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Propagation and asymmetric behavior of optical pulses through time-dynamic
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We report an asymmetric behavior of optical pulses during their propagation through a time-
varying linear optical medium. The refractive index of the medium is considered to be varying with
time and complex such that a sufficient amount of gain and loss is present to realize their effect
on pulse propagation. We have exploited the universal formula for optical fields in time-varying
media. Numerically simulated results reveal that pulses undergo opposite temporal shifts around
their initial center position during their bi-directional propagation through the medium along with
corresponding spectral shifts. Moreover, the peak power and accumulated chirp (time derivative of
accumulated phase) of the output pulse in both propagation directions are also opposite in nature
irrespective of their initial state. Numerically simulated behavior of the pulses agrees well with the
analytical solutions. Possibilities have been explored in context of pulse shaping and unconventional
optical devices.

I. INTRODUCTION

Asymmetric propagation of electromagnetic (EM)
waves, unlike non-reciprocity, reverses the inherent prop-
erties of wave depending on the direction of propagation.
Lately, such asymmetrical nature of wave transmission is
of immense interest due to its wide applicability in new
range of optoelectronic devices, signal processing, and to
some extent in optical communication. To date, a num-
ber of investigation have been reported demonstrating
asymmetric wave propagation mainly exploiting the typ-
ical characteristics of two-dimensional chiral structures,
primarily metamaterials, in light-guiding systems. The
first theoretical prediction and experimental observation
showed that the transmission and retardation of a cir-
cularly polarized wave are different in opposite direc-
tions resulting from the planar chirality and anisotropy
of a lossy medium [1]. This particular phenomenon were
previously unknown and sooner such observations have
been employed to show the asymmetrical propagation
in a nanostructured metamaterial from visible to near-
infrared part of the EM spectrum [2]. Further, a po-
larization independent asymmetric transmission of light
has been reported by exploiting the principle of momen-
tum symmetry breaking at discontinuous phase interfaces
in a gradient index metamaterial waveguide [3]. At the
same time, study of asymmetric propagation has been
extended to the optical fibers where the polarization ro-
tation of EM waves are shown to be asymmetric in a
spiral fiber structure that breaks the directional symme-
try of the fiber and incorporates small modal losses [4].
Very recently, towards the development of on-chip op-
toelectronic devices, asymmetric light transmission has
been reported in hybrid plasmonic waveguide [5] (break-
ing polarization symmetry), three-layered metamaterial
[6] (for broad dual-band transmission in near-IR), active
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chiral metamaterial [7] (to dynamically control the wave
propagation) and in quantum inspired wave based sys-
tems with exceptional singularities. However, such re-
markable works have all been reported to occur in guided
systems, e.g. waveguides or fibers, whereas, to the best
of our knowledge, no such reports are available in liter-
ature that demonstrate asymmetric propagation of light
through a bulk from implementation in device point of
view. Design and fabrication of prototypes in the con-
text of optical isolators, circulators, asymmetric mode
converters are the rapidly evolving areas in integrated/
all-optical applications which directly implements such
asymmetric phenomena.

In this paper, we report an asymmetric transmission of
optical pulses through a linear system by simultaneously
tuning the refractive index of the medium with time.
It is well known that optical pulses propagate undis-
torted through a linear time-invariant system. Significant
temporal and spectral changes occur only when refrac-
tive index of the linear medium is time-variant [8–10].
Recently, both temporal and spectral shifts and pulse-
shaping have been reported in time-varying refractive in-
dex media - starting from linear non-dispersive to non-
linear dispersive [11–14] cases. Authors have employed a
novel time-transformation technique that only considers
the electric field distribution of the pulse [11]. This ap-
proach is much faster than Finite difference time domain
(FDTD) method, and also does not require any slowly
varying envelope approximation as required in Nonlinear
Schrodinger equation (NLSE) to implement other prop-
agation techniques. Moreover, time-transformation rela-
tion can be employed to solve pulse propagation prob-
lem with any pulse duration - from short to ultrashort
pulses. Here, we have numerically employed the time-
transformation approach in order to study pulse propa-
gation through the linear medium whose refractive index
is time-dependent as well as complex in nature. With the
imaginary part of the refractive index, we have incorpo-
rated equal and adequate amount of gain/loss such that
propagating pulse will experience the effect of a gain-
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loss assisted media though the net gain and loss of the
system is zero. We demonstrate pulse propagation in op-
posite directions resulting in asymmetric temporal and
spectral shifts of the output pulses with quadratic phases
that lead to linear chirp with opposite slopes. Moreover,
power of output pulse is also affected much due to the si-
multaneous presence of gain and loss. Such systems once
implemented will open up a new platform to develope a
range of unconventional optical devices.

II. PULSE PROPAGATION THROUGH A

GAIN-LOSS ASSISTED MEDIUM

Propagation of optical pulses through a linear medium
can be solved numerically by integrating the Maxwell’s
equations using the technique of finite difference time do-
main (FDTD) approach. However, the cumbersome na-
ture of FDTD made researchers inquisitive about other
mathematical models that provide easier approach to ob-
tain the same output solution of the pulse propagation.
Split step Fourier method has also been implemented for
specific pulse shapes and durations to study the non-
linear propagation of such pulses. Recently, the time-
transformation approach is reported to be the simplest
mathematical model based on the relation between input
and output electric field variations of the optical pulses
through the equation [11]

Eout(t) =

∫
∞

−∞

h(t, t′)Ein(t
′)dt′ (1)

where, h(t, t′) is the impulse response function of the sys-
tem. For a time-dynamic linear medium whose refractive
index is varying with time, the time transformation rela-
tion is given by,

Tr(t
′) = (1− s)t′/s+ Tr0 (2)

where, s is the ratio of initial to final refractive index and
Tr0 is the effective transit time delay. So the temporal
and spectral output fields of the pulse based on the time-
transformation approach are given by:

Eout(t) = sEin(st− sTr0), (3a)

Ẽout(ω) = Ẽin(ω/s)e
−iωTr0 . (3b)

In this paper, we implement this time-transformation ap-
propach to investigate the interesting behaviour of opti-
cal pulses through unconventional optical configurations.

A. Analytical approach to pulse propagation

Here, we aim to study the propagation of optical pulses
through a time-dynamic gain-loss assisted media. For
this, we have considered the system to be comprised

FIG. 1: Schematic of the time-dynamic system. Blue arrows
denote the directions of pulse propagation.

of two bulk slabs with different complex refractive in-
dices varying temporally with a sharp index change at a
specific point of time. Moreover, same amount of gain
and loss has been incorporated to the system which is
schematically depicted in figure 1. The output equations
(3a) and (3b) are solved analytically for an input Gaus-
sian pulse of the form,

Ein(t) = E0e
−t2/2T 2

0
−iωt. (4)

Taking the fourier transform of Eq. (4), we get the fre-
quency domain expression of the input pulse as,

Ẽout(ω) = E0T0

√
2πe−T 2

0
(ω−ω1)

2/2. (5)

Applying the time-transformation approach we have the
output form of optical pulses in both time and frequency
domain:

Eout(t) = sE0e
−s2(t−Tr0)

2/2T 2

0
−isω1(t−Tr0), (6a)

Ẽout(ω) = E0T0

√
2πe−T 2

0
(ω−sω1)

2/(2s2)−iω1Tr0 . (6b)

Now, we consider propagation of the pulse with complex
refractive indices of the medium to be n1 = n1r + in1m

and n2 = n2r − in2m respectively, which we refer to
forward propagation. Hence, s becomes s = n1/n2 =
sr + ism and Eq. (6a) is modified to,

Eout1(t) = (sr + ism)E0e
(t−Tr01)[α1(t−Tr01)+β1] (7)

×e−i[α′

1
(t−Tr01)+β′

1
],

where α1 = −(s2r − s2m)/2T 2
0 , β1 = smω1, α

′

1 = srsm/T 2
0

and β′

1 = srω1. The phase of the output pulse has come
out to be -

φ(t) = (t− Tr01)(α
′(t− Tr01) + β′), (8)

from where we can find a linear dependence of instanta-
neous frequency on time given by,

δω(t) = 2α′(t− Tr01) + β′. (9)

Further, we consider backward propagation of opti-
cal pulse where the successive refractive indices of the
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medium are, n1 = n1r − in1m and n2 = n2r + in2m and
hence, s = sr − ism. Accordingly the output equations
becomes,

Eout2(t) = (sr − ism)E0e
(t−Tr02)[(α2(t−Tr02)+β2) (10)

×e−i(α′

2
(t−Tr02)+β′

2
)]

where, α1 = α2, β1 = −β2, α
′

1 = α′

2 and β′

1 = −β′

2.
Similarly, we can obtain the frequency domain expres-

sion for both forward and backward propagation of the
output pulse:

Ẽout1(ω) = E0T0

√
2πe−T 2

0
(kω2+ω2

1
−lωω1)/2 (11)

×e−i(ω1Tr01+ω(pω1+qω)T 2

0
),

Ẽout2(ω) = E0T0

√
2πe−T 2

0
(kω2+ω2

1
−lωω1)/2 (12)

×e−i(ω1Tr02+ω(pω1−qω)T 2

0
),

with k = (s2r − s2m)/(s2r + s2m)2, l = 2sr/(s
2
r + s2m), p =

sm/(s2r + s2m) and q = srsm/(s2r + s2m)2.

B. Numerical observations

Since the time-transformation approach is applicable
to all kind of pulse shape and duration, thus any stan-
dard optical pulse shape from commercially available
laser sources can be chosen for the study of pulse propa-
gation. Here we have studied the evolution of a Gaussian
pulse during its propagation through the time-dynamic
system in opposite/both directions. For numerical simu-
lation, we have chosen the refractive indices n1 and n2 to
be equal to the standard silica and doped silica glasses at
the operating wavelength of 1.5 µm with equal amount
of gain and loss ∼ 10−6 having incorporated. The ini-

FIG. 2: Time-domain input (dotted) and output pulse profile
for forward (black) and backward (red) propagation in time-
dynamic system. Inset shows the respective profiles for a
time-static system.

tial pulse parameters are chosen to be: peak power (Pp)

= 100 W, full-width-at-half-maximum (FWHM) = 1 ps,
and maintained the same for the bi-directional propaga-
tions. For ease of understanding of the results, we have
considered the pulse propagation from left to right as
forward and from right to left as backward, as depicted
in figure 1. The temporal output profiles for both for-
ward and backward propagations are shown in figure 2.
It is prominent that forward propagation has resulted in
attenuation of the pulse whereas there is an adequate en-
hancement during backward propagation. Though we in-
corporated gain and loss in such a way that its effect will
be canceled out in totality, however the real predicament
is different from our notion. Such enhancement or atten-
uation in power occurs entirely due to the temporal shifts
of output pulses. As propagated down the system, pulses
have been shifted from their initial center position where
sm is playing its dominant role. The respective shifts
are in opposite sides of the initially fed pulse for forward
(Tr01 = −9.3 ps) and backward (Tr02 = 8.7 ps) trans-
mission respectively. Moreover, reshaping of pulses are
evident to happen because of the complex ratio s. The
real part of the complex ratio sr is either greater or less
than 1 depending on the respective real values of the re-
fractive indices, and it has already been shown that pulse
shape changes according to s > 1 or s < 1. As stated
before, the imaginary part of s i.e., sm has the dominant
role to play for any possible change in pulse shape. As
the output pulse has shifted from t = 0 to t = Tr0, thus
there is a large value from sm that is contributing to the
exponent part of Eq. (??), which is positive for forward
transmission and results in pulse attenuation, whereas

FIG. 3: Input (dotted) and output spectra for both forward
(black) and backward (red) propagation in time-dynamic sys-
tem. Similar profiles for time-static medium are shown as
inset.

negative sm during backward transmission of light en-
hances the power. Nearly 44% of the input power has
been attenuated during forward propagation through the
system with its FWHM broadened by ∼ 13%. Whereas
backward transmission has enhanced the output power
by 80% with 2% reduction in FWHM. In this context, for



4

a system which is time-static but gain-loss assisted, pulse
propagation is asymmetric only in terms of enhancement
or reduction of power as no effective time delay will be
observed. This is shown as inset of figure 2.
Accordingly, the output spectra for both propagation

directions are also shifted from the input pulse centered
at 200 THz with its spectral FWHM = 0.4 THz. While
propagating in forward direction, output spectrum has
been left-shifted by 12.9 THz from the initial center fre-
quency, whereas 13.8 Thz shift towards right of the input
frequency has been observed in opposite direction. Fig-
ure 3 clearly depicts the input and output spectra where
the normalized spectral intensity has been plotted. Un-
like temporal profile, forward transmission has resulted in
enhancement of the spectral power by ∼ 60%, whereas
backward propagation has attenuated the intensity by
∼ 35%. Moreover, no significant change has been ob-
served in the spectral FWHM of the output pulses in
opposite directions. Inset of figure 3 shows the spectral
variation for time-static gain-loss assisted medium where
no spectral shift has been observed. Further, according to

FIG. 4: Variation of instantaneous frequency with time for
both forward (black) and backward (red) propagation.

Eq. 8 the accumulated phase variation shows quadratic
behavior which leads to a linear frequency chirp (Eq. 9).
The instantaneous frequency changes with time linearly
with opposite slopes in opposite directions which corre-
sponds to different signs of β′

1 and β′

2 and is depicted
in figure 4. In further to appreciate the asymmetric be-
haviour of the pulses, the variation of forward and back-
ward transmission coefficients i.e., Tf and Tb respectively
with time-shift have been estimated. In figure 5, logTf

and logTb are plotted against time-shift which clearly
shows that the transmissions in opposite directions are
exactly opposite in nature. Tr01 and Tr02 are the respec-
tive effective time delays where the transmission curves
reach their maxima (i.e., the value of 2log|s| is -0.134 at
Tr01 and 0.134 at Tr02).
We further extended our investigation by increasing

the number of slabs with different refractive indices. In
such case, s is the ratio of initial to final slab refractive
indices and intermediate slabs are accounted for the com-
putation of effective time delay Tr0. It has been observed
that for a configuration with even number of slabs the
propagation in opposite directions are asymmetric with
changes in Tr0, whereas odd number of slabs leads to
symmetric propagation with different time-shifts. More-
over, with even number of slabs the chirp is linear in both
of the propagation directions, however odd numbers do
not show such linearity.

lo
g
 T

b

FIG. 5: Logarithmic variation of forward transmission coeffi-
cient Tf and backward transmission coefficient Tb with related
time-shift.

III. CONCLUSION

In summary, we have established an asymmetric prop-
agation of optical pulses through a linear non-dispersive
time-dynamic gain-loss assisted optical medium. To real-
ize such unconventional behavior, we need not necessar-
ily break any kind of symmetry or to have any synthetic
material as a medium. The time-dependent refractive
index with adequate amount of gain and loss in a linear
medium results in asymmetric pulse propagation in op-
posite directions. Such an observation is very new and
will eventually propel the development of unconventional
optoelectronic devices, dynamic pulse shaping and spec-
trum tailoring.
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