below to calculate the accelerations for the edge particles. The
potential energy calculates potential energy for each spring in the system.
Similar to the acceleration function, the boundary conditions are calculated
via external functions for the boundary springs by calling them inside the po-
tential energy function. The information about which boundary conditions
are to be used is stored in the Particle class detailed before. A notable aspect
of the potential functions is that the names of the functions and variables
defined within each of the potential class and the structure of the potential
classes are identical. The only difference exists in the actual equations that
calculate the acceleration and potential energy. The reason for this manner
of implementation is explained in Section 3.4. The layout of the Potential

classes is shown in Fig. 2.

3.3. External force

While the Potential classes take care of the potential energy and the re-
sulting conservative force part of the right hand side of Eq. 5, the Force

class provides the velocity dependent damping and external driving part of
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the right hand side of Eq. 5. In PULSEDYN, we have provided sinusoidal
driving forces with the option of a frequency ramp to create chirping [14].
The Force class members are
a) Start time,
b) Period of the periodic force,
c) End time of the force,
d) Frequency (calculated from period above),
e) Ramp (for chirping),
f) Amplitude of driving force and
g) Velocity dependent damping γ.

The frequency is calculated based on the time period of the force as
fo = 1/T where fo is the frequency and T is the time period. The dissipa-
tion is provided as a velocity dependent dissipation term given by γv where
v is the velocity and γ is the damping coefficient. Chirping is a specific way
of driving the system such that the frequency increases linearly as a function
of time i.e., f(t) = fo+(ramp× t). The member functions of the Force class
are
a) Getter and setter functions for each member,
b) Force select function,
c) Sine function and
d) Cosine function.

It is important to note here that symplectic algorithms such as the velocity-
Verlet only support equations of motion which are Hamiltonian [36]. Adding
external forces or dissipation would break the Hamiltonian nature of a sys-
tem. Therefore, external driving and dissipation must be handled with care.
More details about how this issue is handled are presented in Section 3.4.
The organization of the Force class is shown in Fig. 3.

3.4. Simulation class

The Simulation Class contains the following members,
a) Time step for the integration algorithms,
b) Sampling interval,
c) Total number of snapshots in time recorded,
d) Size of the chain and
e) Integration algorithm name.
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Figure 3: Shown here is the layout for the Force class in PULSEDYN.

The functions implemented in this class are as follows,
a) Getter and setter functions for each member,
b) Starter function for simulations,
c) Gear 5th order predictor corrector algorithm and
d) Velocity-Verlet algorithm.

The functions in the class are implemented as template functions. The func-
tions take objects of generic type and the actual type is determined at run-
time. Therefore, any object passed through the template function must have
the acceleration and potential energy defined with the exact same name and
have the same organization. We get three advantages from this approach.
First, it enables code reusability. Second, the runtime efficiency of the code is
better compared to the other options we can avail given the structure of this
code. Third, it provides modularity to the code. If new potentials are added
to the code, one need not modify the functions for the integration algorithms
as long as the member functions and variables share the same names as the
ones in the included potential classes. The organization of the Simulation
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Figure 4: Shown here is the layout for the Simulation class in PULSEDYN.

class is shown in Fig. 4.
The starter function in the simulation class checks which integration al-

gorithm was chosen and directs the code to the chosen integration algorithm
function. In each of the integration algorithms, the following routine is em-
ployed. First, the data before the simulation starts is written to file. Then
the algorithm variables needed to execute the update steps are initialized.
The function starts a time loop and the dynamical variables are updated in
each iteration. During the update step, calculations of force and accelera-
tion are performed to get the values of the position and velocity at the next
iteration. The total force is calculated as a sum of the conservative and non-
conservative parts of the right hand side (RHS) of Eq. 5. The conservative
part is calculated by calling the acceleration functions inside Potential class
and the non-conservative parts are calculated by calling the functions in the
Force class.

As remarked previously, the velocity-Verlet algorithm is unstable for non-
conservative systems [36]. Therefore, adding external forces to the system
would cause the code to crash if velocity-Verlet is implemented without ac-
counting for the external force. In PULSEDYN, if the user wishes to add

external driving or dissipation to the system, the Gear 5th order corrector-

predictor method must be specified to integrate the equations of motion. If the
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velocity-Verlet algorithm is called in the parameter file, the code ignores the
non-conservative part of the equations of motion and solves the Hamiltonian
part with the initial conditions and parameters as set in the parameter file.

Inside the time loop, a counter is implemented which checks if the sam-
pling interval is reached. When the writing condition is satisfied in the
counter, the energies are calculated and the data is written to file. Once
file writing is complete, the counter for file writing is reset. The details of
file output are given in Section 3.6.

3.5. Boundary conditions

Boundary conditions are implemented as stand-alone functions in the soft-
ware. The functions for boundary conditions return the value of the spring
extension or compression at the right end of the Nth spring and the left end
of the 1st spring. Three kinds of boundaries have been provided - open, fixed
and periodic. The functions for boundary conditions are,
a) Left boundary function for acceleration,
b) Right boundary function for acceleration,
c) Left boundary function for potential energy and
d) Right boundary function for potential energy.

The functions take the vector containing the particle objects and eval-
uates the type of boundary chosen for both ends of the chain. Once the
boundary type is evaluated, it sends back the spring extension or compres-
sion corresponding to the edge springs. In the case of the fixed end, the edge
spring is fixed to a wall on one end and the boundary particle on the other.
The functions then return the value of the spring extension or compression
by assuming that the wall displacement is zero at all time. If the boundary
is open, the edge spring is connected only to the boundary particle i.e., the
compression or extension in the boundary spring is always zero. It must be
noted that imposing open boundaries or periodic boundaries can make the
chain susceptible to drifting. For instance, a 2 particle simple harmonic os-
cillator with open ends would show drift as well as periodic oscillations if one
of the particles is given an initial velocity perturbation in only direction.

In the case of periodic boundaries, there is only one boundary spring and
it connects particles 1 and N . Therefore, the magnitude of change in the
length of the boundary spring is |x1 − xN |. In the case of the accelerations,
the boundary conditions are calculated at both ends of the spring and used to
calculate the forces on the boundary particles. However, calculating energies
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is trickier. To avoid counting the single periodic boundary spring twice, the
boundary spring energy is calculated only at the left chain edge while the
energy of the periodic boundary spring is calculated to be zero at the right
end. This necessitates having two different boundary functions for accelera-
tion and potential energy. It is also worth mentioning that in PULSEDYN,
while the open and fixed boundaries can be set independently on the ends of
the chain, periodic boundaries cannot. If one of the boundaries is set to be
periodic the other boundary is also forced to be periodic.

3.6. Output class

To write data, we have implemented a static class Output that can be
called from anywhere in the code to write data to file. The following data is
written to file,
a) position.dat for displacement data,
b) velocity.dat for velocity data,
c) acceleration.dat for acceleration data,
d) ke.dat for kinetic energy data,
e) pe.dat for potential energy data,
f) restart.dat records displacement, velocity and acceleration at the last
time iteration,
g) mass.dat for mass values of each particle and
h) totalEnergy.dat for total energy at each recorded iteration.

The class contains the following members,
a) File names of data files and
b) File streams to data files.

The functions in the class are the WRITE function to the files. Each of
the functions takes as arguments the value to be written to file and an end
of line check. Once called, the functions open the associated files, write the
value and either place a tab-space or go to the next line depending on the
end of line argument.

These functions are called from the UPDATE functions in the Simulation

class when the file writing counter determines that data writing condition is
satisfied. The files are written for position, velocity, acceleration and kinetic
energy as arrays of size T × N , where T is total recorded time steps and N
is the size of the chain. The mass of the particles is recorded as an N ×1 list
of numbers. The potential energy of the springs is recorded as a T × (N +1)
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array. As detailed previously, in the case of fixed boundaries at both ends,
there are N + 1 springs. If one of the boundaries is open or if both are
open, then there are N and N − 1 springs respectively. The code simply
prints zeros on the side of the open boundary in the file. In the case of the
periodic boundaries, there are N springs. The spring connecting particle 1
and particle N is considered the leftmost spring and the N + 1th column in
the file is given a value of 0 to avoid over counting. The code also prints out
total energy of the system at each recorded step as an array of size T × 1.

The last file recorded is a restart file. It records the position, velocity and
the acceleration as an N×3 array. The first column corresponds to position,
the second to velocity and the third to acceleration. This is identical to the
format required by the code to take initial conditions from file which was
detailed earlier. The layout of the Output class is shown in Fig. 5.

Figure 5: Shown here is the layout for the Output class in PULSEDYN.

3.7. Organization

The code organization is straight-forward. First, the parameter file is
parsed to extract values of the variables required for running a simulation.
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Any parameter not specified is simply set to its default value. The default
values can be found in the user manual. Once the variables have been set,
the objects for the classes in the software are initialized. After initialization,
the model chosen is fed into the function that starts the simulation. Data is
written to file periodically as explained in Section 3.4, till the simulation is
over and the program exits. A flowchart illustrating the code organization is
shown in Fig. 6.

Figure 6: A high level flowchart for the software is shown in this figure.

4. Software Functionalities

The software can be run by setting up a few commands in the parameter
file named parameter.txt and double clicking on an executable or by
running the executable in a terminal window. A detailed explanation of
how to specify these commands is given in a user manual provided with the
software.
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model: Specify potential type and parameters
method: Choose integration algorithm

systemsize: Set number of particles in the chain
timestep: Set the value of dt used by the integration algorithm
recsteps: Set total number of recorded steps
printint: Set the time iterations after which data is recorded

init: Set initial conditions
boundary: Set boundary conditions

mass: Set masses of individual particles
force: Set external force on the system

dissipation: Set a velocity dependent dissipation

Table 1: Parameter file commands used to run the code.

One can set the type of potential and its parameters and choose from
the integration algorithms provided. The user can also set various system
and simulations parameters such as sampling intervals, mass of individual
particles, chain sizes etc. as shown in Table. 1. An example of the parameter
file is shown for the test case of the seeded localized nonlinear excitation in
Section 5.2 is shown in Fig. 7.

Figure 7: An example of the parameter file used for the seeded localized nonlinear excita-
tion in the FPUT chain is shown here. The results are discussed in Section 5.2.

In addition to potential parameters and algorithm parameters, initial
conditions for position, velocity and acceleration can be set on a particle
by particle basis using either fixed numbers or random numbers within a
range. They may also be imported from a file with the data stored in the
format shown in Table. 2.
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x1 v1 a1
x2 v2 a2
x3 v3 a3
. . .
. . .
. . .
. . .
. . .
xN vN aN

Table 2: Format for initial conditions to be read from file.

The feature to import data from file may be also leveraged to continue
runs from the last known point in time of a previous simulations recorded in
the restart file. Finally, boundary conditions can be specified in the param-
eter file separately for the left and right boundaries.

5. Results: test cases

5.1. Toda lattice

In the limit of N → ∞, the Toda lattice from Eq. 1 admits a soliton
solution of the following form [26], where by soliton we mean a SW which
does not interact with another SW except for a phase change suffered during
the collision

xn =
1

k2
ln

1 + exp(2(κn− κ+ βt))

1 + exp(2(κn+ βt))
, (6)

where xn refers to the displacement of the nth mass.
The velocity of the nth particle can be found by taking a derivative with

time of xn and is

vn = −
2β exp(2(κn + 2βt))(exp(2κ)− 1)

k2(1 + exp(2(κn+ βt)))(exp(2κ) + exp(2(κn + βt))
. (7)

In the above solution, κ is a free parameter which controls the width of the
soliton, width ∝ 1/κ and β = ±

√

k1k2/m sinh κ. Here, κ > 1. The soliton
has the following features - as the soliton propagates it changes the global
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state of the system. Solitons of smaller widths propagate faster and the sign
of β controls the direction of soliton propagation. For our simulations, we
used k1 = 1.0, k2 = 10.0 and varied κ to seed soliton profiles into the Toda
lattice.

We use Eq. 6 and 7 to seed the soliton profile into the Toda chain.
The Toda lattice soliton solution holds true for an infinite system. Due to
the fact that the soliton is kink shaped i.e., the right end is in a different
configuration than the left end, the finite sized chain recoils as soon as the
system is released. This leads to some radiative emissions from the soliton
profile seeded into the chain (too small to be seen on the kinetic energy plot).
In our simulations, x1 = 0 and xN = −0.06. Due to emission of this radiation,
the soliton slows down slightly as compared to the theoretical solution. The
effects of boundaries on the system dynamics is an important issue and has
been the subject of previous study where the slowing down of the numerical
solutions as compared to the theoretical solution has been reported [39].

In our simulations, we have used open boundaries and seeded the kink
closer to the right boundary to minimize the recoil. The time-step used is
0.01 and the data is recorded at every 100 iterations, setting the time scale
for the results shown in Fig. 8. The energy is conserved to one part in 106

using a Gear 5th order predictor-corrector algorithm.
The Toda lattice also allows for multiple soliton solutions. We show in

Fig. 9 two solitons seeded in the chain at opposite ends and traveling towards
each other. As soon as the simulation starts, the solitons radiate some energy
as explained previously. However, after the radiation separates from the
solitons, they move with constant speed towards each other and meet at
the center of the chain. As expected, the two solitons show no scattering
when they collide with each other. Further, the front of the radiation moves
slightly slower than the solitons themselves. This is due to the fact that the
soliton speed in the system is always greater than the speed of sound which
is the fastest speed at which the radiation can propagate [3, 4, 26]. For the
soliton collision problem we have used κ1 = κ2 = 0.6, k1 = 1.0 and k2 = 10.0.

5.2. FPUT lattice

The FPUT system is a nonlinear spring-mass model with a polynomial
potential given by Eq. 2. The model was originally proposed and studied to
show that in contrast to the finite sized harmonic oscillator chain, a nonlinear
spring-mass chain would thermalize i.e., the energy of the modes would be
shared and this would lead to the eventual equipartitioning of energy [1,
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Figure 8: Subfigures (a) through (d) show the Toda soliton propagating on a lattice at
times t = 0, 10, 40 and 100 respectively. The numerical solution is shown as the solid line
while the exact solution is shown as a dashed line.

Figure 9: The collision of two Toda solitons as they propagate on the lattice is shown in
the panel. The figure shows the logarithm of kinetic energy plotted against time on the
x-axis and particle index on the y-axis. The color sets the scale of the energy plotted with
darker color corresponding to higher energy as shown in the color bar.
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2]. What they found however, was something they never expected. Their
simulations showed that the energy stored in a single mode was shared with
other modes for short times, but at later times, the energy would return back
to the same mode i.e. the system showed no equipartition of energy.

Using PULSEDYN, we recreated the recurrence phenomenon observed
by Fermi and coworkers. For our simulations, we used k1 = 0.5, k2 = 0.0833
and k3 = 0 in a 64 particle system in Eq. 2 with mi = 1. We initialized
the system with all the energy fed into the lowest mode, k = 1 using the
following equation,

xi =
N
∑

k=1

x(k) sin
ikπ

N + 1
. (8)

The mode energies are then given by

Ek =
1

2
ȧ2k + ω2

ka
2
k. (9)

Here,

ω2
k =

4k

m
sin2 kπ

2(N + 1)
, (10)

and

ak =
2

N

N
∑

i=1

xi sin
ikπ

N + 1
. (11)

While the energy is initially shared with higher modes k = 2, 3, ..., it
returns back to the original mode after some time as shown in Fig. 10. The
total energy here is conserved to 1 part in 105 using a time step of 0.1 with
the velocity-Verlet algorithm [22]. We have used fixed boundaries for the
system.

We now turn our attention to phenomena in the FPUT chains which
have been studied more recently. It has been shown that a bond squeezing
or stretching in the β model of the FPUT chain i.e. k2 = 0 leads to a localized
nonlinear excitation (LNE) [18, 27]. A squeeze in a bond is effected by setting
the following initial condition, xi = −xi+1 = A. The LNE is not stable and it
delocalizes after some time and the time scale depends on the parameters of
the system as well as the initial conditions [27]. In the absence of phonons,

20



t ×10
4

0 2 4 6 8 10

E
k

0

0.5

1

1.5

2

2.5
E1

E2

E3

E4

Figure 10: The energy stored in each of the first 4 modes of the α-FPUT chain as a
function of time is shown here. The recurrence of energy in the first mode is seen at
t ≈ 60000. Here, k1 = 0.5, k2 = 0.0833, k3 = 0 and the energy is initialized in the first
mode of the system i.e. k = 1.

i.e. k1 = 0, it has been also shown that the destabilization takes place
via emission of SWs and anti-SWs (ASWs) and other metastable nonlinear
excitations [27]. Following the destabilization of the LNE, the system then
enters a state called quasi-equilibrium (QEQ) where the velocity distribution
is Gaussian, but the kinetic energy fluctuations are too high for the state to
be equilibrium [19, 40, 41]. The potential in this case is given by

Vi,i+1 = k3(xi+1 − xi)
4, (12)

A simulation of a seeded LNE using the potential in Eq. 12 is shown in
Fig. 11. The results are as expected. The LNE decays by emitting SWs and
other metastable excitations. A more detailed discussion of the LNE decay
and the evolution of the system to equilibrium is presented in Section 6. The
time step used here is 10−6. A small time step is required for a problem
such as this one owing to the high frequency quasi-periodic oscillations of
the LNE before delocalization. The energy is conserved to better than one
part in 1011 using the velocity-Verlet algorithm [27].

Another test for the quartic FPUT system is the dynamics of SW colli-
sions in the system. A SW can be seeded in the chain by giving a velocity
perturbation to a particle at t = 0 and letting it evolve. We seed two SWs in
a quartic system (with k1 = k2 = 0). The SWs are identical and propagate
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Figure 11: A contour plot of log
10

KE in the quartic FPUT system with k1 = 0 is shown
here. The LNE is in bond 51 of a 100 particle chain with fixed boundaries. Darker shades
correspond to higher energy as shown in the color bar.

towards each other from opposite sides of the chain. It has been shown that
two such interacting waves experience scattering when they meet and they
leave behind residual energy [28]. The results are shown below for a 2000
particle chain in Fig. 12. Two SWs were created at particle 400 and 1600 by
giving them velocity perturbations of strength vo = 0.3. The boundaries are
set to be free boundaries and the simulation was performed with the velocity-
Verlet algorithm with a time step of 10−3. The total energy of the system
is conserved to 1 part in 107. At particle 1000 where the two SWs meet
they collide and leave behind oscillations as expected. Due to energy con-
servation, the heights of the SWs post collision are slightly reduced. If this
process happens repeatedly, the SWs break up into many secondary SWs and
the system enters the QEQ phase which is similar to the equilibrium phase
except that energy equipartitioning is not seen [19].

5.3. Morse and Lennard-Jones potentials

Exact solutions of the Morse and the Lennard-Jones (LJ) chains in 1D
do not exist to our knowledge. Therefore, to test propagation of solitons
through chains with the Morse and LJ potential, we follow the numerical
scheme employed by Flytzanis et al [20]. In their 1989 study, the authors
reduce the equations of each of the potentials under consideration into their
corresponding α+β FPUT forms as polynomial expansions of these nonlinear
potentials. The corresponding Boussinesq equation of the FPUT chain is
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Figure 12: Subfigure (a) shows two SWs in the quartic FPUT system traveling towards
each other at t = 1150. Subfigure (b) shows the two SWs moving away from each other
towards the ends of the chain at t = 1560 after colliding with each other. The collision
takes place at particle 1000.

derived. The Boussinesq equation has well known soliton solutions. These
solutions are used as soliton generators to seed solitons into the chains. The
procedure is as follows.

Consider the Morse potential for instance given by Eq. 3.
This potential can be expanded and written as a truncated polynomial

potential of the form

Vi+1,i =
1

2
G(xi+1 − xi)

2 +
1

3
A(xi+1 − xi)

3 +
1

4
B(xi+1 − xi)

4. (13)

In the continuum limit, the right hand side of Eq. 13 can be expanded as
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V ′(ri+1)− 2V ′(ri) + V ′(ri−1) ≈ D2∂
2

V
∂y2 +

1

12
D4∂

4V

∂y4
. (14)

Here, ri = xi+1 − xi and y = iD where D is the bond length of each
bond and i is the site index. The corresponding Boussinesq equation takes
the form

utt − c2ouyy − p(u2)yy − q(u3)yy − huyyyy = 0, (15)

with c2o = GD2/m, p = AD3/m, h = GD4/(12m) and q = BD4/m. The
soliton solution of this equation is given by

y(x, t) = ±2sgn(h)
(2h

q

)(1/2)

arctan
( 1

w
tanh

(x− vt

L

))

, (16)

where

w =

(

[4p2 + 18(v2 − c2o)q]
1/2 ± 2p

[4p2 + 18(v2 − c2o)q]
1/2 ∓ 2p

)

, (17)

and

L = 2
[ h

v2 − c2o

]1/2

. (18)

The soliton solution of the Boussinesq equation is then used as a soliton
generator to seed soliton shapes into the discrete chains. Since this solution
is not a true solution of the discrete system, the solution decomposes into
a radiative part and a soliton-like kink part. In the study [20], the authors
found that the propagating kink soliton does not fit well to polynomial fits
and other simple fits. In fact, the stable part of the propagating kink is fit
best to a generalized Toda soliton given by the equation

xn =
1

2
Aw log

1 + exp[±2(n− no − 0.5)/w]

1 + exp[±2(n− no + 0.5)/w]
+ C, (19)

where, A is the height of the kink, no is the position of the center of the kink
and 2w is the width of the soliton kink. Flytzanis et al [20] were able to
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obtain very good fits of the non-radiative part of the propagating kink in the
LJ and the Morse chains using the above forms for chains with N >> 1.

In this section, we use the same approach to seed solitons in the Morse
and LJ potentials and verify that the propagating constant velocity front of
the kink does indeed behave as a Toda soliton.

For the Morse potential, we used the parameters k1 = 0.01 and k2 = 7.
This leads to the values of G = 1, A = −10.5 and B = 57. For the LJ
potential, we use k2 = 0.01389 and k1 = 1 to obtain values of G = 1, A =
−10.5 and B = 62. We use these values of G,A and B to calculate p, q, h and
c2o after setting D = 1. Then we use the values of p, q, h and c2o to calculate
the soliton generator from Eq. 16 and seed this shape into the Morse and
the LJ chains respectively. We track the propagating kink and obtain the
displacement of each particle in the chain at a later time and fit it to the
generalized Toda lattice solution from Eq. 19. The time step used is 0.1 and
the energy conservation holds to 1 part in 105. The plots are shown in Fig.
13.

As with Flytzanis’ study, the fit obtained is satisfactory. For the Morse
potential, we get the parameters of the fit as A = 0.117± 0.005, w = 1.00±
0.02 and no = 368. The goodness of the fit R2 = 0.999. For the case of
the LJ chain we found, A = 0.22 ± 0.04, w = 2.7 ± 0.6, no = 43.6 ± 0.4 and
R2 = 0.985.

6. Results: Journey to Equilibrium

As demonstrated in the previous section, a seeded LNE eventually delo-
calizes. As it delocalizes, it does so in a way that system energy distribution
goes towards the value predicted by the virial theorem. At early times in
the LNE evolution, the motion is very nearly periodic with the frequencies
corresponding to those of the Duffing oscillator [27]. As it evolves and emits
energy via SWs and other excitations, the frequency peaks broaden as shown
in Fig. 14, i.e., the LNE’s periodicities are not as well defined. This acceler-
ates the delocalization process. Once delocalization is complete the system
enters a QEQ state which turns out to be a metastable state [18, 29, 41].

As the LNE delocalizes, the kinetic energy fluctuations δK of the system
begin to decrease since the motion of the LNE particles is not nearly as
periodic as at early times. A plot of δK fluctuations during the LNE lifetime
is shown in Fig. 15(b). With time, the fluctuations go down further and
reach a stable value as shown in Fig.15(c). This stable regime is well after
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Figure 13: Subfigure (a) shows a snapshot of the kink profile in Morse chain at t = 310
and the fit to the displacements from Eq. 19. Subfigure (b) shows a snapshot of the kink
at t = 54 of the LJ chain. The data points are obtained from numerical simulations and
the line shows the fit to Eq. 19.

the delocalization of the LNE. The question now arises - is the late time
state true equilibrium or is it QEQ? In true equilibrium, ergodicity would
hold true and the energy would be equipartitioned. We know that the answer
to this question is known, namely the FPUT chain goes to the equipartitioned
state at late times for weak nonlinearity [31, 32, 33]. Our objective hence is
to make sure that PULSEDYN can deliver the anticipated conclusion for a
system in the nonlinear case (recall k1 = k2 = 0).

To address this question, we performed calculations to verify the virial
theorem and the specific heat of the system. The parameters used are k1 =
0, k2 = 0, k3 = 1.0 and A = 0.3. These are the same parameters as those for
the LNE in Fig. 11. We use a time step of 10−5 after LNE delocalization
and run the simulation for 1012 time iterations. We sample data at every 105
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Figure 14: Shown here are the direct cosine transforms (DCTs) of the kinetic energy of
the LNE particle (particle 50) at two different time intervals in its evolution. Subfigure
(a) shows the DCT for the time interval t = 0 to t = 100 and Subfigure (b) shows the
DCT computed for the time interval from t = 2500 to 2600 for the parameter values
k1 = 0, k2 = 0, k3 = 1.0 and A = 0.30. At early times, the DCTs show sharper peaks.
With time, as the LNE delocalizes, the DCT shows frequency spreading i.e. the LNE is
not quite periodic anymore.
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Figure 15: Subfigure (a) shows the ratio of the average kinetic energy to the total energy
of the system. LNE delocalization is complete here at t = 4000. Subfigure (b) shows the
fluctuations in 〈K〉 as a function of time from t = 0 to t = 4000. By t = 4000, the LNE
delocalizes and there is a corresponding decrease in the fluctuations as the system moves
from a quasi-periodic behavior into the QEQ phase. Subfigure (c) shows the fluctuations
at a much later time when the system has reached equilibrium. Here, the parameters are
k1 = 0, k2 = 0, k3 = 1.0 and the initial conditions are a seeded LNE at particle 50 and 51
with x50 = −x51 = A = 0.3.

iterations and we have called each such sampling a single time step. We have
collected we have recorded data in this case for 1.4× 107 time steps.

We find that at late times - the last 15% of the time evolution - the space
average and the time average of K are equal to each other, i.e., the system is
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ergodic. We then check whether the virial theorem results are satisfied. The
virial theorem states

〈K〉 =
n

n + 2
E. (20)

Here, E is the total energy of the system and n is the exponent in the power
law potential. For the purely nonlinear β-FPUT chain, n = 4. Therefore,
〈K〉 = 2

3
E, which we recover from our calculations shown in Fig. 15(a).

However, ergodicity and the virial theorem are both satisfied even in the
QEQ state. Further, the velocity distribution in the QEQ state has been
found to be Gaussian [30]. Therefore, to establish conclusively that the final
state obtained is truly equilibrium, the system has to satisfy equipartition.

Calculations of response functions in the microcanonical ensemble in a
nonlinear many body system are challenging [42, 43]. To examine whether
the FPUT system has reached the equipartitioned state, we rely on a recent
similar study carried out for an alignment of grains where the grains repel
via a strongly nonlinear algebraic potential [44]. There it has been shown
that

Cv ≈ kB

[

n+ 2

2n
−

1

N

(

n + 2

n
+

4(N − 2)

2nN

)]

. (21)

Here, N is the number of particles in the finite sized system. In the above
equation, ifN → ∞, we recover the result from Tolman’s generalized equipar-
tition theorem in Eq. 22 due to the equivalence of statistical ensembles in
the thermodynamic limit [45] as

Cv ≈

(

n+ 2

2n

)

kB. (22)

Since the result depends only on the exponent in the potential n, Eq. 21 holds
for the purely nonlinear β-FPUT chain when the energy is in the equiparti-
tioned state.

For N = 100, the theoretical value for Cv/kB from Eq. 21 is calculated
to be 0.725. To compare this value to Cv that can be extracted from our
simulations we need to find a relation between the kinetic energy fluctuations
and Cv. Such a connection has recently been established in [46],

Cv =
kB
N

(

1−
(N − 4)〈1/K2〉

(N − 2)〈1/K2〉

)

−1

. (23)
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From our numerical calculations, we recover a value of 0.729 at late times
using Eq. 23. The numerical value from our simulations is within 0.55% of
the theoretical value and shows agreement between the theoretical estimate
and the dynamical simulation based results. Therefore, our studies suggest
that the purely nonlinear β-FPUT system goes to the equipartitioned state
at late times in this study, which is a prediction based on the results of the
PULSEDYN code.

7. Conclusions

We have presented the PULSEDYN code that is designed to make dy-
namical simulations of energy conserved and driven dissipative 1D nonlinear
systems accessible to students and professionals without any background in
the field. The code provides features that can be readily tuned. PULSE-
DYN is capable of carrying out detailed particle dynamics simulations in
windows and linux platforms for an integrable system, the Toda chain, and
three non-integrable systems, the FPUT, Morse and Lennard-Jones chains.
The conservative systems can be studied using the velocity Verlet algorithm
and the Gear algorithm whereas the driven dissipative system can only be
studied using the Gear algorithm. The program has been written with a
modular design and the writing style is expected to allow for additions and
extensions to the code for an experienced C + + programmer.

To explore the capabilities of PULSEDYN we have recovered the following
results. We have recovered the exact analytical results on the propagation
of a soliton and the interaction between solitons in the Toda lattice, we have
confirmed the presence of the recurrence phenomenon, we have explored the
problem of LNE delocalization and SW interactions in the FPUT chain and
our results are in agreement with known results in the FPUT chain regarding
SW interactions, and we have recovered the approximate forms of SWs in
the Morse and the LJ potential that have been previously investigated.

In addition, we have also presented new results regarding the relaxation
processes of LNEs in the purely nonlinear FPUT chain. We demonstrated
that as the LNE delocalizes the fluctuations in the system’s kinetic energy
K goes down at late enough times as expected. At sufficiently late times the
energy distribution reaches the values predicted by the virial theorem and the
system is found to reach the equipartitioned state. The equipartitioning is
evident through the excellent agreement between the specific heat calculated
from the simulations and the same predicted theoretically.
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Metadata

Current executable software version

Nr. (executable) Software metadata
description

Please fill in this column

S1 Current software version v1.0
S2 Permanent link to executables of

this version
https://github.com/rahulkashyap7557

S3 Legal Software License GNU General Public License 3 (GPL)
S4 Computing platform/Operating

System
Windows, Linux

S5 Installation requirements none
S6 If available, link to user manual - if

formally published include a refer-
ence to the publication in the refer-
ence list

https://github.com/rahulkashyap7557

S7 Support email for questions rahulkashyap7557@gmail.com

Table 3: Software metadata
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Current code version

Nr. Code metadata description Please fill in this column
C1 Current code version v1.0
C2 Permanent link to code/repository

used of this code version
https://github.com/rahulkashyap7557

C3 Legal Code License GNU General Public License 3 (GPL)
C4 Code versioning system used github
C5 Software code languages, tools, and

services used
C++

C6 Compilation requirements, operat-
ing environments & dependencies

Code::Blocks, GNU GCC compiler

C7 If available Link to developer docu-
mentation/manual

https://github.com/rahulkashyap7557

C8 Support email for questions rahulkashyap7557@gmail.com

Table 4: Code metadata
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