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I. INTRODUCTION

The quark level flavor changing neutral interaction b → sµ+µ− is forbidden at

the tree level in the standard model (SM) and can occur only at the one-loop level.

Therefore it can serve as an important probe to test SM at loop level and also

constrain many new physics models beyond the SM. This quark level interaction

is responsible for the purely leptonic decay Bs → µ+µ− and also the semi-leptonic

decays B → (K,K∗)µ+µ−. The semi-leptonic decays have been observed by BaBar

and Belle [1, 2, 3] with the following branching ratios:

B(B → Kµ+µ−) = (5.7+2.2
−1.8)× 10−7,

B(B → K∗µ+µ−) = (11.0+2.99
−2.6 )× 10−7. (1)

These values are close to the SM predictions [4, 5, 6]. However there is about 20%

uncertainty in these predictions mainly due to the errors in the determination of the

hadronic form factors and the CKM matrix element |Vts|.
The decay Bs → µ+µ− is highly suppressed in SM. Its branching ratio is predicted

to be (3.35± 0.32)× 10−9 [7, 8, 9]. This decay is yet to be observed experimentally.

Recently the upper bound on its branching ratio has been improved to [10]

B(Bs → µ+µ−) < 5.8× 10−8 (95% C.L.) , (2)

which is still more than an order of magnitude above its SM prediction. Bs → µ+µ−

will be one of the important rare B decays to be studied at the upcoming Large

Hadron Collider (LHC) and we expect that the sensitivity of the level of the SM

prediction can be reached with ∼ 1 fb−1 of data. [11, 12].

Many new physics models predict an order of magnitude enhancement or more in

B(Bs → µ+µ−). These include theories with Z
′

mediated vector bosons [13], as well

as multi-Higgs doublet models that violate [13] or obey [14] natural flavor conserva-

tion. In [15], it was shown that the new physics mediated by vector bosons is highly

constrained by the measured values of the branching ratio of B → (K,K∗)µ+µ−. As

a result, an order of magnitude enhancement in B(Bs → µ+ µ−) from new physics

vector or axial vector operators is ruled out. On the other hand, such an enhance-

ment from the scalar/pseudoscalar new physics (SPNP) operators is still allowed,
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since the most stringent bound on the SPNP operators comes from B(Bs → µ+ µ−)

itself. In particular, multi-Higgs doublet models or supersymmetric (SUSY) models

with large tanβ can give rise to such an enhancement.

Apart from the branching ratios of the purely leptonic and semi-leptonic decays,

there are other observables which are sensitive to the SPNP contribution to b → s

transitions. These are forward-backward (FB) asymmetry AFB of muons [16] in

B → Kµ+ µ− and longitudinal polarization (LP) asymmetry ALP of muons in Bs →
µ+ µ− [17]. Both these are predicted to be zero in the SM. Therefore, any nonzero

measurement of one of these asymmetries is a signal for new physics. In addition,

these asymmetries are almost independent of form factors and CKM matrix element

uncertainties, which makes them attractive candidates in searches for new physics.

In this paper we investigate what constraints the recently improved upper bound on

B(Bs → µ+µ−) puts on the possible SPNP contribution to AFB and ALP . Do SPNP

operators enhance these observables to sufficiently large values to be measurable in

future experiments?

The paper is organized as follows. In section II, we study the effect of possible

SPNP contribution to AFB. In section III, we calculate the possible ALP enhance-

ment due to SPNP, and point out some interesting experimental possibilities. In

section IV, we present our conclusions.

II. FORWARD-BACKWARD ASYMMETRY IN B → Kµ+ µ−

There are numerous studies in literature of the FB asymmetry of leptons in the

SM and its possible extensions [18, 19, 20, 21, 22, 23, 24]. In the SM, the FB

asymmetry of muons in B → Kµ+µ− vanishes (or to be more precise, is negligibly

small) because the hadronic current for B → K transition does not have any axial

vector contribution. However this asymmetry can be nonzero in multi-Higgs doublet

models and supersymmetric models with large tanβ, due to the contributions from

Higgs bosons. Therefore FB asymmetry in B → Kµ+µ− is expected to serve as an

important probe to test the existence and importance of an extended Higgs sector

[21, 24]. Any nonzero measurement of this asymmetry will be a clear signal of new

physics.
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The average (or integrated) FB asymmetry of muons in B → Kµ+µ−, which is

denoted by 〈AFB〉, has been measured by BaBar [2] and Belle [25, 26] to be

〈AFB〉 = (0.15+0.21
−0.23 ± 0.08) (BaBar) , (3)

〈AFB〉 = (0.10± 0.14± 0.01) (Belle). (4)

These measurements are consistent with zero. But on the other hand, they can be

as high as ∼ 40% within 2σ error bars.

A. Calculation of AFB

We consider new physics in the form of scalar/pseudoscalar operators. The ef-

fective Lagrangian for the quark level transition b → sµ+µ− can be written as

L(b → sµ+µ−) = LSM + LSP , (5)

where

LSM =
αGF√
2π

VtbV
⋆
ts

{

Ceff
9 (s̄γµPLb) µ̄γµµ+ C10(s̄γµPLb) µ̄γµγ5µ

− 2
Ceff

7

q2
mb (s̄iσµνq

νPRb) µ̄γµµ

}

,

(6)

LSP =
αGF√
2π

VtbV
⋆
ts

{

RS (s̄ PR b) µ̄ µ+RP (s̄ PR b) µ̄γ5µ

}

. (7)

Here PL,R = (1∓ γ5)/2 and qµ is the sum of 4-momenta of µ+ and µ−. RS and RP

are the new physics scalar and pseudoscalar couplings respectively. In our analysis

we assume that there are no additional CP phases apart from the single CKM phase.

Under this assumption, RS and RP are real. Within SM, the Wilson coefficients in

eq. (6) have the following values:

Ceff
7 = −0.310 , Ceff

9 = +4.138 + Y (q2) , C10 = −4.221 , (8)

where the function Y (q2) is given in [27, 28].

The normalized FB asymmetry is defined as

AFB(z) =

∫ 1

0
dcosθ d2Γ

dzdcosθ
−

∫ 0

−1
dcosθ d2Γ

dzdcosθ
∫ 1

0
dcosθ d2Γ

dzdcosθ
+
∫ 0

−1
dcosθ d2Γ

dzd cos θ

. (9)
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In order to calculate the FB asymmetry, we first need to calculate the differential

decay width. The decay amplitude for B(p) → K(p′)µ+(p+)µ
−(p−) is given by

M (B → Kµ+µ−) =
αGF

2
√
2π

VtbV
⋆
ts

×
[

〈K(p′) |s̄γµb|B(p)〉
{

Ceff
9 ū(p+)γµv(p−) + C10ū(p+)γµγ5v(p−)

}

−2
Ceff

7

q2
mb 〈K(p′) |s̄iσµνqνb|B(p)〉 ū(p+)γµv(p−)

+ 〈K(p′) |s̄b|B(p)〉 {RSū(p+)v(p−) +RP ū(p+)γ5v(p−)}
]

, (10)

where qµ = (p− p′)µ = (p+ + p−)µ. The relevant matrix elements are

〈K(p′) |s̄γµb|B(p)〉 = (2p− q)µf+(z) + (
1− k2

z
) qµ[f0(z)− f+(z)] , (11)

〈K(p′) |s̄iσµνqνb|B(p)〉 = −
[

(2p− q)µq
2 − (m2

B −m2
K)qµ

] fT (z)

mB +mK

, (12)

〈K(p′) |s̄b|B(p)〉 = mB(1− k2)

m̂b
f0(z) . (13)

Here, k ≡ mK/mB, z ≡ q2/m2
B and m̂b ≡ mb/mB. In this paper, we approximate

m̂b by 1.

Using the above matrix elements, the double differential decay width can be

calculated as

d2Γ

dzdcosθ
=

G2
Fα

2

29π5
|VtbV ∗

ts|2m5
B φ1/2(1, k2, z) βµ

×
[

(

|A|2 β2
µ + |B|2

)

z +
1

4
φ(1, k2, z)

(

|C|2 + |D|2
)

(1− β2
µ cos

2 θ)

+2m̂µ(1− k2 + z)Re(BC∗) + 4m̂µ
2 |C|2

+2m̂µ φ
1

2 (1, k2, z) βµRe(AD∗) cos θ

]

, (14)
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where

A ≡ 1

2
(1− k2)f0(z)RS ,

B ≡ −m̂µC10

{

f+(z)−
1− k2

z
(f0(z)− f+(z))

}

+
1

2
(1− k2)f0(z)RP ,

C ≡ C10 f+(z) ,

D ≡ Ceff
9 f+(z) + 2Ceff

7

fT (z)

1 + k
,

φ(1, k2, z) ≡ 1 + k4 + z2 − 2(k2 + k2z + z) ,

βµ ≡ (1− 4m̂µ
2

z
) . (15)

Also, m̂µ = mµ/mB and θ is the angle between the momenta of K meson and µ− in

the dilepton centre of mass frame. The kinematical variables are bounded as

− 1 ≤ cos θ ≤ 1 ,

4m̂2
µ ≤ z ≤ (1− k)2 .

The form factors f+,0,T can be calculated in the light cone QCD approach. Their

q2 dependence is given by [18]

f(z) = f(0) exp(c1z + c2z
2 + c3z

3) , (16)

where the parameters f(0), c1, c2 and c3 for each form factor are given in Table I.

The FB asymmetry arises from the cos θ term in the last line of eq. (14).

f(0) c1 c2 c3

f+ 0.319+0.052
−0.041 1.465 0.372 0.782

f0 0.319+0.052
−0.041 0.633 − 0.095 0.591

fT 0.355+0.016
−0.055 1.478 0.373 0.700

TABLE I: Form factors for the B → K transition [18].

The calculation of FB asymmetry gives

AFB(z) =
2Γ0 m̂µ a1(z)φ(1, k

2, z) β2
µRS

dΓ/dz
, (17)

where

Γ0 =
G2
Fα

2

29π5
|VtbV ∗

ts|2m5
B , (18)
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a1(z) =
1

2
(1− k2)C9f0(z)f+(z) + (1− k)C7f0(z)fT (z) , (19)

1

Γ0

dΓ

dz
=

1

2
(1− k2) βµ φ

1

2 z f 2
0 (z) (R

2
P + β2

µR
2
S)

+ 2(1− k2) m̂µC10 f0(z)f+(z) βµ φ
1

2 (z) (1− k2 + z)RP

− 2(1− k2) m̂µC10 βµ z φ
1

2 f0(z)

{

f+(z)−
1− k2

z
(f0(z)− f+(z))

}

RP

+ 2m̂2
µC

2
10 βµ φ

1

2 (z)

{

f+(z)−
1− k2

z
(f0(z)− f+(z))

}2

+ 8m̂2
µC

2
10 βµ φ

1

2 (z)f 2
+(z)

+
1

3
(1 +

2m̂2
µ

z
)βµφ

3

2 (z)×
{

(C2
10 + Ceff2

9 )f 2
+(z) +

4Ceff2
7

(1 + k)2
f 2
T (z) +

4Ceff
9 Ceff

7

(1 + k)
f+(z)fT (z)

}

− 4m̂µ
2C2

10f+(z) βµ (1− k2 + z)φ
1

2 (z)×
{

f+(z)−
1− k2

z
(f0(z)− f+(z))

}

. (20)

From eq. (17), it is clear that AFB(z) is proportional to m̂µ(≈ 0.02), and to the

scalar new physics coupling RS. In the minimal supersymmetric standard model

(MSSM) and two Higgs doublet models, RS itself is proportional to m̂µ and tan2 β.

Hence a large FB asymmetry is possible only for exceptionally large values of tan β.

The average FB asymmetry is obtained by integrating the numerator and de-

nominator of eq. (17) separately over dilepton invariant mass, which leads to

〈AFB〉 =
2Γ0 m̂µ β

2
µRS

∫

dz a1(z)φ(1, k
2, z)

Γ(B → Kµ+µ−)
=

2τBΓ0 m̂µ β
2
µRS

∫

dz a1(z)φ(1, k
2, z)

B(B → Kµ+µ−)
.

(21)

where B(B → Kµ+µ−) is the total branching ratio of B → Kµ+µ−. The numerator

in eq. (21) can be calculated to be

2τBΓ0 m̂µ β
2
µRS

∫

dz a1(z)φ(1, k
2, z) = (5.25× 10−9)(1± 0.20)RS , (22)

whereas the total branching ratio, including the contribution of SPNP operators, is

given by [20]

B(B → Kµ+µ−) =
[

5.25 + 0.18(R2
S +R2

P )− 0.13RP

]

(1± 0.20)× 10−7 . (23)

In the SM calculation of B(B → Kµ+ µ−), two vector form factors, f0 and f+, as

well as the tensor form factor fT appear. The SPNP contribution, on the other hand,
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GF = 1.166 × 10−5 GeV−2 mBs = 5.366 GeV

α = 7.297 × 10−3 mB = 5.279 GeV

τBs = (1.437+0.031
−0.030)× 10−12s Vtb = 1.0

τBd
= 1.53× 10−12s Vts = (40.6 ± 2.7) × 10−3

mµ = 0.105 GeV fBs = (0.259 ± 0.027) GeV [29]

mK = 0.497 GeV

TABLE II: Numerical inputs used in our analysis. Unless explicitly specified, they are

taken from the Review of Particle Physics [30].

is only through f0. We have made the assumption that the fractional uncertainties

in all the form factors are the same. The |Vts| dependence in the numerator and

denominator of eq. (21) cancels completely, whereas the errors due to the form

factors uncertainties cancel partially. We conservatively take the net error in 〈AFB〉
to be 30%, leading to

〈AFB〉 =
5.25× 10−9RS

[5.25 + 0.18(R2
S +R2

P )− 0.13RP ]× 10−7
(1± 0.3) . (24)

B. Constraints on 〈AFB〉 from B(Bs → µ+ µ−)

We now want to see what constraints the present upper bound on B(Bs → µ+ µ−)

puts on the maximum possible value of 〈AFB〉. The present experimental upper limit

on B(Bs → µ+µ−) is an order of magnitude larger than the SM prediction. In such

a situation, the SM amplitude for this decay will be much smaller than the new

physics amplitude and hence can be neglected in determining the constraints on

new physics couplings, RS and RP . In other words, we will assume that SPNP

operators saturate the present upper limit. Therefore we need to consider only the

contribution of LSP to the decay rate of Bs → µ+µ−.
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The decay amplitude for Bs → µ+ µ− is given by

M (Bs → µ+µ−) =
αGF

2
√
2π

VtbV
⋆
ts〈0 |sγ5b|Bs〉 [RSū(pµ)v(pµ̄) +RP ū(pµ)γ5v(pµ̄)] .

(25)

On substituting

〈0 |sγ5b|Bs〉 = −i
fBs

m2
Bs

mb +ms
, (26)

we get

M (Bs → µ+µ−) = −i
αGF

2
√
2π

VtbV
⋆
ts

fBs
m2
Bs

mb +ms

[RSū(pµ)v(pµ̄) +RP ū(pµ)γ5v(pµ̄)] ,

(27)

where mb and ms are the masses of bottom and strange quark, respectively. The

calculation of the branching ratio B(Bs → µ+ µ−) gives

B(Bs → µ+µ−) =
G2
Fα

2m3
Bs
τBs

64π3
|VtbV ∗

ts|2 f 2
Bs

(R2
S +R2

P ) . (28)

Here we have neglected terms of order ms/mb and approximated mBs
/mb by 1.

Taking fBs
= (0.259± 0.027)GeV, we get

B(Bs → µ+µ−) = (1.43± 0.30)× 10−7 (R2
S +R2

P ) . (29)

Equating the expression in eq. (29) to the present 95% C.L. upper limit in eq. (2),

we get the inequality

(R2
S +R2

P ) ≤ 0.70 , (30)

where we have taken the 2σ lower bound for the coefficient in eq. (29). Thus, the

allowed region in the RS–RP parameter space is the interior of a circle of radius

≈ 0.84 centered at the origin.

In [31], it was shown that the SPNP operators cannot lower B(B → Kµ+µ−)

below its SM prediction. Therefore from eq. (24), the maximum value of 〈AFB〉 with
the current upper bound on B(B → Kµ+ µ−) is 1.34% at 2σ. If B(Bs → µ+ µ−) is

bounded to 10−8, the 2σ maximum value of 〈AFB〉 will be 0.56%.

A naive estimation suggests that the measurement of an asymmetry 〈AFB〉 of a
decay with the branching ratio B at nσ C.L. with only statistical errors require

N ∼
(

n

B 〈AFB〉

)2

(31)
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number of events. For B → Kµ+µ−, if 〈AFB〉 is 1% at 2σ C.L., then the required

number of events will be as high as 1018 ! Therefore it is very difficult to observe

such a low value of FB asymmetry in experiments. Hence FB asymmetry of muons

in B → Kµ+µ− will play no role in testing SPNP.

III. LONGITUDINAL POLARIZATION ASYMMETRY IN Bs → µ+ µ−

The longitudinal polarization asymmetry of muons in Bs → µ+µ− is a clean

observable that depends only on SPNP operators. It vanishes in the SM, whereas

its value is nonzero if and only if the new physics contribution is in the form of scalar

operator. Therefore any nonzero measurement of this observable ALP will confirm

the existence of an extended Higgs sector. The observable ALP was introduced in

ref. [17], though the corresponding analysis in the context of KL → µ+µ− had been

carried out earlier [32, 33, 34, 35]. In this section, we will determine the allowed

values of ALP consistent with the present upper bound on B(Bs → µ+µ−), and

explore the correlation between these two quantities.

The most general model independent form of the effective Lagrangian for the

quark level transition b → sµ+µ− that contributes to the decay Bs → µ+µ− has the

form [36, 37]

L =
GFα

2
√
2π

(V ∗
tsVtb) {RA(s̄ γµγ5 b)(µ̄ γµγ5 µ)

+RS(s̄ γ5 b)(µ̄ µ) +RP(s̄ γ5 b)(µ̄ γ5 µ)} , (32)

where RP , RS and RA are the strengths of the scalar, pseudoscalar and axial vector

operators respectively. Note that the effective Lagrangian in eq. (32) is essentially

the same as the effective Lagrangian given in eq. (5). Here we have dropped C7 and

C9 terms which do not contribute to Bs → µ+ µ−. In addition, the RA in eq. (32)

is the sum of SM and new physics contributions.

In SM, the scalar and pseudoscalar couplings RSM
S and RSM

P receive contributions

from the penguin diagrams with physical and unphysical neutral scalar exchange

and are highly suppressed:

RSM
S = RSM

P ∝ (mµmb)

m2
W

∼ 10−5 . (33)
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Also, RSM
A = Y (x)/sin2 θW , where Y (x) is the Inami-Lim function [38]

Y (x) =
x

8

[

x− 8

x− 1
+

3x

(x− 1)2
ln x

]

, (34)

with x = (mt/MW )2. Thus, RSM
A ≃ 4.3.

The calculation of the branching ratio gives [17, 36]

B(Bs → µ+ µ−) = as

[

∣

∣

∣

∣

2mµRA − m2
Bs

mb +ms
RP

∣

∣

∣

∣

2

+

(

1−
4m2

µ

m2
Bs

)
∣

∣

∣

∣

m2
Bs

mb +ms
RS

∣

∣

∣

∣

2
]

,

(35)

where

as ≡
G2
Fα

2

64π3
|V ∗
tsVtb |2 τBs

f 2
Bs
mBs

√

1−
4m2

µ

m2
Bs

. (36)

Here τBs
is the lifetime of Bs. Eq. (35) represents the most general expression for

the branching ratio of Bs → µ+µ−.

We now derive an expression for the lepton polarization. In the rest frame of

µ+, we can define only one direction −→p −, the three momentum of µ−. The unit

longitudinal polarization 4-vectors along that direction are

s̄µµ± = (0, ê±L ) =
(

0, ±
−→p −

|−→p −|
)

. (37)

Transformation of unit vectors from the rest frame of µ+ to the center of mass frame

of leptons (which is also the rest frame of Bs meson) can be accomplished by the

Lorentz boost. After the boost, we get

sµµ± =
( |−→p −|

mµ
, ± Eµ

−→p −

mµ|−→p −|
)

, (38)

where Eµ is the muon energy.

The longitudinal polarization asymmetry of muons in Bs → µ+µ− is defined as

A±
LP =

Γ(ê±L) − Γ(−ê±L )

Γ(ê±L) + Γ(−ê±L )
. (39)

Thus we get [17]

ALP =

2

√

1− 4m2
µ

m2

Bs

[

m2

Bs

mb+ms
RS

(

2mµRA − m2

Bs

mb+ms
RP

)]

∣

∣

∣
2mµRA − m2

Bs

mb+ms
RP

∣

∣

∣

2

+ (1− 4m2
µ

m2

Bs

)
∣

∣

∣

m2

Bs

mb+ms
RS

∣

∣

∣

2
, (40)
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FIG. 1: ALP vs Rs plot for B(Bs → µ+µ−) = (5.8, 3.0, 1.0) × 10−8

with A+
LP = A−

LP ≡ ALP . It is clear from eq. (40) that ALP can be nonzero if and

only if RS 6= 0, i.e. for ALP to be nonzero, we must have contribution from SPNP

operators. Within the SM, RS ≃ 0 and hence ALP ≃ 0.

Using eq. (35), we can eliminate RA and RP from eq. (40) in favour of the physical

observables B(Bs → µ+ µ−) and as. We get [17]

ALP = ± 2as
B(Bs → µ+ µ−)

√

1−
4m2

µ

m2
Bs

×

m2
Bs

RS

mb +ms

√

B(Bs → µ+ µ−)

as
−

(

1−
4m2

µ

m2
Bs

)
∣

∣

∣

∣

m2
Bs

RS

mb +ms

∣

∣

∣

∣

2

. (41)

Eq. (41) represents a general relation between the longitudinal polarization asym-

metry ALP and the branching ratio of Bs → µ+µ−.

We now explore the correlation between ALP and B(Bs → µ+ µ−). It is quite

obvious that when B(Bs → µ+ µ−) ∼> 10−8, we can neglect the SM contribution in

obtaining the bounds on RS and RP . However if B(Bs → µ+ µ−) is of the order of

the SM prediction, then we will have to take into account the SM contribution as

well. Therefore it is reasonable to consider both the cases separately.
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FIG. 2: Plot between |ALP | and B(Bs → µ+µ−) for different RS values, when B(Bs →

µ+ µ−) ∼> 10−8. The region B(Bs → µ+ µ−) > 5.8 × 10−8 is ruled out by experiments to

95% C.L..

A. B(Bs → µ+ µ−) ∼> 10−8

We first consider the constraints on ALP coming from the present upper bound

on B(Bs → µ+µ−). Fig. 1 shows the plot between ALP and RS for three different

values of B(Bs → µ+ µ−) ∼> 10−8. Fig. 2 is a plot between |ALP | and B(Bs → µ+µ−)

for various allowed values of RS. The bands in Figs. 1 and 2 are mainly due to the

uncertainties in CKM matrix element |Vts| and decay constant fBs
.

We see from Fig. 1 that the maximum possible value of ALP consistent with the

present upper bound on B(Bs → µ+µ−) is 100%, i.e. the present upper bound of

B(Bs → µ+µ−) does not put any constraint on ALP . Indeed, B(Bs → µ+µ−) will

be unable to put any constraint on ALP even if it is as low as 10−8.

Thus we see that the recently improved upper bound on the branching ratio of

Bs → µ+µ−, which provides the most stringent bound on SPNP couplings, fails

to put any bound on ALP . Therefore ALP is more sensitive to SPNP operators as

compared to B(Bs → µ+µ−). Any nonzero measurement of ALP will be evidence for

an extended Higgs sector.
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We would like to emphasize another important point: The measurement of

B(Bs → µ+µ−) will only give the allowed range for the values of the SPNP couplings

RS and RP . However the simultaneous determination of B(Bs → µ+µ−) and ALP

will allow the determination of new physics scalar coupling RS (see Fig. 2) and this

in turn will enable us to determine the new physics pseudoscalar coupling RP .

B. B(Bs → µ+ µ−) ∼< 10−8

LHC is expected to reach the SM sensitivity in Bs → µ+ µ−. In fact, it may

even go 5σ below the SM prediction [11]. Therefore it is worth considering the

case when B(Bs → µ+ µ−) is of the order of the SM prediction. In this section we

study the correlation between ALP and B(Bs → µ+µ−) under the assumption that

B(Bs → µ+ µ−) is close to its SM prediction.

Taking RA = RSM
A , eq. (35) gives

B(Bs → µ+ µ−) = as

[

28.8(R2
S + R2

P ) − 9.7RP + 0.81
]

, (42)

which leads to

R2
S + (RP − 0.165)2 =

0.035B(Bs → µ+ µ−)

as
. (43)

This corresponds to a circle in RS −RP plane with centre at (RS = 0, RP = 0.165)

and radius given by r =
√

0.035B(Bs → µ+ µ−)/as .

Fig. 3 shows the plot between ALP and RS for three different values of B(Bs →
µ+ µ−) ∼< 10−8. Fig. 4 is a plot between |ALP | andB(Bs → µ+µ−) for various allowed

values of RS. It is obvious from fig. 3 that ALP can be 100% even if B(Bs → µ+µ−)

is close to its SM prediction.

We now consider three exciting experimental possibilities, all of which can be

accounted for with SPNP.

1. B(Bs → µ+ µ−) is consistent with SM but ALP 6= 0

It is possible to have a non-zero value of ALP even if B(Bs → µ+µ−) is equal to

its SM prediction. We can re-write eq. (35) in the following form:

B(Bs → µ+ µ−) = as[(bSM − bP )
2 + b2S] , (44)
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where

bSM = 2mµR
SM
A , bP =

m2
Bs

mb +ms
RP , bS =

√

1−
4m2

µ

m2
Bs

m2
Bs

mb +ms
RS . (45)

Here we have taken RA = RSM
A , i.e. we have considered new physics only through

the SPNP operators. Now if B(Bs → µ+µ−) is equal to its SM prediction, then

as[(bSM − bP )
2 + b2S] = as b

2
SM , (46)

which leads to

(bP − bSM)2 + b2S = b2SM , (47)

or

R2
S +

[

RP − (mb +ms)

m2
Bs

bSM

]2

=

(

mb +ms

m2
Bs

bSM

)2

. (48)

Eq. (48) represents a circle in RS−RP plane with center at
(

0, (mb +ms)bSM/m2
Bs

)

.

The circle representing eq. (48) passes through the origin (RS = RP = 0), which

corresponds to the SM. However, in general the points on the circle have nonzero

RS, and hence imply nonvanishing ALP . Therefore it is possible to have a nonzero

value of ALP even if B(Bs → µ+µ−) is equal to its SM prediction. Thus ALP can

still serve as an important observable to search for SPNP even if B(Bs → µ+µ−) is

observed to be very close to its SM prediction.

2. LHCb fails to find Bs → µ+ µ−

If LHCb fails to find Bs → µ+ µ− or puts an upper bound on its branching ratio

which is smaller than 2 × 10−9 (5σ below SM prediction), this scenario can still be

accomodated within the SPNP.

The interference between the SPNP and SM operators can decrease the branching

ratio B(Bs → µ+µ−) far below its SM prediction. In fact it can be seen from

eq. (35), B(Bs → µ+µ−) can even vanish, provided the following conditions are

satisfied simultaneously:

RS = 0, RP =
2mµmb

m2
Bs

RA = 0.04RA . (49)

From Fig. 4, it can be seen that for low RS values, it is indeed possible to suppress

B(Bs → µ+ µ−) much below its SM value.
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3. Both B(Bs → µ+ µ−) and ALP are consistent with the SM

The lepton polarization asymmetry is a result of the interference of the scalar

term with pseudoscalar / axial vector, as can be seen from eq. (40). Therefore it

vanishes when either bS or (bP−bSM ), defined in eq. (45), vanishes. Thus there exists

the interesting possibility of nontrivial SPNP even when both B(Bs → µ+ µ−) and

ALP are consistent with the SM. This occurs when

bS = 0 , bP = 2 bSM , (50)

or bS = bSM , bP = bSM , (51)

as can be confirmed from eq. (47). Therefore, the absence of SPNP is not guaranteed

simply by the consistency of these observables with the SM; more channels need to

be examined to rule out this possibility completely.

IV. CONCLUSIONS

An order of magnitude enhancement in B(Bs → µ+µ−) is possible only due to

SPNP operators. Apart from B(Bs → µ+µ−), observables such as FB asymmetry

of muons in B → Kµ+ µ− and LP asymmetry of muons in Bs → µ+µ− are also

sensitive to SPNP operators. In this paper we consider the constraints on possible

SPNP contribution to these observables coming from the present upper bound on

B(Bs → µ+µ−).

We find thatB(Bs → µ+µ−) puts very stringent constraint on SPNP contribution

to 〈AFB〉 and restricts its value to be less than ∼ 1%. Such a small FB asymmetry

is almost impossible to be measured in experiments. In the literature, 〈AFB〉 of

muons in B → Kµ+ µ− has been considered a promising measurement for probing

SPNP operators. Our results show that the present upper bound on B(Bs → µ+ µ−)

makes searching for SPNP through 〈AFB〉 a futile exercise.

On the other hand, the present upper bound on B(Bs → µ+µ−) does not put

any constraint on ALP . Indeed, ALP can be 100% even if B(Bs → µ+µ−) is close to

its SM prediction. ALP is sensitive only to SPNP operators and hence its nonzero

value will give direct evidence for a non-standard Higgs sector.
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A simultaneous determination of B(Bs → µ+µ−) and ALP will enable us to

separate the new physics scalar and pseudoscalar contributions. Therefore it is worth

considering this observable in experiments to probe the extended Higgs sector.
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