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The possibility of observing non-classical features in a physical system comprised of a cavity
with two ensembles of two-level atoms has been investigated by considering different configurations
of the ensembles with respect to the Node and Antinode of the cavity field under the framework
of open quantum systems. The study reveals the strong presence of non-classical characters in
the physical system by establishing the existence of many facets of non-classicality, such as the
sub-Poissonian boson statistics and squeezing in single modes, intermodal squeezing, intermodal
entanglement, antibunching, and steering. The effect of a number of parameters, characterizing the
physical system, on the different aspects of non-classicality is also investigated. Specifically, it is
observed that the depth of the non-classicality witnessing parameters can be enhanced by externally
driving one of the ensembles with an optical field. The work is done in the presence of open system
effects, in particular, use is made of Langevin equations along with a suitable perturbative technique.

I. Introduction

Quantum mechanics has emerged as the best known
model of nature. Thanks to the spectacular success
achieved over the last hundred years. However, only
in the last few decades, it is understood that quantum
mechanics can even be used to design devices that can
outperform their classical counterparts. This quantum
power of devices is obtained by exploiting non-classical
states, i.e., states having no classical analogue and more
technically, the quantum states having negative values of
Glauber-Sudarshan P -function [1, 2]. Such states are
not rare in nature, and entangled and steering states
[3], squeezed states [4], antibunched states [5] are typ-
ical examples of non-classical states. The existence of
such states were known (at least theoretically) since a
long time. In fact, squeezing [6], entanglement [7], and
steering [8] were studied even before the pioneering work
of Sudarshan [2] that provided a necessary and suffi-
cient criterion of non-classicality in terms of negativity
of P -function. However, various interesting applications
of these non-classical states were realized only recently
with the advent of quantum information processing [9–
14] and various facets of atom optics and quantum op-
tics [15, 16]. For example, squeezed vacuum state has
been used successfully in detecting gravitational waves
in the well known LIGO experiment [17, 18]; squeezed
states are also used in continuous variable quantum se-
cure and insecure communication [9, 10]; entanglement
is established to be useful in both continuous and dis-
crete variable quantum cryptography [9, 12], and in the
realization of schemes for teleportation [13] and dense
coding [14]. Additionally, the steerable states provide
one-side device independent quantum cryptography [19].
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Furthermore, powerful quantum algorithms for unsorted
database search [20] to factorization [21], discrete loga-
rithm problem [21] to machine learning [22] have repeat-
edly established that quantum computers (which natu-
rally use non-classical states) can outperform classical
computers. In brief, in the last few years, on one hand,
we have seen various applications of non-classical states,
and on the other hand, non-classical features have been
reported in a variety of physical systems [23–26], includ-
ing but not restricted to two-mode Bose-Einstein conden-
sates [25, 27], optical couplers [28, 29], optomechanical
[26, 30] and optomechanics-like systems [26, 31], atoms
and quantum dot in a cavity [32, 33]. Many of these
systems involve different types of cavity which can be
produced and manipulated experimentally [34–36]. Nat-
urally, interest in such systems has been considerably en-
hanced in the recent past. Apart from the applicability
of the non-classical states, and the possibilities of genera-
tion and manipulation of these states, another interesting
factor that has enhanced the interest on the non-classical
features present in these systems, is the fact that in con-
trast to the traditional view that quantum mechanics is
the science of the microscopic world, these systems hav-
ing non-classical properties are often macroscopic [37].

Above facts have motivated us to study non-classical
features of a particular macroscopic system shown in Fig.
1. To be specific, in this paper, we aim to investigate
the possibility of observing signatures of various types of
non-classicality in a physical system comprised of a cavity
with two ensembles of two-level atoms, placed in differ-
ent configurations with respect to the Node and Antin-
ode of the cavity field, like, Antinode-Antinode (AA),
Antinode-Node (AN), Node-Antinode (NA) and Node-
Node (NN). To clearly visualize these configurations, we
may note that in AN configuration, one of the ensembles
is placed in the Node position of the cavity field and the
other one is placed in the Antinode position of the cavity
field. Similarly, one can visualize the other configura-
tions studied in this paper. Previously, this system was
used to study electromagnetically-induced-transparency-
like (EIT-like) phenomenon in [38], where an EIT-like
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phenomenon was observed to appear (disappear) for the
NA (AN) configuration. In what follows, we will study
the possibilities of observing various types of single mode
(e.g., squeezing, sub-Poissonian boson statistics) and in-
termodal non-classicality (e.g., intermodal squeezing, an-
tibunching, two and three mode entanglement, steering)
in this system by considering that one of the atomic en-
sembles is driven by an external optical field, and will
establish that this external field can be used to control
the amount of non-classicality.
We have already noted that the negativity of P -

function provides us a necessary and sufficient criterion
of non-classicality. However, the P -function is not al-
ways well behaved, and there does not exist any general
procedure that can be adapted to experimentally mea-
sure it. As a consequence, a set of operational criteria
for non-classicality have been developed over the years.
The majority of these non-classical criteria (in fact, all
the criteria used in this work) do not provide any quan-
titative measure of non-classicality1 and they are only
sufficient criteria. In fact, there exists an infinite set of
non-classicality criteria involving moments of annihila-
tion and creation operators that are equivalent to the P -
function, but any finite subset of that would be sufficient
only. In this paper, we have used a few such moment-
based criteria of non-classicality [40, 41], each of which is
a sufficient criterion only. As none of these criteria pro-
vides any quantitative measure of non-classicality (i.e., as
they only provide signatures of non-classicality), in what
follows, these sufficient criteria are frequently referred to
as witnesses of non-classicality. In what follows, through
these criteria, different features of non-classicality are
witnessed under the influence of open quantum system
evolution.
The effect of the ambient environment is a permanent

fixture of nature and needs to be taken into account, es-
pecially in experiments related to non-classical features
which are known to be influenced appreciably by the en-
vironmental effects. As the present work aims to reveal
the non-classical features present in the system of inter-
est, it would be apt to consider the effect of the envi-
ronment in our calculations. Such effects are taken into
account systematically by using the framework of open
quantum systems [42]. Specifically, decoherence and dis-
sipation are well known open system effects [43] and have
been studied on myriad aspects of quantum information,
such as in holonomic quantum computation [44], environ-
mental deletion [45], noisy quantum walks [46], quantum
cryptography [47] and the effect of squeezing on chan-
nel capacity [48]. A precursor of the present theme of
non-classical correlations in the presence of open system
effects can be found in [49]. Here, we adapt open system
effects on our system of interest by using the formalism

1 Of course, there are some measure of non-classicality, but each
of them have some issues [39], and we have not used any of them
in the present study.

of Langevin equations, which is basically the stochastic
equations of motion approach [16]. Specifically, the equa-
tions of motion for each system mode in the Heisenberg
picture are obtained by eliminating the environmental de-
grees of freedom. The obtained equations of motion for
different system modes are usually coupled differential
equations and are solved using various peturbative tech-
niques. Here, we have used a perturbative technique that
approximates all the higher-order correlations in terms of
second-order correlations [50]. The technique has been
recently used to study non-classicality in Raman ampli-
fier [51] and optomechanical oscillator [52].
The rest of the paper is organized as follows. In Section

II, we describe the model used in this work in the context
of open quantum systems. Section III gives a brief intro-
duction to the various witnesses of non-classicality used
in this work. Subsequently, in Section IV, we present
temporal variation of various witnesses of non-classicality
and discuss the significance of the results obtained in this
work. Finally, the paper is concluded in Section V.

II. Cavity containing two ensembles of two-level

atoms

The physical system of our interest is briefly described
in the previous section and it is schematically shown in
Fig. 1. In this section, we wish to describe the system
in more detail. To begin with, we note that the model
physical system of our interest is considered to be made
of a single mode cavity (Scavity) which contains two en-
sembles (SA−left ensemble and SB−right ensemble) of
two level atoms [38]. The left ensemble is driven by a
classical optical field having frequency ωf .
The Hamiltonian for the total system S ≡ SA + SB +

Scavity, can be expressed in terms of collective excitation

operators Â and B̂ in the following form [38]:

Ĥ = ωcĈ
†Ĉ + ωaÂ

†Â+ ωbB̂
†B̂ +

{

GAĈÂ† +GBĈB̂†

+ χÂ†e−iωf t +H.c.
}

, (1)

with

Â =
1√
NA

NA
∑

i=1

σi
+,A and B̂ =

1√
NB

NB
∑

j=1

σj
+,B ,

where H.c., stands for Hermitian conjugate, and

σl
+,x = |e(l)x 〉 〈g(l)x | and σl

−,x = |g(l)x 〉 〈e(l)x | are the
quasispin operators for the l-th atom in ensemble Sx

(x ∈ {A,B}). The operator Ĉ (Ĉ†) represents the
annihilation (creation) operator for the cavity mode.
Also, GA = gA

√
NA, GB = gB

√
NB and χ = Ω

√
NA,

where gA (gB) is the strength with which the atoms in
left (right) ensemble couple with the cavity field. Simi-
larly, Ω (or equivalently χ) corresponds to the coupling
strength between the atoms in the driven ensemble and
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FIG. 1. (Color online) The schematic representation of the
model consisting of a cavity embedded with two ensembles of
two-level atoms. The left ensemble SA, with the excitation
mode Â, is driven by an external field of frequency ωf . The
system is studied in configurations: Antinode-Antinode (AA),
Antinode-Node (AN), Node-Antinode (NA) and Node-Node
(NN). The left ensemble (the driven ensemble), the right en-
semble (the undriven ensemble), and the cavity field interact
with their independent reservoir modes represented by corre-
sponding annihilation operators m̂, n̂, and f̂ , respectively.

the driving field. In the limit of low excitation and
large number of atoms (NA and NB), the operators

Â and B̂ satisfy the bosonic commutation relations,
i.e., [Â, Â†] ≈ [B̂, B̂†] ≈ 1, and [Â, B̂] ≈ [Â, B̂†] ≈ 0.

Therefore, under these conditions, Â and B̂ can be
treated as the annihilation operators for the collective
excitation modes corresponding to ensembles SA and
SB , respectively [38].

In the interaction picture, the Hamiltonian given by
Eq. (1) can be expressed in terms of the photonic cavity

mode Ĉ and the ensemble excitation modes Â and B̂, in
the following simplified form [38]

ĤS = ∆cĈ
†Ĉ +∆aÂ

†Â+∆bB̂
†B̂ + {GAĈÂ† +GBĈB̂†

+ χÂ† +H.c.}, (2)

where ∆r = ωf − ωr (r ∈ {a, b, c}) represents the fre-
quency detuning of the driven ensemble frequency (ωa),
the un-driven ensemble frequency (ωb) and the cavity
field frequency (ωc), with respect to the driving frequency
ωf .
Open quantum system effects are now taken into con-

sideration by allowing the interaction of the photonic cav-
ity mode Ĉ and the collective excitation modes of the en-
sembles (i.e., modes Â and B̂) with their respective reser-
voirs. This interaction is modeled, under the Markovian
white noise approximation, by coupling each mode to a

reservoir made up of a collection of harmonic oscillators
[42]. As a result, the total Hamiltonian is modified to

Ĥ = ĤS + ĤR + ĤSR, (3)

such that,

ĤR =
∑

k

ωkm̂
†
km̂k +

∑

k′

ωk′ n̂†
k′ n̂k′ +

∑

k′′

ωk′′ f̂†
k′′ f̂k′′ ,

(4)

ĤSR =
∑

k

gk(m̂
†
kÂ+ Â†m̂k) +

∑

k′

gk′(n̂†
k′B̂ + B̂†n̂k′)

+
∑

k′′

gk′′(f̂†
k′′Ĉ + Ĉ†f̂k′′), (5)

where m̂(m̂†), n̂(n̂†) and f̂(f̂†) are the annihilation (cre-
ation) operators corresponding to the reservoirs which

interact with and damp the driven ensemble mode Â,
the un-driven ensemble mode B̂ and the cavity mode Ĉ,
respectively. Here, and in what follows, S and R in the
subscript correspond to the system and reservoir, respec-
tively. The resulting (Langevin) equations, for the sys-
tem operators should include, in addition to the damping
terms, the noise operators which would produce fluctu-
ations [16]. We can now explicitly write the Langevin
equations for the cavity and atomic ensemble modes.
Specifically, the Langevin equations for the cavity mode
can be written as

dĈ

dt
= −i∆cĈ − iGAÂ− iGBB̂ − Γc

2
Ĉ + F̂c, (6)

where Γc is the decay constant and F̂c is the noise opera-
tor. For the initially uncorrelated subsystems, the initial
density matrix can be considered as separable and thus
in the tensor product form ρ = ρS ⊗ ρR, and similarly
it may be considered that the expectation value of op-
erator M = MS ⊗ MR factors as 〈MS〉〈MR〉. Eq. (6)
is an operator equation and it is not easy to obtain an
analytic solution of this type of equations. Keeping this
in mind, here we adapt a strategy used in Refs. [50–52].
Following this strategy, we begin our solution scheme by
taking an average of each term appearing in this equation
with respect to the state ρ. This step yields a differential
equation of the average of Ĉ in terms of averages of Â
and B̂. Note that this step transforms the operator dif-
ferential equation into a c-number differential equation
which is much easier to handle. Assuming each reservoir
to be in thermal equilibrium at temperature T, we can
average over the system and reservoir degrees of freedom
and using the fact that the reservoir average of the noise
operator vanishes 〈F̂c〉R = 0 [16], we end up with the
following equation of motion

d 〈Ĉ〉
dt

= −i∆c 〈Ĉ〉−iGA 〈Â〉−iGB 〈B̂〉−Γc

2
〈Ĉ〉 . (7)
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Similarly, we can obtain the Langevin equations for
modes Â and B̂, and for all the second order terms in cre-
ation and annihilation operators. Averaging each term
present in these operator differential equations would
lead to a set of coupled ordinary differential equations
involving various statistical quantities of interest. In
general, these coupled differential equations are required
to be decoupled using an appropriate approximation
scheme. To maintain the flow of the paper, we have re-
ported this set of equations in Appendix A, where we
have also described the method adopted in this paper to
decouple (solve) them. Now, we may move to the next
section, where we will briefly describe various measur-
able criteria of non-classicality which will be used in the
subsequent section to investigate the presence of non-
classicality in the physical system of our interest.

III. Criteria of non-classicality

Nonclassicality is a multifaceted entity. It is an im-
portant problem to understand various aspects of non-
classicality in the context of open quantum systems [49].
From the perspective of quantum optics there are dif-
ferent witnesses of non-classicality of the radiation field.
For example, the Mandel parameter QM < 0, gives a suf-
ficient condition for the field to be non-classical [15]; sin-
gle and multimode squeezing conditions reveal the non-
classical character of a state arising due to the field fluctu-
ation [4]; Hillery-Zubairy criteria provide sufficient con-
ditions in the form of a family of inequalities for detecting
entanglement[53]. These criteria can be casted in terms
of the bosonic creation and annihilation operators as
discussed below. Thus, analysis of the various types of
non-classicality in the context of above developed model
characterized through the witnesses listed here, can be
carried out.

• The Mandel QM parameter : Defined as the nor-
malized variance of the boson distribution, this
measure characterizes the non-classicality of a ra-
diation field in the context of the photon number
distribution. Quantitatively,

QM =
〈(a†a)2〉 − 〈a†a〉2 − 〈a†a〉

〈a†a〉 . (8)

Since the minimum value of 〈(a†a)2〉 − 〈a†a〉2 is
zero, the Mandel parameter has a lower bound of
−1, and it provides the criterion for observing dif-
ferent photon statistics as follows:

QM











< 0 sub− Poissonian field,

= 0 coherent (Poissonian) field,

> 0 super− Poissonian field.

(9)

• Antibunching : A closely related phenomena is pho-
ton antibunching, given usually in terms of the

two-time light intensity correlation function [54],
g(2)(τ) = 〈n1(t)n2(t+τ)〉/〈n1(t)〉〈n2(t+τ)〉, where
ni(t) is the number of counts registered on ith de-
tector at time t. A quantum state is referred to as
an antibunched if g(2)(0) < g(2)(τ). Interestingly,
it was shown in the past to be closely related to
the Mandel parameter [55]. The correlation g(2)(0)
characterizes the antibunched, the coherent and the
bunched fields as:

g(2)(0)











< 1 antibunched,

= 1 coherent,

> 1 bunched.

(10)

Therefore, for a single field with annihilation oper-
ator a, the criterion for antibunching can also be
written as [56]

Aa = 〈a†2a2〉 − 〈a†a〉2 < 0, (11)

i.e., the negative values of Mandel parameter also
establish antibunching. Further, the intermodal
antibunching is witnessed by using the following
criterion [29]

Aab = 〈a†b†ba〉 − 〈a†a〉〈b†b〉 < 0. (12)

• Squeezing : This measure delineates the non-
classicality of a field in the context of the fluctu-
ations in the quadratures Xa and Ya of the field
(with annihilation operator a), defined as

Xa =
a+ a†

2
Ya =

a− a†

2i
. (13)

The criteria for the non-classical signature in the
field is given, in terms of the variances in the
quadratures, as follows [4]

〈X2
a〉 − 〈Xa〉2 = (∆Xa)

2 <
1

4
(14)

or

〈Y 2
a 〉 − 〈Ya〉2 = (∆Ya)

2 <
1

4
. (15)

We can also define the intermodal quadrature op-
erators Xab = (a + a† + b + b†)/2

√
2 and Yab =

(a − a† + b − b†)/2i
√
2, such that the intermodal

squeezing criterion is given by

(∆Xab)
2 <

1

4
(16a)

or

(∆Yab)
2 <

1

4
. (16b)
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• Duan el al.’s criterion of entanglement : For two
systems A and B, the non-separability means the
impossibility of factorizing the density matrix of
the combined system ρ as ρ =

∑

k λkρ
k
Aρ

k
B , with

∑

k λk = 1. In [57], a criterion for inseparabil-
ity was developed by Duan et al., which provides
a sufficient condition for the entanglement of any
two party continuous variable states [58]. For two
radiation fields with annihilation operators a and
b, this criterion translates to

Dab = 4(∆Xab)
2 + 4(∆Yab)

2 − 2 < 0, (17)

where (∆Xab)
2 and (∆Yab)

2 are defined in Eq.
(16). The presence of squeezing does not ensure the
existence of entanglement as at a given time squeez-
ing can happen only in one quadrature. Thus, this
criterion captures the asymmetry in the fluctua-
tions in X and Y and this is why it’s studied inde-
pendently. In what follows, we refer to this criterion
of entanglement as Duan’s criterion.

• Hillery-Zubairy(HZ) criteria of entanglement : In
[53], it was shown that for two field modes a and b,
two inseparability criteria are

Eab = 〈a†ab†b〉 − |〈ab†〉|2 < 0, (18)

and

Ẽab = 〈a†a〉〈b†b〉 − |〈ab〉|2 < 0. (19)

• Steering: The notion of steering, as an apparent
action at a distance, was introduced by Schrödinger
while discussing the EPR paradox [8], and shares
logical differences both with non-separability and
Bell non-locality. While as non-separability and
Bell non-locality are symmetric between two par-
ties, say Alice and Bob, steering is inherently asym-
metric, addressing whether Alice can change the
state of Bob’s system by applying local measure-
ments. An operational definition of steering was
first provided in [59], wherein they proved that
steerable states are a strict subset of the entan-
gled states and a strict superset of the states that
can exhibit Bell non-locality. In the context of field
modes a and b, the EPR− steering entanglement
is confirmed if it satisfies [60]

0 < 1 +
〈a†ab†b〉 − |〈ab†〉|2
〈a†a(bb† − b†b)〉 <

1

2
. (20)

This result can be proved by the methods given
in [61]. The above steering condition (20) can be
expressed in terms of the HZ criterion Eq. (18), the
condition reads:

SAB = Eab +
〈a†a〉
2

< 0. (21)

The concept of steering being inherently asymmet-
ric [62], it will be interesting to compare SAB and

SBA = Eab + 〈b†b〉
2 .

• Multimode entanglement : In [63], a class of inequal-
ities was derived for detecting the entanglement in
multimode systems. In the case of a tripartite state,
viz., the one corresponding to the three modes a,
b, and c, the sufficient conditions for not being bi-
separable of the form ab|c (in which a compound
mode ab is entangled with mode c), are given as
follows:

Eab|c = 〈a†ab†bc†c〉 − |〈abc†〉|2 < 0, (22)

E′
ab|c = 〈a†ab†b〉〈c†c〉 − |〈abc〉|2 < 0. (23)

A three-mode quantum state is fully entangled by
the satisfaction of either or both of the following
sets of inequalities:

Eab|c < 0, Ebc|a < 0, Eac|b < 0, (24)

E′
ab|c < 0, E′

bc|a < 0, E′
ac|b < 0. (25)

It is worth mentioning here that the analysis of the above
mentioned witnesses of non-classicality involves higher
order products of the operators. These higher order cor-
relations can be decorrelated by the prescription given in
[50]. Specifically, in what follows, we have made use of

〈âb̂ĉ〉 ≈ 〈âb̂〉〈ĉ〉+ 〈â〉〈b̂ĉ〉+ 〈âĉ〉〈b̂〉− 2〈â〉〈b̂〉〈ĉ〉, which ba-
sically makes use of the Bogoliubov theory of linearized
quantum corrections to mean field effects.

IV. Results and Discussion

In this section, we study the non-classical properties
of our system as manifested through various witnesses of
non-classicality discussed above. The analysis is carried
out by placing the ensembles in the four configurations,
viz., AA, AN, NA, and NN configurations. However, the
analysis performed for NN and AA modes are not as de-
tailed as in AN and NA configurations. The investigation
performed for all the configurations is summarized in Ta-
ble I, for the convenience of the reader. It clearly emerges
that the AA configuration is more suited for observing
the various facets of non-classicality in the system. In
some cases, other configurations may be preferred due to
sufficient depth of the nonclassciality witness, which is
desired in some particular applications having practical
relevance. The effect of external driving field on the vari-
ous non-classical witnesses is studied with respect to ∆t,
where ∆ is the common detuning for the three modes Â,
B̂ and Ĉ. The various parameters used for AN configura-
tion are GA = 0.2∆, GB = 0.02∆, ΓA = 2∆, ΓB = 0.2∆,
and ΓC = 0.2∆. For NA configuration, GA = 0.02∆,
GB = 0.2∆, ΓA = 0.2∆, ΓB = 2∆, and ΓC = 0.2∆. For
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AA configuration, GA = 0.2∆, GB = 0.2∆, ΓA = 2∆,
ΓB = 2∆, and ΓC = 0.2∆. And finally, for NN configura-
tion GA = 0.02∆, GB = 0.02∆, ΓA = 0.2∆, ΓB = 0.2∆,
and ΓC = 0.2∆. In all the cases, we have considered here
vacuum bath.

The initial conditions (at t = 0) are chosen in such a
way that the average number of photons in the cavity
field and the average number of excitations in the two
ensembles are all equal to 1. Figure 12 shows the evo-
lution of the average number of bosons corresponding to
the driven ensemble mode (〈Â†Â〉), the undriven ensem-

ble mode (〈B̂†B̂〉) and the average number of the cav-

ity photons (〈Ĉ†Ĉ〉). The average number of excitations
is found to drop quickly for the ensemble placed at the
Antinode of the cavity field, compared to the ensemble
placed at the Node of the cavity field. One can also see
vivid variations in the average excitation number of the
driven ensemble, when placed at the Node of the cavity
field. In other words, placing the ensemble at the Antin-
ode of the cavity field, shadows the effect of the external
field. We have not shown similar variation in the boson
number for remaining two configurations as it is quite
similar to what is observed here. The interested readers
are referred to the supplemental material [64] for various
results summarized in Table I, but not illustrated in the
main paper.

TABLE I. Various witnesses of non-classicality that are investigated in this paper for different configurations, both in the
absence as well as in the presence of external field characterized by χ. Here, a tick indicates the presence of a non-classical
feature characterized by the non-classicality witness mentioned in the first column of the same row, while a cross is the
indicator of failure in the detection of that non-classicality feature. It clearly emerges that the AA configuration is more suited
for observing various facets of non-classicality in the system. However, other configurations can be preferred in some cases as
far as the depth of nonclassciality witnesses is concerned.

Witnesses of non-classicality
AN configuration NA configuration AA configuration NN configuration

χ = 0 χ = 0.2∆ χ = 0 χ = 0.2∆ χ = 0 χ = 0.2∆ χ = 0 χ = 0.2∆

Mandel parameter (
✓

A,
✓

B,
✓

C) (
✓

A,
✓

B,
✓

C) (
✓

A,
✓

B,
✓

C) (
✓

A,
✓

B,
✓

C) (
✓

A,
✓

B,
✓

C) (
✓

A,
✓

B,
✓

C) (
✓

A,
✓

B,
✓

C) (
✓

A,
✓

B,
✓

C)

Singlemode Squeezing (
✓

A,
✓

B,
✓

C) (
✓

A,
✓

B,
✓

C) (
✓

A,
✓

B,
✓

A) (
✓

A,
✓

B,
✓

A) (
✓

A,
✓

B,
✓

A) (
✓

A,
✓

B,
✓

A) (
✓

A,
✓

B,
✓
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FIG. 2. (Color online) Average number of cavity photons
and excitations corresponding to the two ensembles, studied
with respect to the dimensionless parameter ∆t. (a) and (b)
correspond to AN (left ensemble at Antinode and the right
ensemble at Node) and NA (left ensemble at Node and the
right ensemble at Antinode) configurations, respectively. The
average number of excitations corresponding to the driven
ensemble (〈A†A〉), the undriven ensemble (〈B†B〉) and the
average cavity photon number (〈C†C〉) is depicted for χ = 0
and χ = 0.2∆. All the quantities shown in the plots in the
present paper are dimensionless.

Evolution of the average boson number discussed above
gives us a feeling of the system dynamics, but does not
provide us any information about the non-classical nature
of the system. To obtain the non-classical characteristics
of the system, we begin with the study of variation of
a single mode non-classicality witness known as Mandel
parameter QM , which has been introduced in the pre-
vious section. Variation of QM with respect to rescaled
time ∆t is plotted in Fig. (13) for all three modes of
the system in AN and NA configurations. The condition
for non-classicality is implied by the negative values of
QM (i.e., QM < 0) and can be interpreted as the sub-
Poissonian statistics of the corresponding field. Further,

it is observed that the application of the external field to
the driven ensemble makes QM more negative, and thus
the driving optical field may be used to enhance the am-
plitude of the non-classiclaity witness in both the driven
ensemble and cavity mode. Negative values of QM are
also observed for AA and NN configurations and similar
inferences can be drawn from it as mentioned in Table I;
the illustrations of the results are given in the supplemen-
tary material. Specifically, we found non-classicality in
the driven (undriven) ensemble in the absence of the ex-
ternal drive. Although in the absence of the driving term,
the Hamiltonian given by Eq. (1) is symmetric for both
the ensembles, the observed behavior can be attributed
to different values of decay constants for the modes under
consideration. Note that the non-classicality observed in
the driven ensemble for higher intensity of the driving
field establishes that driving field can be used to control
the amount of non-classicality in the system.
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FIG. 3. (Color online) Mandel parameter with respect to the
dimensionless parameter ∆t. Figures (a) and (b) correspond
to AN and NA configurations, respectively. The non-classical
nature of the field corresponding to the mode α is confirmed
by QM (α) < 0.

Motivated by the presence of single mode non-
classicality in the boson number distribution also illus-
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trating the presence of single mode antibunching, we also
study the possibilities of compound mode antibunching
using Eq. (12). Fig. (20) shows the variation of non-
classicality parameter for the intermodal antibunching
as defined by Eq. (12) for all possible compound modes
in AN and NA configuration. The criterion Aαβ < 0 is

satisfied for all the modes α/β ∈ {Â, B̂, Ĉ}. One can see
the enhancement in the depth of intermodal antibunch-
ing parameter by the action of the external field driving
the ensemble A. Similar studies in the case of AA and
NN configurations also show intermodal antibunching as
summarized in Table I.

HaL
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FIG. 4. (Color online) Showing intermodal antibunching pa-
rameter Aαβ for modes α and β, plotted with respect to the
parameter ∆t. (a) and (b) correspond to AN and NA configu-
rations, respectively. The existence of intermodal antibunch-
ing is confirmed if Aαβ < 0.

After witnessing the signatures of non-classicality in
all three modes of the system through the negative val-
ues of the Mandel QM parameter, we turn our attention
towards single mode squeezing; criterion for which is de-
fined in Eq. (14) and Eq. (15). Fig. 5 illustrates the

presence of the quadrature squeezing in all the individ-
ual modes, both in AN and NA configurations. A similar
study for AA and NN configurations is carried out and
the results (not displayed here) are summarized in Table

I. The field mode Â, corresponding to the driven ensem-
ble, shows an appreciable enhancement in the magnitude
of squeezing illustrated by the decrease of the variance in
one quadrature with respect to the coherent state level
as soon as the external field is applied. This enhance-
ment is also observed in the undriven mode B̂ and the
cavity mode Ĉ, but with relatively lesser magnitude in
AN configuration, while as in NA configuration, the en-
hancement in the non-classicality of field modes B̂ and Ĉ
is quite meager. This can be attributed to the fact that
in NA configuration, the driven ensemble, being at the
node of the cavity field, is weakly coupled to it. There-
fore, we conclude that the amount of non-classicality in
the driven ensemble can be controlled by the strength
of the driving field, however, the driven ensemble should
be placed at the Antinode of the cavity field (AN or AA
configurations) for this control to be effective on the cav-

ity field mode (Ĉ) and the undriven ensemble excitation

mode (B̂), as well. However, in some cases (as in Fig.
5 (b)), with an increase in the strength of the external
field nonclassicality present in the absence of external
field decreases initially for a small period of time before
increasing thereafter. This behavior could not be ex-
plained by the present study and may be attempted in
the near future. The role of external driving field strength
as a control parameter can be further established using
Fig. 6, which illustrates the variation of (∆Xa)

2 with re-
spect to the external driving field strength and time. The
enhancing effect of the external field on the quadrature
squeezing is clearly visible in this case.

Motivated by the observation for the single mode
squeezing, we investigated the presence of intermodal
squeezing using the criterion given in Eqs. (16a) and
(16b). The outcome of the investigation is plotted in
Fig. 7, which clearly shows the existence of intermodal
squeezing in the compound mode ÂB̂. One can observe
the amplification in the squeezing parameters as a con-
sequence of an increase in the external field driving the
atomic ensemble SA (cf. Fig. 7 (b)). A similar study
for NN and AA configuration is also carried out with
compound modes B̂Ĉ and ÂĈ in all four configurations.
The presence of squeezing in different possible compound
ensemble-ensemble and ensemble-cavity modes in all the
four configurations is observed and is summarized in Ta-
ble I. It is worth mentioning here that the enhancement
in the values of the witness of the intermodal squeezing is
found to be more prominent in the compound mode ÂĈ
when compared with ÂB̂ or B̂Ĉ. This can be attributed
to the fact that the amount of non-classicality in mode
B̂ is less susceptible to the driving field.
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FIG. 5. (Color online) Single mode squeezing, as defined in Eqs. (14) and (15), plotted with respect to the dimensionless

parameter ∆t. Sub-figures (a)-(d), (b)-(e) and (c)-(f) correspond to modes Â, B̂ and Ĉ, respectively. The top and bottom
panels pertain to the AN and NA configurations, respectively. It is clear that the application of the external field to the driven
ensemble (Â), that is, the non-zero value of χ, enhances the squeezing in the respective quadratures of a particular mode.

FIG. 6. (Color online). Showing squeezing parameter

(∆XA)
2 for mode Â as a function of the driving field strength

χ as well as the dimensionless parameter ∆t. The enhancing
effect in quadrature squeezing as a result of increase in the
strength of the driving field is observed.

Nonclassical features manifested through the negative
values of Mandel QM parameter, intermodal antibunch-
ing and the criteria of single mode and compound mode
squeezing have been studied since long using various tech-
niques including short-time approach [65, 66] and Sen-
Mandal approach [28, 67], but most of those studies were
limited to closed system configuration. In the present
work, we have reported the existence and dynamics of
these non-classical features in the backdrop of open quan-
tum systems. To continue the investigation further, we
may note that among various non-classical features, en-
tanglement has drawn maximum attention of the scien-
tific community because of its enormous applications in

quantum computing and communication and because of
the fact that it may lead to various phenomenon hav-
ing no classical analogue such as, dense coding [14] and
teleportation [13]. Keeping this in mind, we would now
look into the possibility of observing intermodal entan-
glement in the system of our interest. To do so, we will
use a set of inseparability criteria, each of which is only
sufficient and consequently when one of the criteria fails,
another one may succeed to detect entanglement. We
begin with Duan’s criterion for inseparability defined in
Eq. (17) and graphically present the obtained results in
Fig. 14. It is clear from Fig. 14 that the condition
for inseparability (i.e., Dαβ < 0) is satisfied for modes
α and β. Irrespective of whether the driven ensemble is
placed at Node or Antinode of the cavity field, the value
of the Duan parameters DAB and DBC is very small. In
the NA configuration (shown in Fig. 14 (b)), the Duan
parameter DAB , DBC as well as DAC become negative,
thereby witnessing the presence of entanglement among
all the modes. On the other hand, in AN configuration,
DBC is non-negative (cf. Fig. 14 (a)). This implies that
transforming the system from AN to NA configuration
enhances the intermodal entanglement, which can also
be viewed in the enhancement of the Duan parameter
DAC in NA configuration.

As stated above, moment-based criteria of insepara-
bility are only sufficient. Hence, it makes sense to look
into the possibility of observing entanglement in light
of one or more different criteria. We study the famous
Hillery-Zubariy criteria defined by Eqs. (18) and (19)
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FIG. 7. (Color online) Showing inter-modal squeezing, de-
fined by Eq. (16a), with respect to ∆t. (a) and (b) show the

squeezing in compound mode ÂB̂, in AN and NA configura-
tions, respectively. One finds enhancement in the intermodal
squeezing as a result of driving ensemble (Â) by the applica-
tion of the external field.

and have illustrated the corresponding results in Fig. 9,
where negative values of EAB and ẼAB confirm the ex-
istence of the intermodal entanglement between modes
Â and B̂ for all configurations. At times, weak signa-
tures of entanglement are found through ẼAB criterion,
but relatively stronger signatures are found through EAB

criterion (see Fig. (9)). Similarly, one may observe in
Fig. (14)-(a) and (9)-(b) that, at ∆t = 6, Duan’s crite-
rion failed to detect entanglement but is captured by the
Hillery-Zubairy criteria. Further, the study revealed the
relevance of placement of ensembles in the cavity for the
generation of entanglement between two spatially sepa-
rated ensembles interacting with a common cavity field.
Also, going from AA to NN configuration, the effect of
external driving field becomes relevant for controlling the
amount of entanglement. A similar study for the remain-
ing two compound modes B̂Ĉ and ÂĈ also established
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FIG. 8. (Color online) Showing Duan separability parame-
ter against ∆t. Figures (a) and (b) correspond to AN and
NA configurations, respectively. The sufficient condition for
inseparability is implied by Dαβ < 0, for modes α and β.

that they are always entangled in all configurations as
summarized in Table I (see the supplementary material
for detail).

As we have already mentioned, entangled states may
or may not satisfy steering condition, but a state sat-
isfying steering condition must be entangled. Thus, a
steering criterion can be viewed as a stronger criterion
of non-classicality in comparison to the criteria of entan-
glement. Further, entangled states that are not steered
cannot be used for one-way device independent quantum
cryptography, but steered states can be [19]. This moti-
vated us to look into the possibility of observing steered
states in our system. To do so we have used the steering
criterion given by Eq. (21) and plotted, for example, for

two spatially separated ensembles modes Â and B̂ in Fig.
(10). The existence of the steered state is observed for

modes Â and B̂ (also for B̂ and Ĉ and for Â and Ĉ as
summarized in Table I) for all configurations. Further,
in contrast to entanglement witnesses, here we observe
an asymmetric nature of steering which is reflected from
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FIG. 9. (Color online) Hillery Zubairy criteria, as defined in Eqs. (18) and (19), plotted against the dimensionless parameter

∆t for modes Â and B̂. The figures (a), (b), (c) and (d) correspond to the AA, AN, NA and NN configurations, respectively.

The negative values of the Hillery Zubairy parameters (HZPs), viz., EAB and ẼAB provide the sufficient condition for the
entanglement between the corresponding modes. The nonzero value of χ makes HZPs more negative at certain points, and
hence, enhance the entanglement between the corresponding modes.

Fig. 10, where it can be seen that SAB 6= SBA. For in-
stance, Fig. (10)-c shows that for non-zero driving field

intensity, Â can steer B̂, while the converse is not ob-
served. The results obtained for the steering criterion es-
tablished the same observations as found for the Hillery
Zubairy entanglement criteria. Failure to obtain steering
in some of the cases (as highlighted in Table I) establishes
that it is a relatively stronger criterion of non-classicality,
and the presence of steering correlations in two spatially
separated ensembles, mediated by the cavity field and
controllable by the external driving, is an interesting ob-
servation.
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FIG. 10. (Color online) Steering criteria as a function of ∆t for modes Â and B̂. The figures (a), (b), (c) and (d) correspond
to the AA, AN, NA and NN. Steering is confirmed if Sαβ < 0, for modes α and β.
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So far we have seen quantum correlations involving
two modes only. However, our system consists of three
modes that are treated quantum mechanically. Hence,
we may extend our study to check non-classical features
of the system through some quantum correlations involv-
ing all the three modes Â, B̂ and Ĉ. To do so, use has
been made of the biseperability criteria defined in Eqs.
(22) and (23), to study multimode entanglement. Cor-
responding results are plotted in Fig. (11). It is clear
that the sufficient condition for the fully entangled state,
which is the satisfaction of at least one of the two sets
of inequalities given by (24) and (25), is satisfied here.
Thus, there exists a non-classical correlation involving
all the three modes in both AN and NA configuration.
Specifically, all possible combinations for the bisepara-
bility show almost similar variation in Fig. (11). This
establishes that the three-mode compound state is fully
entangled. The application of the external field is found
to enhance the signature for the existence of the multi-
mode entanglement. Similar study for other configura-
tions is summarized in Table I.

V. Conclusion

In the previous sections, we have performed a detailed
investigation on the temporal variation of various wit-
nesses of non-classicality present in a model physical sys-
tem consisting of a cavity that contains two ensembles
of two level atoms which are placed in different config-
urations with respect to the Antinode and Node of the
cavity field, viz., AA, AN, NA and NN configurations.
Further, it is considered that the left ensemble is driven
by an external optical field which has been treated here
as classical. The effects of this driving optical-field on
various witnesses of single mode (e.g., squeezing, Man-
del’s Q parameter, antibunching) and intermodal (e.g.,
intermodal squeezing, antibunching, two and three mode
entanglement, and steering) non-classicality have been
studied systematically. The study has yielded various
interesting results which are summarized in Table I.

Before, we conclude the paper, we must note that one
of the main findings of this paper is that the optical-
driving field may be used to control the amount of non-
classicality. In fact, it can be used to enhance the non-
classicality of the atomic ensemble modes, cavity modes
and their compound modes. Specifically, it is observed
that the excitation mode Â corresponding to the driven
ensemble shows amplification in the witness of squeezing
of its quadratures in the presence of the external field
(χ 6= 0). Similar enhancement of the negative values
of the non-classicality witness has also been observed in
the cavity photonic mode Ĉ when the driven ensemble is
placed at the Antinode of the cavity field.

Further, the existence of entanglement which is consid-
ered to be one of the main resources for quantum infor-
mation processing has been observed here using a set of
sufficient criteria for inseparability Specifically, we have
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FIG. 11. (Color online) Biseparability criteria as a function
of ∆t. Top and bottom panels correspond to AN and NA
configurations, respectively. The nonseperability of modes α,
β and γ is implied by the satisfaction of either or both of the
inequalities Eαβ|γ < 0 and E′

αβ|γ < 0.

used Hillery-Zubairy criterion and Duan’s criterion for
two-mode entanglement and a biseperability criteria for
three mode scenario. Since steering can be used for one-
way device independent quantum key distribution ([19]
and references therein), we have also investigated the pos-
sibilities of observing steering involving various modes of
the system. The investigation has not only revealed the
existence of steering, but has also demonstrated its asym-
metric nature.

The method adapted in this work is quite general and
easy to follow. It can be extended easily to investigate the
existence of non-classicality in similar physical systems of
interest, specially in a set of driven cavity systems. For
example, the study can be adapted to a system where
both the ensembles are driven (with the same or differ-
ent driving frequencies) or to a double cavity optome-
chanical system [68–73]. In brief, non-classical features
of various optomechanical, driven- and non-driven cavity
and optomechanics-like systems can be studied using the



14

technique used here. Further, the present system and
similar driven-cavity systems can be treated in a com-
pletely quantum mechanical manner (by considering the
driving optical field as weak and hence quantum mechan-
ical) to reveal non-classicalities involving the mode(s) of
the driving field(s). Such investigations are expected to
yield various types of non-classicality in different physical
systems that can be realized with the present technology
and thus provide a wider choice of systems (to experimen-
talists) that can be used to build quantum devices that
exploit the true power of the quantum world by produc-
ing and manipulating non-classical states. Keeping the
above possibility in mind, we conclude this paper with
an expectation that the present study will lead to a set
of similar studies and subsequently to quantum devices
having practical applications.
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Appendix A: Equations of motion for involved

operators

In analogy of Eq. (7), we obtained Langevin equations
for different single and compound modes as follows:

d 〈Â〉
dt

= −i∆a 〈Â〉−iGA 〈Ĉ〉−iχ− ΓA

2
〈Â〉, (A.1)

d 〈B̂〉
dt

= −i∆b 〈B̂〉−iGB 〈Ĉ〉−ΓB

2
〈B̂〉, (A.2)

d 〈Ĉ〉
dt

= −i∆c 〈Ĉ〉−iGA 〈Â〉−iGB 〈B̂〉−Γc

2
〈Ĉ〉, (A.3)

d 〈Â2〉
dt

= −2i∆a 〈Â2〉−2iGA 〈ÂĈ〉−2iχ 〈Â〉−Γa 〈Â2〉,
(A.4)

d 〈B̂2〉
dt

= −2i∆b 〈B̂2〉−2iGB 〈B̂Ĉ〉−ΓB 〈B̂2〉, (A.5)

d 〈Ĉ2〉
dt

= −2i∆c 〈Ĉ2〉−2iGA 〈ÂĈ〉−2iGB 〈B̂Ĉ〉−Γc 〈Ĉ2〉,
(A.6)

d 〈Â†〉
dt

= i∆a 〈Â†〉+iGA 〈Ĉ†〉+iχ− ΓA

2
〈Â†〉, (A.7)

d 〈B̂†〉
dt

= i∆b 〈B̂†〉+iGB 〈Ĉ†〉−ΓB

2
〈B̂†〉, (A.8)

d 〈Ĉ†〉
dt

= i∆c 〈Ĉ†〉+iGA 〈Â†〉+iGB 〈B̂†〉−Γc

2
〈Ĉ†〉,

(A.9)

d 〈(Â†)2〉
dt

= 2i∆a 〈(Â†)2〉+2iGA 〈Â†Ĉ†〉+2iχ 〈Â†〉

− ΓA 〈(Â†)2〉, (A.10)

d 〈(B̂†)2〉
dt

= 2i∆b 〈(B̂†)2〉+2iGB 〈B̂†Ĉ†〉−ΓB 〈(B̂†)2〉,
(A.11)

d 〈(Ĉ†)2〉
dt

= 2i∆c 〈(Ĉ†)2〉+2iGA 〈Â†Ĉ†〉+2iGB 〈B̂†Ĉ†〉

− Γc 〈(Ĉ†)2〉, (A.12)

d 〈Â†Â〉
dt

= iGA[〈ÂĈ†〉− 〈Â†Ĉ〉] + iχ[〈Â〉− 〈Â†〉] + ΓAnA

− ΓA 〈Â†Â〉, (A.13)

d 〈B̂†B̂〉
dt

= iGB [〈B̂Ĉ†〉− 〈B̂†Ĉ〉] + ΓBnB − ΓB 〈B̂†B̂〉,
(A.14)

d 〈Ĉ†Ĉ〉
dt

= iGA[〈Â†Ĉ〉− 〈ÂĈ†〉] + iGB [〈B̂†Ĉ〉− 〈B̂Ĉ†〉]

− Γc 〈Ĉ†Ĉ〉+Γcnc, (A.15)

d 〈ÂB̂〉
dt

= −i(∆a +∆b) 〈ÂB̂〉−iGA 〈B̂Ĉ〉−iGB 〈ÂĈ〉

− iχ 〈B̂〉−ΓA + ΓB

2
〈ÂB̂〉, (A.16)

d 〈ÂB̂†〉
dt

= i[∆b −∆a] 〈ÂB̂†〉−iGB 〈B̂†Ĉ〉+iGB 〈ÂĈ†〉

− iχ 〈B̂†〉−ΓA + ΓB

2
〈ÂB̂†〉, (A.17)
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d 〈Â†B̂〉
dt

= i(∆a −∆b) 〈Â†B̂〉+iGA 〈B̂Ĉ†〉−iGB 〈Â†Ĉ〉

+ iχ 〈B̂〉−ΓA + ΓB

2
〈Â†B̂〉, (A.18)

d 〈Â†B̂†〉
dt

= i(∆a +∆b) 〈Â†B̂†〉+iGA 〈B̂†Ĉ†〉+iGB 〈Â†Ĉ†〉

+ iχ 〈B̂†〉−ΓA + ΓB

2
〈Â†B̂†〉, (A.19)

d 〈B̂Ĉ〉
dt

= −i(∆b +∆c) 〈B̂Ĉ〉−iGB(〈Ĉ2〉+ 〈B̂2〉)

− iGA 〈ÂB̂〉−ΓB + Γc

2
〈B̂Ĉ〉, (A.20)

d 〈B̂Ĉ†〉
dt

= −i(∆b −∆c) 〈B̂Ĉ†〉+iGB(〈B̂†B̂〉− 〈Ĉ†Ĉ〉)

+ iGA 〈Â†B̂〉−ΓB + Γc

2
〈B̂Ĉ†〉, (A.21)

d 〈B̂†Ĉ〉
dt

= i(∆b −∆c) 〈B̂†Ĉ〉+iGB [〈Ĉ†Ĉ〉− 〈B̂†B̂〉]

− iGA 〈ÂB̂†〉−ΓB + Γc

2
〈B̂†Ĉ〉, (A.22)

d 〈B̂†Ĉ†〉
dt

= −i(∆b +∆c) 〈B̂†Ĉ†〉+iGB [〈(Ĉ†)2〉+ 〈(B̂†)2〉]

+ iGA 〈Â†B̂†〉−ΓB + Γc

2
〈B̂†Ĉ†〉, (A.23)

d 〈ÂĈ〉
dt

= −i(∆a +∆c) 〈ÂĈ〉−iGA[〈Ĉ2〉+ 〈Â2〉]− iGB 〈ÂB̂〉

− iχ 〈Ĉ〉−ΓA + Γc

2
〈ÂĈ〉, (A.24)

d 〈ÂĈ†〉
dt

= i(∆c −∆a) 〈ÂĈ†〉+iGA[〈Â†Â〉− 〈Ĉ†Ĉ〉]

+ iGB 〈ÂB̂†〉−iχ 〈Ĉ†〉−ΓA + Γc

2
〈ÂĈ†〉,

(A.25)

d 〈Â†Ĉ〉
dt

= i(∆a −∆c) 〈Â†Ĉ〉+iGA[〈Ĉ†Ĉ〉− 〈Â†Â〉]

− iGB 〈Â†B̂〉+iχ 〈Ĉ〉−ΓA + Γc

2
〈Â†Ĉ〉,

(A.26)

d 〈Â†Ĉ†〉
dt

= i(∆a +∆c) 〈Â†Ĉ†〉+iGA[〈(Ĉ†)2〉+ 〈(Â†)2〉]

+ iGB 〈Â†B̂†〉−ΓA + Γc

2
〈Â†Ĉ†〉 . (A.27)

Here, nA, nB and nC represent the thermal photon num-
bers corresponding to mode A, B and C, respectively.
Also, it would be apt to note that one can express the
various witnesses of non-classicality described in Section
III in terms of the solutions of the above set of coupled
differential equations, which can be obtained using Math-
ematica or similar programs or by using conventional
methods of obtaining analytic solutions of the coupled
differential equations. Particularly, in this work, we have
used Mathematica to obtain simultaneous numerical so-
lution of these coupled differential equations.
To illustrate the method adapted in this work to ob-

tain the expressions for non-classicality witnesses us-
ing the solution of the above equations, we may con-
sider the computation of Mandel parameter as an ex-
ample. Mandel parameter defined by Eq. (13) con-

tains the term 〈(Â†Â)2〉. This quantity is not among
the variables appearing in the above equations. So the
solution of the above set of coupled equations would
not provide us an expression for 〈(Â†Â)2〉. To circum-
vent this problem, we have adapted a technique that al-
lows us to simplify this term after writing it in normal-
ordered form 〈(Â†Â)2〉 = 〈Â†Â†ÂÂ〉 + 〈Â†Â〉 and sub-
sequently using the decoupling relation [50] 〈ABCD〉 ≈
〈AB〉〈CD〉+ 〈AC〉〈BD〉+ 〈AD〉〈BC〉− 2〈A〉〈B〉〈C〉〈D〉.
Using this decoupling relation we can write

〈Â†Â†ÂÂ〉 ≈ 〈Â†Â†〉〈ÂÂ〉+ 〈Â†Â〉〈Â†Â〉
+ 〈Â†Â〉〈Â†Â〉 − 2〈Â†〉〈Â†〉〈Â〉〈Â〉,
= 〈(Â†)2〉〈Â2〉+ 2〈Â†Â〉2 − 2〈Â†〉2〈Â〉2.

(A.28)

Interestingly, the Mandel parameter can now be ex-
pressed in terms of the variables, time evolution of which
is obtained as the solution of the above set of differential
equation and we can express Mandel parameter (8) as

QM ≈ 〈(Â†)2〉〈Â2〉+ 〈Â†Â〉2 − 2〈Â†〉2〈Â〉2

〈Â†Â〉
. (A.29)

Clearly, the solution of the coupled differential equa-
tion listed above would now allow us to study the tem-
poral evolution of the Mandel parameter and thus to in-
vestigate the presence of non-classicality in our system of
interest under the framework of open quantum system.
Similar strategy is adapted in the study of all other wit-
nesses of non-classicality mentioned above and this is how
the interesting results related to the temporal evolution
of non-classicality witnesses illustrated in Figs. 13-11,
and summarized in Table I, are obtained.
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Supplemental Material: Probing non-classicality in an optically-driven cavity with two
atomic ensembles

We provide the various results which were obtained in the analysis carried out in our primary work. The model
considered in this work consists of a cavity embedded with two ensembles of the two-level atoms. It is found that
the nonclassical features, demonstrated by the various witnesses, studied in this work, show enhancement when one
of the ensembles in the cavity is driven by an external field. The system is studied in various configurations such as
AA, AN, NA and NN as explained in our main paper. It is found that AA configuration is best suited for observing
the nonclassical features in the model considered in this work.
In what follows, we have shown the behavior of the nonclassicality witnesses in the cases not displayed in the main

paper but included in Table (I). Specifically, time evolution of number operators corresponding to each mode in AA
and NN configurations is shown in Fig. (12). A similar study for Mandal parameter (Fig. (13)), Duan et al.’s criterion
(Fig. (14)), single-mode squeezing (Fig. (15)), intermodal squeezing (Figs. (16) and (17)), Hillery-Zubariy criteria
(Figs. (18) and (19)), intermodal antibunching (Fig.(20)), Biseperability criteria (Figs. (21) and (22)), single-mode
antibunching (Fig. (23)) and steering (Figs. (24) and (25)). All the quantities are plotted with respect to the
dimensionless parameter ∆t, where ∆ is the common detuning.
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FIG. 12. (Color online) Average number of cavity photons and excitations corresponding to the two ensembles, studied with
respect to the dimensionless parameter ∆t. Figs. (a) and (b) correspond to AA (both the ensembles placed at Antinode) and
NN (both the ensembles placed at Node) configurations, respectively. The average number of excitations corresponding to the
driven ensemble (〈A†A〉), the undriven ensemble (〈B†B〉) and the average cavity photon number (〈c†c〉) is depicted for χ = 0
and χ = 0.2∆.
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FIG. 13. (Color online) Mandel parameter with respect to the dimensionless parameter ∆t. Figs. (a) and (b) correspond to
AA and NN configurations, respectively. The nonclassical nature of the field corresponding to the mode α is confirmed by
QM (α) < 0.
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FIG. 14. (Color online) Showing Duan separability parameter against ∆t. Figs. (a) and (b) correspond to AA and NN
configurations, respectively. The sufficient condition for inseparability is implied by Dαβ < 0, for modes α and β.



21

0 10 20 30

0.246

0.248

0.25

0.252

0.254

Δt

(
X
A
)
2
,
(
Y
A
)
2

(a)

(ΔX)2 (ΔY)2 for χ=0; (ΔX)2 (ΔY)2 for χ=0.2Δ

0 5 10 15

0.234

0.242

0.25

0.258

0.266

Δt

(
X
B
)
2
,
(
Y
B
)
2

(c)

0 10 20 30

0.19

0.205

0.22

0.235

0.25

0.265

0.28

0.295

0.31

Δt

(
X
C
)
2
,
(
Y
C
)
2

(e)

0 10 20 30 40

0.246

0.248

0.25

0.252

0.254

Δt

(
X
A
)
2
,
(
Y
A
)
2

(b)

0 10 20 30

0.234

0.242

0.25

0.258

0.266

Δt

(
X
B
)
2
,
(
Y
B
)
2

(d)

0 10 20 30

0.23

0.24

0.25

0.26

0.27

Δt

(
X
C
)
2
,
(
Y
C
)
2

(f)

FIG. 15. (Color online) Single mode squeezing plotted with respect to the dimensionless parameter ∆t. Sub-figures (a)-(d),

(b)-(e) and (c)-(f) correspond to modes Â, B̂ and Ĉ, respectively. The top and bottom panels pertain to the AA and NN
configurations, respectively. It is clear that the application of the external field to the driven ensemble, that is, the non-zero
value of χ, enhances the squeezing in the respective quadratures of a particular mode.
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FIG. 16. (Color online) Showing intermodal squeezing with respect to ∆t. The Figs. (a) and (b) show the squeezing between

modes B̂ and Ĉ. Figs. (c) and (d) show the same between modes Â and Ĉ.Top and bottom panels correspond to the AN and
NA configurations, respectively. One finds enhancement in the intermodal squeezing as a result of driving ensemble (A) by the
application of the external field.
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FIG. 17. (Color online) Intermodal squeezing plotted with respect to ∆t. Sub-figures (a)-(d) show the squeezing with modes

Â and B̂ , (b)-(e) with modes B̂ and Ĉ and (c)-(f) with modes Â and Ĉ. The top and bottom panels pertain to the AA and
NN configurations, respectively.



24

(a)

ℰBC ℰ∼BC for χ=0

0 2 4 6 8 10

-1.0

-0.5

0.0

0.5

Δt

ℰ
B
C
,
ℰ∼

B
C

3.46 3.47 3.48 3.49 3.50
Δt

-6

-4

-2

2

4

6

ℰ∼BC(10-7)

ℰBC ℰ∼BC for χ=0.2Δ

(b)

ℰBC ℰ∼BC for χ=0

0 2 4 6 8 10

-1.0

-0.5

0.0

0.5

Δt

ℰ
B
C
,
ℰ∼

B
C

3.46 3.47 3.48 3.49 3.50
Δt

-4

-2

2

4

ℰ∼BC(10-7)

ℰBC ℰ∼BC for χ=0.2Δ
(c)

ℰBC ℰ∼BC for χ=0

0 2 4 6 8 10

-1.0

-0.5

0.0

0.5

Δt

ℰ
B
C
,
ℰ∼

B
C

3.46 3.47 3.48 3.49 3.50
Δt

-1.0

-0.5

0.5

1.0

HZ2AC(10
6)

ℰBC ℰ∼BC for χ=0.2Δ

(d)

ℰBC ℰ∼BC for χ=0

0 2 4 6 8 10

-1.0

-0.5

0.0

0.5

Δt

ℰ
B
C
,
ℰ∼

B
C

3.48 3.50 3.52 3.54
Δt

-0.5

0.5

1.0

HZ2AC(10
-7)

ℰBC ℰ∼BC for χ=0.2Δ
FIG. 18. (Color online) Hillery Zubairy criteria as a function of ∆t for modes B̂ and Ĉ. The figures (a), (b), (c) and (d)
correspond to AA, AN, NA and NN configurations, respectively. Entanglement is confirmed if Eαβ < 0, for modes α and β.
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FIG. 19. (Color online) Hillery Zubairy criteria as a function of ∆t for modes Â and Ĉ. The figures (a), (b), (c) and (d)
correspond to AA, AN, NA and NN configurations, respectively. Entanglement is confirmed if Eαβ < 0, for modes α and β.
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FIG. 20. (Color online) Showing intermodal anti-bunching parameter Aαβ for modes α and β, plotted with respect to the
parameter ∆t. Top (a) and bottom (b) panels correspond to AA and NN configurations, respectively. The existence of
intermodal antibunching is confirmed if Aαβ < 0.
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FIG. 21. (Color online) Showing biseperability criteria plotted against ∆t. Figs. (a) and (b) correspond to AA and NN
configurations, respectively.
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FIG. 22. (Color online) Biseperability criterion. (a) AN configuration, (b) NA configuration, (c) AA configuration, (d) NN
configuration.
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FIG. 23. (Color online) Single-mode antibunching. (a) AN configuration, (b) NA configuration, (c) AA configuration, (d) NN
configuration.
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FIG. 24. (Color online) Steering criterion for modes B̂ and Ĉ, plotted with respect to the parameter ∆t. Figs. (a), (b), (c)
and (d) correspond to AA, AN, NA and NN configurations, respectively.
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FIG. 25. (Color online) Steering criterion for modes Â and Ĉ, plotted with respect to the parameter ∆t. Figs. (a), (b), (c)
and (d) correspond to AA, AN, NA and NN configurations, respectively.
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