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Abstract: 

Polymer composites based on poly(vinylidene fluoride) (PVDF) filled with carbon 

nanotubes (CNT) decorated with metal nanoparticles (NP) of cobalt, nickel, platinum 

and palladium have been produced. The CNT nanofillers decorated with metal NP were 

synthesized by a modified wet impregnation method and their structural, morphological 

and thermal properties were evaluated. The metal NP ranging from 2 to 10 nm were 

found well dispersed on the CNT structure. The structural, optical, thermal and 

electrical properties of the metal/CNT/PVDF composite films demonstrate that that the 

inclusion of the nanofillers leads to the nucleation of the γ-PVDF phase (up to 90 %) 

and enhance the thermal properties (higher melting point) of the polymer. The 

nanofillers also proved to be suitability to tailor the optical properties of the polymer 

composite films and lead to an increase in the d.c. electrical conductivity (up to 10-13 
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S/cm). Thus, the reported metal/CNT nanofillers are suitable to tune PVDF polymer 

properties towards specific applications. 

 

Keywords: Piezoelectric polymers; PVDF; carbon nanotubes; smart materials; 

electrical properties 

 

1. Introduction 

Carbon nanotubes (CNT) are regarded as one of the most suitable reinforcing material 

for the development of polymer composites due to their excellent electrical, thermal, 

optical and mechanical properties, as well as their high aspect and surface to-volume 

ratios [1, 2]. CNT are chemically very stable regardless the tubes are open and/or filled, 

opening the possibility to be filled or decorated with metals, semiconductors, salts, 

organic materials, or therapeutic agents, among others [1]. The combination of CNT and 

nanoparticles (NP) allow integration and synergetic effects between both materials, 

giving rise to novel materials with important features for catalysis and nanotechnology 

[3]. 

Thus, important efforts are being devoted to the investigation of CNT functionalization 

in order to develop applications related with solar cells, fuel cells, chemo/biosensors, 

hydrogen storage, catalysis and drug delivery, among others. The functionalization of 

the CNT with metal NP gained special attention with the major challenge of decorating 

uniformly CNT walls [4]. Typically, the two main approaches to the synthesis of metal-

filled and decorated CNT are the in situ approach where the filling or decoration 

procedure is performed during CNT growth, and the ex-situ or post-growth approach, in 

which the filling is achieved at a later time [1]. 

Several metal NP and CNT composites have been explored for different purposes. CNT 

decorated with platinum (Pt) nanoparticles were efficiently synthesized trough an 

organic colloidal process without aggregation [5]. The composites were suitable to the 

production of electrochemical sensors with high sensitivity [6]. Carbon materials loaded 

with faceted Pt nanocrystals [7] exhibited exceptional activity and recyclability for 

asymmetric hydrogenation of α-ketoesters, similarly to Pt nanoparticles/CNT 

composites efficiently used for asymmetric heterogeneous hydrogenation of methyl 

pyruvate with highest enantioselectivity [8]. Palladium (Pd) nanoparticles were also 

used to decorate CNT for hydrogen (H) storage. The composites, produced by a 
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solventless method, showed higher hydrogen absorption capacity than pristine CNT 

which was ascribed to the higher binding energy between Pd and H atoms [9]. Nickel 

(Ni) nanoparticles were used to decorate CNT by thermal evaporation, and the 

formation of Ni-C bonds by chemical reaction was found at the interface of the two 

materials. These CNT showed increased metallic characteristics and proved to be 

suitable candidates as a template to produce metal nanowires [10]. CNT decorated with 

nanoparticles of cobalt (Co), iron (Fe) or Ni were synthesized by a simple chemical 

method and successfully tested for lightweight microwave adsorption materials in S-

band due to the suitable combination of the complex permeability and permittivity from 

the magnetic nanoparticles [11]. For a similar purpose, Co nanoparticles have also been 

used to decorate CNT, by hydrothermal treatment, obtaining composites with higher 

electromagnetic absorption compared to pristine CNT, suggesting an effective way to 

produce high-efficiency electromagnetic wave absorption materials [12]. Bimetallic 

nanoparticles based on Pt with Ni, Fe and Co, prepared by chemical reduction, were 

used to decorate CNT by oxidation for electrochemical storage of hydrogen, showing 

promising properties as electrocatalyst for high-performance fuel cell applications [13]. 

For several of the aforementioned applications, it is suitable to integrate those materials 

into polymer matrices, allowing easier handling and recuperation, as well as simpler 

integration into devices. Thus, CNT have been introduced into different polymer 

matrices, including polypropylene [14, 15], styrene-butadiene-styrene [16], epoxy resin 

[17], and poly(vinylidene fluoride) (PVDF) [18, 19], among others, that have been used 

to enhance significantly the properties of the polymer and also to broaden the range of 

application for the polymer itself. Among polymers, PVDF is one of the most 

representative of a family of polymers with electroactive properties, being therefore one 

of the polymers of choice for advanced technological applications. PVDF is a semi-

crystalline polymer with high dielectric constant and electroactive response, including 

piezoelectric, pyroelectric and ferroelectric properties, which are of large importance for 

the development of several applications such as sensors, actuators, energy storage and 

power generation systems, among others [20-23]. PVDF can present five distinct phases 

with different chain conformations, however the most widely used for applications are 

the α, β and γ phases, being the latter two the ones with piezoelectric response [24].  

As the combination of decorated CNT and piezoelectric polymers will allow the 

development of novel multifunctional materials, the present work reports on the 
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synthesis and characterization of several metal decorated CNT and the preparation and 

characterization of the corresponding PVDF matrix composites. 

 

2. Experimental details 

2.1 Materials 

The carbon nanotubes (CNT, > 95 % carbon) and chloroplatinic acid (37.50 % Pt basis) 

were purchased from Aldrich. Nickel nitrate hexahydrate (99 %), cobalt nitrate 

hexahydrate (> 99 %) and palladium nitrate hexahydrate (> 95 %) were obtained from 

Acros organics. Poly(vinylidene fluoride) (PVDF), Solef® 1015 was acquired from 

Solvay, and the solvent N,N-dimethylformamide (DMF) was supplied by Flucka.  

 

2.2 Fillers synthesis 

A modified wet impregnation method was carried out for metal loaded CNT decoration 

[8] (Fig. 1). In this procedure, the CNT were refluxed under constant stirring in HNO3 

(68 wt%) at 140 ºC, and extracted by centrifugation at 3000 rpm. CNT were washed 

several times with water followed by ethanol. Resultant activated CNT were dried at 80 

ºC for 4 h under argon and then immersed in an ethanolic solution under stirring and 

sonication, simultaneously. Then, the corresponding metal salt was dissolved in 

degassed ethanol and added to the CNT solution slowly via syringe pump under 

hydrogen bubbling for a period of 12 h. The solution was stirred for another 24 h at 

room temperature and finally heated at 100 ºC for 12 h. Metal nanoparticles were tinted 

on carbon surface, the metal decorated CNT were isolated via centrifugation, followed 

by washing with deionized degassed water and dried at 80 ºC for16 h under argon. 

 

Fig. 1. Schematic representation of a typical decoration process of CNT. 

 

Following this procedure, the following decorated CNT were prepared: Pd/CNT, 

Ni/CNT, Co/CNT, Pt(in), Pt(out) and Pt-Co. 
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2.3 Fillers characterization 

X-ray diffraction (XRD) performed in an X-ray diffractometer, D8 advance (Bruker, 

U.S.A.) using Cu Kα1 (λ = 1.54056 Å) as a radiation, source was used to ascertain the 

quality and crystalline nature of carbon materials with tube current and voltage 40 mA 

and 40 kV, respectively. 

The morphology of metal/CNT nanofillers was determined using scanning electron 

microscopy (SEM) EVO18 Ziess with an accelerating voltage of 20 KeV. Metal 

nanoparticles were confirmed by energy dispersive X-ray (EDX) spectroscopy. 

Transmission electron microscopy (TEM) was carried out in a FEI Tecnai-G2 T20. For 

TEM study, the materials were dispersed in ethanol using tip ultrasonication. The 

samples were prepared by placing a droplet of suspension onto a copper coated grid and 

dried in air. The TEM analysis articulate shape and distribution of the nanoparticles on 

carbon support. 

Thermogravimetric analyses (TGA) were performed with a TGA-6000 thermal analyzer 

(Perkin Elmer) under a nitrogen atmosphere (flow 19.8 mL/min and pressure 3 bar) and 

a heating rate of 10 ºC/min. 

 

2.4 Films preparation 

First, the decorated CNT were dispersed in a solution of DMF in an ultrasonic bath 

during 6 h. PVDF was then added to the solution to obtain a concentration of 

PVDF/DMF of 10/90 wt% and the fillers to polymer relative concentration ranged from 

0.1 to 0.5 wt%. The solution was then magnetically stirred at 40 ºC, until complete 

polymer dissolution (∼2 h). Then, the mixture was placed in clean glass substrate and 

spread with a doctor blade to achieve a thickness of 450 µm. Finally, the films were 

placed in an oven at 210 ºC during 10 min to complete solvent evaporation and polymer 

melting in order to erase composite preparation history and to obtain non-porous films 

[25]. In the following, the polymer composite samples will be identified by the metal 

nanoparticle decorating the CNT (Pd, Ni, Pd, Pt(in), Pt(out) and Pt-Co) and the 

respective amount when necessary. 

 

2.5 Films characterization 

The polymer phase in the composites was evaluated by Fourier transformed infrared 

spectroscopy (FTIR) on a Jasco FT/IR-4100 in attenuated total reflectance (ATR) mode; 

32 scans were performed at room temperature between 4000 to 600 cm−1 with a 



6 

 

resolution of 4 cm−1. The relative fraction of the γ-phase (F(γ)) in the samples was 

calculated according to: 






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AA)K/K(

A
)(F  (1) 

where Aα and Aγ are the absorbance at 766 and 833 cm-1 respectively, and Kα (0.365 

µm-1) and Kγ (0.150 µm-1) are the absorption coefficients at the respective wavenumber 

[24]. 

The optical properties of the composites were measured by UV-Vis spectroscopy with a 

Jasco V-670 spectrophotometer coupled with a sample holder for solids. The spectra 

were recorded at room temperature from 200 to 900 nm. 

Raman spectra were recorded, at room temperature, by using an Olympus microscope 

and a 50× objective. For excitation, it was used the 514.5 nm polarized line of an Ar+ 

laser, with an incident power of about 16 mW impinging on the sample. The acquisition 

time for each measurement was set at 120 s and two/three scans. The scattered light was 

analyzed using a T64000 Jobin-Yvon spectrometer, operating in a triple subtractive 

mode, and equipped with a liquid nitrogen cooled CCD detector, in a Stokes frequency 

range from 200 to 2000 cm−1 [26]. In order to obtain information regarding the 

homogeneity of our samples, Raman spectra was recorded at different positions on the 

sample surfaces. 

The thermal properties were evaluated by differential scanning calorimetry (DSC) 

analysis carried out with a Perkin-Elmer DSC 8000 instrument between 25 and 200 ºC 

at a heating rate of 20 ºC min-1 under a flowing nitrogen atmosphere. The samples were 

first placed in aluminum pans of 30 µL with perforated lids to allow the release of 

volatiles. The degree of crystallinity (χc) of each sample was calculated by equation 2: 

100

f
c

H

H




  (2) 

where ΔHf  is the melting enthalpy of the sample and ΔH100 is the melting enthalpy of a 

100 % crystalline sample of pure PVDF (104.6 J/g) [27]. 

The d.c. volume electrical conductivity of the samples was obtained by measuring the 

characteristic IV curves at room temperature with a Keithley 6487 picoammeter/voltage 

source. Previously, circular gold electrodes (5 mm diameter) were deposited by 

sputtering using a Polaron, model SC502 sputter coater (90 s at ~20 mbar and ~20 mA) 

on both sides of the films. From the IV characteristics of the samples, the electrical 
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conductivity (σ) was calculated taken into account the geometrical factors in according 

to: 

A

L
R  (3) 

where, R is the electrical resistance, L is the sample thickness and A is the area of the 

electrodes. 

 

3. Results and discussion 

3.1. Nanofillers characterization 

Fig. 2 shows the XRD patterns of the different metal/CNT composites. 
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Fig. 2. XRD patterns of a) Co/CNT; b) Ni/CNT; c) Pt/CNT and d) different loading of Pd/CNT. 

 

The Fig. 2 confirms the metal structure, and thus the decoration, on the CNT. The XRD 

patterns show face-centered cubic (FCC) crystal structure of metal along with CNT, 

identified by the peaks at 2θ = 25.90, 42.70 and 53.50 are ascribed to the (002), (100) 

and (004) planes respectively.  
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For Co/CNT, the XRD pattern presents peaks at 44.3, 54.5 and 77.6 corresponding to 

diffractions of the (111), (200) and (220) planes of the FCC lattice of Co nanoparticles 

(Fig. 2a). Similarly, Ni/CNT shows peaks at 44.5, 51.8 and 76.3 ascribed to the 

diffraction of FCC planes of Ni (Fig. 2b). In the case of Pt/CNT and Pd/CNT (Fig. 2c 

and d), three major peaks at 39.6, 46.4 and 67.7 ascribed to the diffractions of the (111), 

(200) and (220) planes of the FCC lattice of the metal nanoparticles (Pt and Pd). No 

differences were found between the spectra of Pt(in)/CNT and Pt(out)/CNT 

nanoparticles, so the spectrum of Pt/CNT composite is representative of both. 

Fig. 3 presents the SEM images and EDX patterns of the metal/CNT composites. 

 

Fig. 3. SEM and EDX analysis of: a) and b) Co/CNT; c) and d) Ni/CNT; e) and f) Pt/CNT; g) and h) 

Pd/CNT. 

 

Fig. 3 shows the metal nanoparticles (brighter areas) well dispersed on the CNT 

structure and the presence of these metal nanoparticles (Co, Ni, Pt and Pd) was 

confirmed by EDX spectroscopy analysis. 

Finally, Fig. 4 shows representative TEM images of the metal/CNT composites on 

carbon support. 

 
Fig. 4. TEM images of: a) Co/CNT; b) Ni/CNT; c) Pt(in)/CNT; d) Pd/CNT and e) Pt(out)/CNT. 

 

The TEM analysis articulates shape and distribution of the metal nanoparticles on 

carbon support. The nanoparticle size ranged from 2 to 10 nm with good dispersion. No 

free nanoparticles were observed on the background of the TEM images which is a 
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strong indication that all the nanoparticles are attached to the CNT. Regarding CNT, the 

TEM images allow observing their tubular shape with an outside diameter around 11 ± 

2 nm and inner diameter of 4 ± 1 nm. It is noteworthy to notice that for Pt(in)/CNT case 

the metal nanoparticles were found both on the outer and inner surface of the CNT (Fig. 

4c) unlike the other cases where metal nanoparticles decorate the outer surface of the 

CNT (Fig. 4a, b, c and e). 

Fig. 5 presents the TGA thermograms of the metal/CNT composites and functionalized 

CNT. 
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Fig. 5. TGA analysis of the CNT composites decorated with Co, Ni, Pt and Pd.  

 

TGA analysis showed weight decomposition with temperature of the metal decorated 

CNT composites. The oxidized behavior of the compounds was studied up to 900 ºC 

under N2. Weight loss below 400 ºC is due to the desorption of moisture and volatile 

impurities and, at higher temperatures, the carbon material loses most of its starting 

weight (around 610 ºC) which increases gradually with increasing temperature of the 

post-carbonization. The metal/CNT catalysts show a first decomposing step due to 

moisture, a second one due to inorganic impurities such as metals (Co, Ni, Pt and Pd) 

and a third one related to carbon oxidation [28]. The thermogram of Pt/CNT is 

representative for both Pt(in)/CNT and Pt(out)/CNT composites, since no differences 

were found between the thermograms. 
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3.2. Films characterization 

3.2.1 Structural properties 

The effect of the nanofillers in the crystallization kinetics of the polymer was studied by 

FTIR-ATR and the spectra are shown in Fig. 6 for the different composites films. The 

quantification of the phase content was performed after equation 1, assuming that the 

crystalline phase of the polymer is either in the α or γ-phases with no or small traces of 

β-phase, as indicated by the FTIR-ATR spectra.  
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Fig. 6. FTIR-ATR spectra of: a) Pd/CNT/PVDF composites with different nanofillers content and b) all 

metal/CNT/PVDF composites for 0.5 wt% nanofiller content. 

 

The spectra of Fig. 6a shows the influence of the Pd/CNT filler content in the structure 

of the polymer composite. The pristine PVDF film presents the characteristic absorption 

bands exclusive of the PVDF α-phase at 766, 795 and 976 cm-1, as expected by the 

processing [24]. The inclusion of Pd/CNT leads to the reduction in the intensity of the 

α-phase bands with the increasing of filler content and to the appearance and increase of 

the bands at 833 and 1234 cm-1 characteristic of the γ-phase; no traces of β-PVDF were 

found (1279 cm-1). This indicates that the addition of Pd/CNT fillers induces the 

crystallization of the electroactive γ-PVDF even at the processing temperature of 210 

ºC, which is a consequence of the electrostatic interactions introduced by the Pd/CNT 

nanofillers into the polymer matrix leading to the rotation of the polymer chains to an 

all-trans conformation and crystallization of the polymer in a polar phase, similarly to 

that reported for PVDF composites with Y zeolites [29] and silver nanoparticles [29]. 

The phase quantification reveals an γ-PVDF content ranging from ~27 to 68 % for the 

samples with 0.1 and 1 wt% of Pd/CNT respectively. 
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Fig. 6b shows the influence of the different metal/CNT fillers in the structure of the 

polymer matrix with a content of 0.5 wt%. The spectra of the composites with CNT 

decorated with Ni, Pt(in) and Pt(out) mainly present the characteristic bands of α-

PVDF, whereas the samples of the composites with Pd, Co and Pt-Co presents the 

bands corresponding to γ-PVDF and α-PVDF, the later undergoing a large reduction 

mainly for Co and Pt-Co composites. Thus, γ-PVDF contents of ~90 and 86 % were 

calculated for the samples with CNT decorated with Pt-Co and Co respectively. It is to 

notice that the values are among the largest found in the literature, such as 95 and 94 % 

for PVDF composites with Y zeolite [29] and silver nanoparticles [29] respectively. Fig. 

7 shows the Raman spectra of the different metal/CNT/PVDF composites for 0.5 wt% 

nanofiller loading. 
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Fig. 7. Raman spectra of several metal/CNT/PVDF composites for 0.5 wt% nanofillers. 

 

It is possible to identify different behavior groups based on the relationship of the 

Raman signal and the electrical conductivity. The first group is composed by the 

samples with higher conductivity, the samples with Pt-Co and Co. It is observed that the 

two characteristics bands of carbon nanotubes are not well-defined and visible. This fact 

is due to the high electrical conductivity of the samples that decreases the Raman 

features. The second group corresponds to the samples with Ni, Pd and Pt(in) that 

present Raman spectra with perceptible but not clearly defined bands namely for Ni and 

Pd, being in agreement with the intermediate state of conductivity. The third group 

corresponds to the sample decorated with Pt(out) nanoparticles, in which is possible to 
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distingue two different and well defined bands. The sample with the highest bands in 

the Raman spectra corresponds to the sample with the lowest conductivity. These bands 

indicated as D and G, observed around 1357 and 1587 cm-1, respectively, are 

characteristic of the carbon nanotube structure which corresponds to the sp3 and sp2 

hybridized state of carbon, respectively [30]. The decrease of the D band is due to the 

disorder induced by the doped metal nanoparticles and is attributed to the presence of 

disorder and defects in the crystalline structure of carbon systems [31]. On the other 

hand, the decrease of the G band is due to the interaction of the metal nanoparticles with 

the CNT, which leads to the conversion of sp to sp2 carbon [30, 32]. The intensity ratio 

of D peak to the G peak, identified as the ID/IG ratio, is proportional to the amount of 

system disorder in the sample [32]. It is also worth highlighting that is possible to 

found, for the lower conductive samples, some bands near the G band (D´ band). This 

provides indication of the number of structural defects and disorder present in the 

material. Pt(out) composites show the highest ID/IG ratio, which is higher than the 

Pt(in) and significantly higher than the one observed for Ni and for Pd [33]. The band at 

around 1437 cm-1 is well defined and visible for some samples such as Pd and Co, 

which could be related to the disorder and the presence of defects caused by the C-H 

bending [34]. 

 

3.2.2 Thermal and optical properties  

Fig. 8 shows the DSC thermograms of the samples and table 1 summarizes the degree 

of crystallinity calculated through equation 2. 
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Fig. 8. DSC thermograms of: a) Pd/CNT/PVDF composites with different nanofiller contents and b) all 

metal/CNT/PVDF composites for 0.5 wt% nanofiller content. 

 

Table 1  

Degree of crystallinity (χc) of the all polymer composites. 

Sample χc (%) ± 3 % 

PVDF 36 

Pd 0.1 wt% 19 

Pd 0.5 wt% 21 

Pd 1 wt% 25 

Ni 32 

Co 36 

Pt(in) 35 

Pt(out) 33 

Pt-Co 30 

 

Fig. 8a shows the thermogram of the pristine film compared to the composites with 0.1, 

0.5 and 1wt% of Pd. The thermogram of the PVDF film presents a high endothermic 

peak with a maximum heat flow around 162 ºC ascribed to the melt of the crystalline α-

phase of the polymer [24]. In turn, compared to the pristine sample, the thermograms of 
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the composites show a shift in the melting peak of about 8 to 10 ºC towards higher 

temperatures which is indicative of the presence of γ-PVDF, and is in agreement with 

the literature on the γ phase of PVDF  [24]. This shift tends to increase with increasing 

filler content, higher for the sample with 1 wt% of Pd, with a maximum heat flow 

around 173 ºC. 

Further, Fig. 8b presents the thermograms of the pristine PVDF sample and all 

composites with a filler content of 0.5 wt%. All composites show a shift in the 

thermogram towards higher temperatures, compared to pure polymer. It is to notice that 

the composites with CNT decorated with Pd, Ni, P(out) and Pt-Co present a shoulder in 

the melting peak and the composites with CNT decorated with Co and Pt(in) present 

two separated peaks confirming in both cases the presence of a phase with higher 

thermal stability than α phase: the γ phase [35]. 

Table 1 shows that the inclusion of the fillers generally results in a slight decrease of the 

degree of crystallinity for all samples from 36 % for pristine PVDF up to a minimum of 

19 % for the sample with 0.1 wt% of Pd, although the differences are within the 

experimental error for some samples, this trend indicates that the presence fillers 

induces a defective crystallization of the polymer at the interfaces with the fillers, 

leading also to changes in nucleation and growth kinetics [36]. The samples with Pd 

nanofillers present a degree of crystallinity slightly lower compared to the remaining 

composites, and the increasing of the filler content from 0.1 to 1 wt% results in an 

increase of the crystallinity from to 19 up to 25 %, suggesting that for concentrations 

higher than 0.1 wt% this filler acts as a nucleating agent for the crystallization of the 

polymer matrix [37]. 

The Fig. 9 shows the UV-Vis spectra of the samples. 
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Fig. 9. UV-Vis spectra of: a) Pd/CNT/PVDF composites with different filler content; b) the different 

metal/CNT/PVDF composites for 0.5 wt% nanofiller content. 

 

The spectra of Fig. 9a shows that the pristine film of PVDF shows a transmittance 

between 70 and 80 % in the range between 400 to 700 nm. The inclusion of Pd/CNT 

decreases the transmittance proportionally to filler content up to a minimum value of 5-

10 % in the visible spectral range for the sample with the highest Pd/CNT content of 1 

wt%. Fig. 9b shows that all composite films present lower transmittance than the 

pristine polymer film. The sample of Pt-Co shows the higher transmittance value among 

the composites (40 to 50 % in the visible region of the spectrum), in turn the Pd film 

shows the lowest transmittance (between 10 and 20 %). Further, all the composites 

exhibit considerable UV shielding, over the UVA, UVB and UVC regions (200-400 

nm). The UV-Vis result show that the metal/CNT fillers allow to tailor the optical 

properties of the PVDF composite film varying filler concentration and/or type, in order 

to match specific application requirements, thus taking advantage of the unique optical 

properties of the fillers [38]. 

 

3.2.3 Electrical properties  

The effect of the metal/CNT filler type and content on the d.c. electrical conductivity 

was evaluated by the analysis characteristic IV curves of the films. Fig. 10 presents the 

characteristic IV curves of the composites and the filler type and content dependence of 

the d.c. electrical conductivity. 
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Fig. 10. a) IV curves for the different composites with 0.5 wt% metal/CNT content; d.c. electrical 

conductivity of b) Pd/CNT/PVDF composites for different filler concentrations and c) the different 

metal/CNT/PVDF composites for 0.5 wt% nanofiller content.  

 

Fig. 10a show the characteristic IV curves of the composites with 0.5 wt% content of 

decorated CNT. All samples show a good linearity between current and voltage (ohmic 

behavior) allowing to calculate the d.c. electrical conductivity through the application of 

the Ohm’s law (equation 3). Fig. 10b shows that the d.c. electrical conductivity of the 

composite depends on the concentration of the Pd/CNT, increasing with the increasing 

nanofiller content by an order of magnitude, ranging from 10-14 S/cm, for pristine 

PVDF, up to 10-13 S/cm for Pd/CNT/PVDF sample with 1 wt% filler content. With 

respect to the influence of filler type in the d.c. electrical conductivity it is observed 

(Fig. 10c) that the CNT decorated with Pt(out) do not affect the conductivity of the 

samples, which is related with the strong disorder observed in the Raman spectra (Fig. 

6) for this nanofillers, that shows the highest ID/IG ratio, and reduces the electrical 

conductivity of the CNT. The inclusion of Ni nanoparticles decorated CNT does not 

affect significantly the d.c. electrical conductivity of the composite registering just a 

slight increase within the same order of magnitude (10-14 S/cm), while the samples with 

Pt(in), Pd and Pt-Co lead to an increase of one order of magnitude. The sample 

decorated with Co nanoparticles shows the maximum increase in the electrical 

conductivity, of almost two orders of magnitude, achieving the value of ~8.4×10-13 

S/cm. These results are in accordance with the Raman results for the samples with Co 

that presents spectra without visible D band, indicating weak disorder in the CNT 

system. Despite all composites present higher conductivity than the pristine PVDF 

sample, the increase of one order of magnitude from 10-14 to 10-13 S/cm originated by 

the addition of the metal/CNT is significantly lower than that reported for composites of 

PVDF with CNT at similar nanofillers concentrations [39, 40]. This suggests that the 
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decoration of the CNT with metal nanoparticles induce defective structures influencing 

the π orbitals of the CNT leading to the decrease of the conductivity [41]. 

 

Conclusions 

CNT were successfully decorated with several metal nanoparticles (Co, Ni, Pt and Pd) 

by a modified wet impregnation method. The presence of the metal nanoparticles in the 

CNT structure was verified and a good dispersion of nanoparticles ranging from 2 to 10 

nm was observed. PVDF composites with the different metal decorated CNT were 

prepared by melt casting method. The metal decorated CNT promote the nucleation of 

the γ-PVDF electroactive phase up to ~90 % and the CNT decorated with Pt(out) leads 

to the highest system disorder. The metal/CNT nanofillers also enhance the thermal 

properties by increasing the melting temperature around 10 ºC and result in a decrease 

of the degree of crystallinity of the samples, from ~36 % to 19 % for pristine PVDF and 

Pd/CNT 0.1 wt% respectively. Further, metal/CNT nanofillers allow tailoring the 

optical properties of PVDF films from transmittances of 70 to 80 % (PVDF) down to 5 

to 10 % (composites) depending on nanofiller type or content. Finally, the inclusion of 

the nanofillers results in a decrease of the d.c. electrical conductivity by one order of 

magnitude from 10-14 S/cm (PVDF) to 10-13 S/cm (composites). In summary, these 

results show that filler type or concentration allows to tune the PVDF composite film 

properties for specific applications, such as nucleating the piezoelectric -phase, for 

sensor and actuator application, and tuning crystallinity and optical transmittance. 

Further, the catalytic activity of the metal decorated CNT allows to further expand the 

range of applicability of the PVDF composites to new areas. 
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