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Abstract

Vertex Separation Minimization Problem (VSMP) consists of finding a layout of a graph
G = (V,E) which minimizes the maximum vertex cut or separation of a layout. It is an NP-
complete problem in general for which metaheuristic techniques can be applied to find near
optimal solution. VSMP has applications in VLSI design, graph drawing and computer lan-
guage compiler design. VSMP is polynomially solvable for grids, trees, permutation graphs
and cographs. Construction heuristics play a very important role in the metaheuristic tech-
niques as they are responsible for generating initial solutions which lead to fast convergence.
In this paper, we have proposed three construction heuristics H 1, H 2 and H 3 and per-
formed experiments on Grids, Small graphs, Trees and Harwell Boeing graphs, totaling 248
instances of graphs. Experiments reveal that H 1, H 2 and H 3 are able to achieve best results
for 88.71%, 43.5% and 37.1% of the total instances respectively while the best construction
heuristic in the literature achieves the best solution for 39.9% of the total instances. We have
also compared the results with the state-of-the-art metaheuristic GVNS and observed that
the proposed construction heuristics improves the results for some of the input instances. It
was found that GVNS obtained best results for 82.9% instances of all input instances and
the heuristic H 1 obtained best results for 82.3% of all input instances.

1 Introduction

Graph layout problems are a class of combinatorial optimization problems whose goal is to
find a layout of an input graph G to optimize a certain objective function. A linear lay-
out or layout of an undirected graph G = (V,E), where |V | = n is the bijective function
ϕ : V → [n] = {1, 2, . . . ,n}. Set of all layouts is denoted by Φ(G). A Region in layout is
defined as the area between two consecutive vertices in the layout. Vertex Separation min-
imization problem (VSMP) is to find a layout ϕ∗ ∈ Φ(G) of a graph G = (V,E) which
minimizes the vertex separation (VS ) where V S = maxi∈[|V |] δ(i, ϕ,G) for a layout ϕ where,
δ(i, ϕ,G) = |u ∈ L(i, ϕ,G) : ∃v ∈ R(i, ϕ,G) ∧ (u, v) ∈ E(G)|, L(i, ϕ,G) = {u ∈ V : ϕ(u) ≤ i}
and R(i, ϕ,G) = {u ∈ V : ϕ(u) > i} [1, 4]. VSMP is NP-complete in general and has applica-
tions in VLSI design, graph drawing and computer language compiler design [2].

Further, in this paper, a vertex identifier corresponds to the vertices of graphs which are as-
sumed to be the natural numbers 1,. . . ,n. For a vertex u ∈ V (G), neighbourhood of u in G,
N(u) = {v ∈ V (G) : (u, v) ∈ E(G)} and degree of u in G, dG(u) = |v ∈ V (G) : (u, v) ∈ E(G)|.
Fig. 1(b) represents a linear layout of Fig. 1(a). VS for this layout ϕ of G is 3. VSMP
is polynomially solvable for grids, trees, permutation graphs and cographs [1, 4]. This prob-
lem has been explored using metaheuristics namely, variable neighbourhood search by [2, 5]
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Figure 1: (a) A graph and (b) layout ϕ = (2, 4, 3, 5, 1)

in which they have proposed construction heuristics to generate an initial solution. Noberto
et al. [3] highlight the importance of construction heuristics in metaheuristics. They have
proposed eight construction heuristics and have compared all the construction heuristics. In
this paper, we have proposed three construction heuristics H 1, H 2, H 3. An experiment has
been performed to compare all the construction heuristics on the test instances of Grids, Small
graphs, Trees and Harwell Boeing graphs, totaling 248 instances of graphs. Experiments reveal
that H 1, H 2 and H 3 are able to achieve best results for 87.9%, 43.5% and 37.1% of the total
instances respectively, while the best construction heuristic in the literature achieves the best
solution for 39.9% of the total instances. We have also compared the results of H 1 with the
state-of-the-art metaheuristic general variable neighbourhood search (GVNS) [5] and observed
that the proposed construction heuristics improves the results for some of the input instances.
It was also observed that GVNS obtains best results for 82.9% instances of all input instances
while the heuristic H 1 obtained best results for 82.3% instances of all input instances. Further,
in this paper Section 2 presents the construction heuristics proposed in this paper followed by
computational experiments to show the efficiency of heuristics in Section 3.

2 Construction Heuristics

In this section, three construction heuristics have been proposed. These heuristics construct a
layout by iteratively adding vertices to an initially empty layout. In each iteration, heuristic
H 1 tries to place a vertex u in the partial layout which minimizes its contribution as well as
the contribution of vertices which are already placed in the partial layout. Motivation behind
H 2 and H 3 is that if adjacent vertices are closely placed then they contribute to fewer regions.
Further, in order to minimize the number of regions to which a vertex contributes, vertices of
smaller degree are placed first in the partial layout. In the following sections, we describe the
three construction heuristics which are essentially greedy methods.

2.1 Heuristic H 1

This procedure is outlined in Algorithm 1. Let layout be the (partial) layout under construction.
The set unvisited is the set of vertices of graph G which are not in layout.

The time complexity of H 1 is O(n2 ·∆(G)).

2.2 Heuristic H 2

Algorithm 2 presents heuristic H 2. Time complexity of Heuristic H 2 is O(n2 · log n).
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Step 1: unvisited = {1, . . . , n}

Step 2: Select a vertex v ∈ unvisited such that dG(v) is least

Step 3: layout = (v)

Step 4: unvisited = unvisited \ {v}

Step 5: while |layout| 6= n

Step 6: S = {v ∈ layout : v is adjacent to least number of vertices in unvisited}

Step 7: P = {w ∈ unvisited : w is adjacent to largest number of vertices in S}

Step 8: Q = {u ∈ P : u is adjacent to least number of vertices in unvisited}

Step 9: Select v ∈ Q randomly

Step 10: layout = (layout, v)

Step 11: unvisited = unvisited \ {v}

Step 12: endwhile

Figure 2: Algorithm1: Heuristic H 1

2.3 Heuristic H 3

This Heuristic is similar to H 2, but as opposed to the selection in Step 9 of Heuristic H 2,
preference is given to a vertex v in the partially constructed layout with least ϕ(v). Time
complexity of H 3 is same as H 2.

3 Computational Experiments

In this section we present the computational experiments that were performed to test the
effectiveness of the proposed construction heuristics. The code was implemented in Matlab 7.0
and all the experiments were conducted on an Intel i3 based system with 4 GB RAM. The
experiment to compare the construction heuristics was performed on the four sets of instances
previously used for this problem [3]. The test set includes Small, Harwell-Boeing (HB) graphs,
Grids and Trees. Since GVNS was tested on Harwell-Boeing (HB) graphs, Grids and Trees in
the literature, therefore, construction heuristic H 1 and GVNS are compared on these instances
only. The order of graph ranges from 9 to 2916. For each heuristic H 1, H 2 and H 3, 30 runs
were carried out and the best value of vertex separation was recorded.

3.1 Comparison between Construction Heuristics

In this section the proposed construction heuristics are compared with those available in the
literature. Random represents randomly generated solution. C1 and C2 are the construction
heuristics proposed in [2] and HA1, HA2, HA3, HA4, HN 1, HN 2, HN 3 and HN 4 have been
proposed in [3]. Heuristics H 1, H 2 and H 3 have been presented in this paper. Table 1 presents
the average vertex separation for different construction heuristics. The average vertex separation
over all the instances are given in the last column ′Average′. Results show that H 1 outperforms
all the heuristics. Table 2 presents number of best solution achieved using each heuristic. In the
table, the last column ′Sum′ represents the total number of instances for which heuristic achieves
the best value. Number in bold indicates that the value is best in that column. Heuristic H 1
achieves best result for 220 instances out of 248 instances which is equal to 88.71% of the total
instances. Similarly, H 2 and H 3 achieve best results for 43.55% and 37.1% instances of total
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Step 1: u = minimium degree vertex of a graph G

Step 2: unvisited = V \ {u}

Step 3: layout = (u)

Step 4: S = sort N(u) in ascending order of the degrees

Step 5: layout = (layout, S)

Step 6: unvisited = unvisited \ S

Step 7: while |layout| 6= |V (G)|

Step 8: degree = {degreew = |N(w) \ layout| : w ∈ V (G)}

Step 9: select a vertex v such that degreev is least but non-zero

Step 10: if v /∈ layout

Step 11: layout = (layout, v)

Step 12: unvisited = unvisited \ v

Step 13: endif

Step 14: S = N(v) \ layout

Step 15: S′ = sort S according to their values in degree in ascending order

Step 16: layout = (layout, S′)

Step 17: unvisited = unvisited \ S′

Figure 3: Algorithm2: Heuristic H 2

instances. Among the existing heuristics, a maximum of 39.92% of the total instances best
solutions are obtained by HN 1.

3.2 Comparison between H 1 and GVNS

In this section, the best performing construction heuristic H 1 is compared with the metaheuris-
tic General Variable Neighbouhood Strategy (GVNS) [5]. Average vertex separation obtained
by GVNS and H 1 are listed in Table 3. Numbers in bold are the minimum in that column.
Results show that for Trees, H 1 performs better while performance of GVNS on HB instance
is good. When the average is considered over all the instances, performance of GVNS and H 1
is comparable. Table 4 presents the number of best solutions achieved using each heuristic. For
grids, GVNS and H 1 both are able to obtain optimal results. For trees, GVNS obtained optimal
results for 40 instances out of 50 while H 1 obtained optimal results for all the tree instances.
In case of HB instances, GVNS obtained best results for 44 instances out of 62 while H 1 was
able to obtain optimal results for 33 instances only. When all the graphs are considered GVNS
obtained best results in 136 cases out of 164 which is equal to 82.9% of all input instances while
H 1 obtained optimal results in 135 cases which is equal to 82.3% of all input instances.

4 Conclusion

In this paper, we have proposed three polynomial time construction heuristics and compared
with other construction heuristics. It was observed that these construction heuristics outperform
other construction heuristics given in literature. The best performing construction heuristic H 1
was also compared with the state-of-the-art metaheuristic GVNS. This construction heuristic
achieves best results in larger number of cases than GVNS. Since a good initial population is
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Table 1: Average vertex separation for different construction heuristics
Heuristics Grid(52) Small(84) Tree(50) HB(62) Average

Random 553.08 9.26 43.6 229.03 185.15
C1 29.5 6.18 4.66 40.1 19.24
C2 28.5 5.01 11.08 34.7 18.58
HA1 38.19 4.32 5.24 53.65 23.94
HA2 684.35 12.21 61.7 294.58 233.71
HA3 38.5 4.26 5.22 53.08 23.84
HA4 688 11.68 61.68 294.15 234.19
HN1 28.5 4.05 7.66 49.23 21.2
HN2 687.94 6.76 12.86 235.45 207.99
HN3 30.44 4.14 7.52 51.27 22.12
HN4 697.96 6.51 13.36 233.52 209.63
H1 28.5 3.29 4.1 30.53 15.6
H2 28.52 4.02 15.74 35.48 19.45
H3 28.5 4.28 11.52 37.05 19.07

Table 2: Number of best solutions achieved for different construction heuristics
Heuristics Grid(52) Small(84) Tree(50) HB(62) Sum

Random 0 0 0 1 1
C1 0 1 12 1 14
C2 52 7 6 8 73
HA1 0 20 0 4 27
HA2 0 0 0 1 1
HA3 0 23 4 4 33
HA4 0 0 0 1 1
HN1 52 29 12 6 99
HN2 0 1 1 1 3
HN3 1 27 14 3 45
HN4 1 0 0 1 2
H1 52 80 50 38 220
H2 51 31 3 23 108
H3 52 25 1 14 92

Table 3: Average vertex separation for GVNS [5] and H 1
Heuristics Grid(52) Tree(50) HB(62) Average

GVNS 28.5 4.3 24.6 19.85
H1 28.5 4.1 30.53 21.83

Table 4: Number of best solutions achieved using GVNS and H 1
Heuristics Grid(52) Tree(50) HB(62) Sum

GVNS 52 40 44 136
H1 52 50 33 135
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expected to converge faster to a near optimal/optimal solution, therefore, initial solutions gen-
erated using this construction heuristic in any metaheuristic will lead to high quality solutions.
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