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POLYHARMONIC KIRCHHOFF PROBLEMS INVOLVING
EXPONENTIAL NON-LINEARITY OF CHOQUARD TYPE
WITH SINGULAR WEIGHTS.

R. Arora, J. Giacomoni* T. Mukherjeel and K. Sreenadh!

Abstract

In this work, we study the higher order Kirchhoff type Choquard equation (KC) involv-
ing a critical exponential non-linearity and singular weights. We prove the existence of
solution to (K C') using Mountain pass Lemma in light of Moser-Trudinger and singular
Adams-Moser inequalities. In the second part of the paper, using the Nehari manifold
technique and minimization over its suitable subsets, we prove the existence of at least
two solutions to the Kirchhoff type Choquard equation (Px ) involving convex-concave

type non-linearity.
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1 Introduction

The main objective of this paper is to prove the existence of a non-trivial weak solution to
the following Kirchhoff type Choquard equation with exponential non-linearity and singular

weights:

m m F(y7u) ) f(a;,u) .
_ 2 A"y = in
(KC) M</Q‘V u dx) u </Q e — g ™) Tafe ’

u=Vu=---=V"ly=0 on 0,
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where m € N, n = 2m, p € (0,n), 0 < a < min{5,n — u}, Q is a bounded domain in R"
with smooth boundary, M : RT — R™ and f : Q x R — R are continuous functions satisfying
suitable assumptions specified in details later. The function F' denotes the primitive of f with
respect to the second variable.

We also study the existence of weak solutions of a Kirchhoff type Choquard equation with

convex-concave sign changing non-linearity:

-M </ |V |2 dx) A"y = Mh(z)|u)? u + </ _Flw dy> J(u) in Q,
(P Q a |z —yllyl |z|*
w=Vu=---=V"ly=0 on 0f,

where f(u) = u|ulPexp(Jul?),0< ¢ <1, 2<p,v€(1,2) and F(t) = fg f(s) ds. In this case,
we assume M (t) = at + b where a,b > 0 and h € L"(2) where r = % is such that bt #£ 0.

The boundary value problems involving Kirchhoff term appear in various physical and biolog-
ical systems. In 1883, Kirchhoff observed these kinds of non-local phenomena in the study of
string or membrane vibrations to describe the transversal oscillations, by considering the ef-
fect of changes in the length of the string. In the case of Laplacian operator, problems having
Kirchhoff term arise from the theory of thin plates and describe the deflection of the middle
surface of a p-power like elastic isotropic flat plate of uniform thickness. Precisely, M (||ul|[P)
represents the non-local flexural rigidity of the plate depending continuously on ||u|[P of the

defection u in the presence of non-linear source forces.

Initially in [2], Alves et al. considered the following non-local Kirchhoff problem with Sobolev

type critical non-linearities
-M </ |V11,2d.r> Au = \f(x,u) +u’ in Q, u=0on dQ,
Q

where © C R? is a bounded domain with smooth boundary and f has sub-critical growth
at oco. Using the Mountain-pass Lemma and the compactness analysis of local Palais-Smale
sequences, authors showed the existence of solutions for large A. Corréa and Figueiredo [10]
studied the existence of positive solutions for Kirchhoff equations involving p-laplacian op-
erator with critical or super critical Sobolev type non-linearity. Later on, Figueiredo [14]
and Goyal et al. [18] studied the Kirchhoff problem with critical exponential growth non-
linearity. Recently in [6], authors have studied the Kirchhoff equation with exponential
non-linearity of Choquard type and established the existence and multiplicity of solutions
(see also [9] for related issues in case of upper critical growth problems). We also mention
5, 12, 15, 22, 26, 28, 29, 30, 36| for different type of operators and nonlinearities (non local,

non homogeneous).

Problems involving polyharmonic operators and polynomial type critical growth non-linearities
have been broadly studied by many authors till now, see [16, 19, 17, 21, 32] for instance. In

[32], Pucci and Serrin have considered the following critical growth problem in an open ball
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of R™:
(—A)Eu = u+ [u*luin B, u=Du=---=DE"1y=0o0n B,

where K — 1 € N, s = Zi‘%g, n > 2K. They showed the existence of nontrivial radial

solutions to the above problem in a suitable range of A\. In [16], Gazzola studied the exis-

tence result for the same critical exponent polyharmonic problem as above while considering
a lower order perturbation term having a subcritical growth at infinity instead of "Au’. We
cite [20, 23, 24, 37] and references therein for existence results on polyharmonic equations
with exponential type non-linearity.

The multiplicity of solutions for elliptic partial differential equations involving polynomial
type non-linearity and sign-changing weight functions has been extensively studied in [4, 8,
13, 34, 35]) using the Nehari manifold technique. In [11], authors studied the existence of
multiple positive solutions of Kirchhoff type problems with convex-concave type polynomial
non-linearities having sub-critical growth using fibering map analysis and the Nehari manifold
method.

At this point, we remark that the study of polyharmonic Kirchhoff problems involving the
exponential type Choquard non-linearity with singular weights was completely open until
now. So our article establishes new results for such problems. We point out that the analysis
we use here is completely new for this class of problems with critical growth. The salient
feature of our problem (K () is its doubly-non-local structure due to the presence of non-local
Kirchhoff as well as Choquard term which makes the equation (KC') no longer a pointwise
identity. The doubly non-local nature induces additional mathematical difficulties in the
use of classical methods of non-linear analysis. Additionally, we explore the existence and
multiplicity results for these kind of problems in the presence of singular weights that require
new estimates on energy levels and suitable new testing functions.

The vectorial polyharmonic operator A"} is defined by induction as

Am VAN (VAT | m 2VATT )} if =25 — 1,
w | AT(jATu R 2 AT it m = 2.

n

In our case, ;- = 2, the symbol V™u denotes the mth-order gradient of u and is defined as

{VA<m—1>/2u if m is odd,
VT =

A™2y, if m is even

where A and V denotes the usual Laplacian and gradient operator respectively and also
V™u.V™v denotes the product of two vectors when m is odd and product of two scalars
when m is even.

The study of elliptic equations with critical exponential type non-linearity in higher dimen-

sions is motivated by the following Adams-Moser inequality [1] and singular Adams-Moser
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inequality [25]. We denote

an/29mp (mtl
w:,l ( ?n Fm(—|-12) )> when m is odd,
Cm,n s
- 2l (5) when m is even,
Wn—1 T (n 2m)

where w,_1 = (n — 1)-dimensional surface area of S"~1. We use the framework of Hllbert
space W"%(Q) (or HI*(Q)) equipped with the natural Banach norm = (fQ | VM2 da:)

associated to the inner product
(u,v) = / V"u.V" dx.
Q

Then, we have the following important theorems.

Theorem 1.1 (D. Adams, 1988) Let Q2 be a smooth bounded domain in R™ and m is a
positive integer satisfying m < n. Then for all 0 < ¢ < (p,n we have

sup / exp((|u!ﬁ) dr < oo
ueW,"' ™ (), |luf| <1

where G pn is sharp.

Theorem 1.2 (Adams-Moser) For 0 < a < n, Q be a smooth bounded domain in R™ and

m is a positive integer satisfying m < n we have

sup / (W dr < 00 (1.1)
uewy" (2 Jluf<1 ¢

for all0 < Kk < Ky = (1 — %) Cm,n, where Ky, p s sharp.

We recall that the embedding

n
' n—m

is compact for all g € [1 ) and continuous for f = " n = 2.

Now we state the doubly-weighted Hardy-Littlewood-Sobolev inequality proved in [33].

Proposition 1.3 (Doubly weighted Hardy-Littlewood-Sobolev inequality) Let t,r > 1
and 0 < p < n with a+ 8 > 0, %+‘H37Jr6+% =2 a< % B<LfelLl(R") and
h € L™ (R™), where t' and r' denotes the Holder conjugate of t and r respectively. Then there

exists a constant C(«, B,t,n, p,r) > 0 which is independent of f, h such that

f(@)h(y)
daxdy < Cla, B,t,n, p,r [P e @y - 1.2
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Throughout the next sections, we assume the following conditions on M and f. The function

M :RT — RT is a continuous function satisfying the following conditions:
(m1) There exists My > 0 such that M(t) > My and M(t+s) > M(t)+M(s), for allt,s >0
where M(t) = fg M (s) ds is the primitive of the function M vanishing at 0.
(m2) There exist constants by, by > 0 and £ > 0 such that for some k € R
M (t) < by + bot*, for all t > i.

(m3) The function MT(t) is non-increasing for ¢ > 0.

Using (m3), one can easily deduce that the function
1 1
(m3)’ iM(t) — 5M(t)t is non-negative and non-decreasing for ¢ > 0 and 6§ > 4.
Example 1 An example of a function satisfying (m1), (m2) and (m8) is M(t) = My + bt®
where My, >0, 3 <1 andb > 0. Also M(t) = My+log(1+t) with My > 1 verifies (m1)-(m3).

The function f : @ x R — R which governs the Choquard term is given by f(z,t) =
h(z,t) exp(t?), where h € C(£2 x R) satisfies the following growth conditions:

(h1) A(z,t) =0 for all £ <0 and h(z,t) > 0 for ¢ > 0.

(h2) For any € > 0, tlgglo sup,eq M, t) exp(—et?) = 0 and lim inf, . h(z,t) exp(et?) = oo.

— 00
(h3) There exists £ > max{1, k + 1} such that % is increasing for each ¢ > 0 uniformly in
x € Q, where k is specified in (m2).

(h4) There exist T, Tp > 0 and 7o > 0 such that 0 < " F(x,t) < Ty f(z,t) for all [¢| > T and

uniformly in x € Q.

t
The condition (h3) implies that @ is increasing in ¢ > 0 and lim f(:i’ )

= 0 uniformly
t—0t

inz e .
Example 2 A typical example of f satisfying (h1) — (h4) is f(z,t) = T exp(tP) exp(t?) for
t >0 and f(x,t) =0 fort <0 where 0 <p<2and  >1—1.

Furthermore, using (h1) — (h3) we obtain that for any € > 0, r > Sy + 1 where 0 < 8y < ¢,
there exist constants C,Cy > 0 (depending upon €,n,m) such that for each = € Q

0 < F(z,t) < C1[t[Port + Colt]" exp((1 + €)t?), for all t € R. (1.3)

For any u € ng"Z(Q), by virtue of Sobolev embedding we get that u € L4(2) for all ¢ € [1, 00).
This also implies that F(x,u) € LY(f2) for any ¢ > 1. The problem (KC) has a variational
structure and the energy functional J : W(" 2(Q) — R associated to (KC) is given by
I | Flyw)  \ Fla,u)
J(u)=-M u2—/</ dy) dx. 14
(w) = SM([[ull”) =5 o o oile — g7 FE (1.4)

The notion of weak solution for (KC') is given as follows.
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Definition 1.4 A weak solution of (KC) is a function u € WgZ’Q(Q) such that for all p €
Wgn’2(Q), it satisfies

M(Hu\|2)/9vmu.v% dx:/Q (/Q |y|f|(3,—uz/|udy> f?j[f)@ dz. (1.5)

In section 2, we establish the following main result concerning the problem (KC).

Theorem 1.5 Let (m1)-(m3) and (h1)-(h4) holds. Assume in addition

lim sf(x,s)F(x,s)

S e (259 = 00, uniformly in x € Q. (1.6)

Then the problem (KC') admits a non-trivial weak solution.

In section 3, we consider the problem (P a¢). The energy functional Jy as : Wy" 2(Q) - R
associated to the problem (P a¢) is defined as

1 O e g L F)  \Fl)
Fariw) = L M) a5 [ ([ ) 10 a

q+1 Jg 2 |z — y|#y|® |z

where F' and M are primitive of f and M respectively vanishing at 0 and f(s) = s|s|? exp(|s|?).

Definition 1.6 A function u € Wgn’z(Q) is satd to be a weak solution of (Pxm) if for all
¢ € Wgn’Z(Q), it satisfies

M(HuH2)/QVmu.quﬁ dx:)\/ﬂh(a;)\u]qluqﬁ da;—i—/Q (/Q Fu) dy> f(“)¢ dz.

e =Pyl V) Teo

We prove the following theorem concerning (Py aq).

Theorem 1.7 There exists a A\g > 0 such that for v € (1,2) and X € (0, Xg), (Pxm) admits

atleast two solutions.

Turning to the layout of the paper: In section 2, we prove the existence result (Theorem
1.5) for the problem (KC) and in section 3, we prove the existence and multiplicity result
(Theorem 1.7) for the problem (Px ay).

2 Existence result for (K(C)

In this section, we establish the existence of a nontrivial weak solution for the problem (KC).
To prove this we study the mountain pass geometry of the energy functional J and using
the properties of the non-local term M and the exponential growth of f, we prove that every
Palais Smale sequence is bounded. To study the compactness of Palais Smale sequences for
J, we obtain a bound for the mountain pass critical level with the help of Adams functions

and establish the convergence of weighted Choquard term for Palais-Smale sequences.
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2.1 Mountain pass geometry

In the following result, we show that the energy functional J possesses the mountain pass
geometry around 0 in the light of Adams-Moser and doubly weighted Hardy-Littlewood-

Sobolev inequality.

Lemma 2.1 Under the assumptions (m1), (m2) and (h1)-(h3) the following assertions hold:
(i) there exists Ry > 0,mn > 0 such that J(u) >n for all u € Wgn’Q(Q) such that ||u]| = Ro.
(i) there exists a v € WS”’Q(Q) with ||v]| > Ry such that J(v) < 0.

Proof. Using Proposition 1.3 with ¢ = r and 5 = a and (1.3), we obtain that for any € > 0
and u € W" ’Q(Q), there exist constants C; > 0 depending upon ¢ such that

A(L FWM)@OF@megamMﬂWﬂ%WP "

ly|*|x — y[# || ==
2n(Bp+1) (1 2n—(2atp)
n 2rn Py
S <Cl ’U‘WOCH'“) + CQ/ ‘u|m exp <n(—i_6)‘u’2>>
1\ 2n=Qatp)
2n(Bg+1) n 2 2 2 n
< Cl/ |-Gt 4 Cyu|Z=CaFm /exp An(1 + o) flul® (’“‘)
Q Q 2n — 2o+ p) \ lul|

4n(1 + €)]ul/?

oI — (2a 4 M) < Cm,2ma using Theorem 1.1, we obtain

For small € > 0 and w such that

2n—(2a+4p)

F F _2n(Bo+1) _2rn n
/ </ a(y’u) dy) (ffaau) dx < Cs (Hqun(QOaﬂ) + ||u’2n2(2a+,u)>
o \Ja lyl*f -yl | (2.1)
< Ca(flul PFD + ful ).

[NIE

Then for |lul| < p= (szmﬁ?l;(e?)a-m))) , (m1) and (2.1) gives

]|

T (w) = My 5= = Callul0 ) - Cfful”.

So we choose ||u|| = Ry small enough so that J(u) > n for some n > 0 (depending on Ry)

and hence (i) follows. Furthermore (m2) implies that

b2tk+1
bo+bit+ —, k# -1
My < QT T R
bo + b1t +balnt, k=—1
for t > t where
Tk+1
M(t) — b1t —bg——, k #£ —1,
N LR

M(t) = byt — by Int, k= —1.
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Under the assumption (h3), there exists K1 > max{1,k + 1}, ¢1,c2 > 0 such that F(z,s) >

c15%1 — ¢ for all (z,5) € Q x [0,00). Therefore for v € Wgn’2((2) such that v > 0 and |jv]| =1

we get

K1 _ Kl —

/(/ Fa(y,tv) d) xatv i >// c1(tv) c2)(cr (o)1 (z) — c2) drdy
a lyl !w—yl“ Ix! \y! I:Ir! Iw—y\“
tQKl// m) dwdy—chcgtKl// dxdy

ly|® \:vl \w yl" a lyl* !:r\ !:r y|

+c // dxdy.
* Ja Q’y\a’f’f\a’x—y’“

Then using above estimates in (1.4) for k # —1, we obtain

J(tv)< ez + cat? + cst2BTD o 2Ky B

and for k = —1

T (tv) < ez + eat? + c5 In(t?) — gt 4 et
where ¢}s are positive constants for ¢ = 3,...,6. Now by choosing ¢ large enough, we obtain
that there exists a v € Wgn’Q(Q) with ||v]| > Ry such that J(v) < 0. |

Lemma 2.2 Fvery Palais Smale sequence of J is bounded in Wom’2(Q).

Proof. Let {uy} C Wy" 2(2) be a Palais Smale sequence for 7 at level ¢ (denoted by (PS),
for some ¢ € R) i.e.
J(ug) — cand J'(uy) — 0 as k — oo.

Then from (1.4) and (1.5), we obtain

1M(||u,€||2)—1/ </Q Fly, ur) dy) F@ ) g0 eas kb — oo,

U
() [ Frumo- [ ([ 0y ) I g <
a lyl*|z -yl |z
for anyqbeWénQ(Q),where €x — 0 as k — oo. By substituting ¢ = ug we get
m F(y,u T, Up)U
S e I ) R S I e
Q a \Ja ly|*|lz —y| ||

Using assumption (h3), we get that there exists a > 2 such that 0F (x,t) < tf(z,t) for any
t > 0 and x € Q which implies

w5
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Now using (2.2), (2.3), (2.4) and (m3)’, we get

1 1
I (ur) = 55 (T (wr), uk) = §M(\|UkH ) — @M(HukHZ)\lukHz
1 / </ F(y, ug) >F(x , Uk) /(/ F(y, ug) )f(ﬂf,uk)uk >
- = d d dx
2 ( 2 \Jn Wil = oF V)l 20 Jo \Ja Tl — ol ™) Jale
1 1
> 3 M)~ gl = (5 - 29) Mo
(2.5)
Also (2.2) and (2.3) yields
T (uk) — i(«7'(%) up) <C |1+ EkM (2.6)
20 ’ - 20 '
for some C' > 0. Therefore (2.5) and (2.6) gives us the desired result. ]

2.2 Mountain pass critical level

To obtain bound for the mountain pass critical level in this section, we use Adams functions
to construct a sequence of test functions. Let B denotes the unit ball and B; is the ball with
center 0 and radius [ in R™. Without loss of generality, we can assume that B; C 2, then

from [23, Lemma 5, p. 895], we have the following result- For [ € (0, 1), there exists

U € {ueW"Q) : ulg, =1} (2.7)
such that ¢
|G = Cna(Bi; B) < ="
nlog (7)
where Cy, 2(K, E) is the conductor capacity of K in E whenever E is an open set and K is

relatively compact subset of E and Cy, 2(K; E) def inf{||ul|? : u € C°(E),u|x = 1}.

Let Z € Q and R < Ry = dist(#, Q). Then the Adams function A, is defined as

1
nlog(ﬁ) g T—z -
- —r2 ] U=z if |z — R
s | (o) v () -

0 if |v — & >R

where 0 <r < R, Uj—z is as in (2.7) and |4, <1.
Let 0 > 0 (to be chosen later), =0, R = ¢ and r = ¢ for k € N, then we define

nlog(k)\ 2 o
Axla) ™ Ag(@) = (22) v (5) <o

0 if |z| > 0.

==



Polyharmonic Kirchhoff Choquard equation with singular weights 10

1
Then A(0) = (Lg(j)) 2 and || 4] < 1.

Cm,2
We define the mountain pass critical level as

I* = élel{: tgl[(?,}l(} J(0(t)). (2.8)

where T' = {9 € C([0,1], WJ"*(Q)) : ¥(0) = 0, J(¥(1)) < 0}. Now we analyze the first

critical level and study the convergence of Palais-Smale sequence below this level.

Theorem 2.3 Under the assumption (1.6),

L 1 2n — (2a + )
0<I" < M <2n (m,2m> . (2.9)

Proof. 'We have observed in Lemma 2.1 for u € Wgn’z(Q) \ {0}, J(tu) - —o0 as t — oo and
I* < maxye(oq) J (tu) for u € WS”Q(Q)\{O} satisfying J(u) < 0. So it is enough to prove that
there exists a k € N such that

t€[0,00 2n

max)j(tAk) < %M (MOH_M)szm) )

We establish the above claim by contradiction. Suppose this is not true, then for all £k € N
there exists a t;, > 0 such that

max J(tAy) = J(trAr) > %M (MCH_M)CmQTn)

te[0,00) 2n (2.10)
d
and @(j(tAk)”t:tk = 0.
From Lemma 2.1 and (2.10), we obtain {¢;} must be a bounded sequence in R and
1 2n — (2o + p) 1 9
- ————(m.2m - 2.11
M (R0t ) < M (211)
Then monotonicity of M implies that
2n — (2a+ )
t2 ——(mom | - 2.12
k> ( ™ Cm,2 > (2.12)
Consequently, by using (2.10) and choosing o, k such that B, /k C 2, we obtain
F(y, ti A Tt At A
Ml = [ ([ TR, ) Al o
a \Ja ly|*|lz —y| ||
(2.13)

2.

For a positive constant C,, depending on p and n, we obtain (see equation (2.11), page.

1943, [3
[]) / / dxdy >C (g)2n—(2a+u)
b Jog Wy 2 on (6)

(/ F(y, tpAg) dy) [, tAg)tp A .
B

. \JB, lyl*e—yl* Eds
k kE
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From (1.6), we know that for each p > 0 there exists a s, > 0 such that
sf(xz,s)F(x,s) > pexp (252) , whenever s > s,,.

Using this in (2.13), we obtain, for some C' > 0

2
2ntk

Z C kfm,Zm

U>2n—(2a+u) —(2n—(2a+p))

M(|txAxlP)E > pexp (21teA(O)P) Crun (3

Now from (2.12), it follows that taking k large enough, we arrive at a contradiction. This

completes the proof of the result. [ |

Lemma 2.4 Let {ux} C WSM(Q) be a Palais Smale sequence for J at ¢ € R then there
exists a ug € Wgn’z(Q) such that as k — oo (up to a subsequence)

F(y,uy) )f(ﬂ?wc i ( (y,u0) d)f(a:,uo) p
/Q(erwwx—yu PO %/ /Q|y oy ™) T 0

for all ¢ € C(9).

Proof. If {uy} is a Palais Smale sequence at [* for J satisfying (2.2) and (2.3). From Lemma
2.2, we obtain that {ut} is bounded in Wgn’z(Q) so there exists a ug € Wéng(Q) such that
up to a subsequence uy — uy weakly in Wy" 2(€2), strongly in L4(€2) for all ¢ € [1,00) and
pointwise a.e. in Q as k — oco. Let ' CcC Q and ¢ € C°(R2) such that 0 < p <l and p =1
in €’ then by taking ¢ as a test function in (2.2), we get the following estimate

/Qf </Q vl — gt ) e * S/Q /Q ol —yp ™) e

< e lloll + M ([lur?) /Q V™. V"¢ dr < ellol] + Cllurllll

By using |lug|| < Cp for all k, we obtain the sequence {wy} := {(fQ e ﬂﬁu’fyl” ) f(‘f;l?;’“)} is
bounded in Llloc(Q) which implies that up to a subsequence, w — w in the weak™-topology

as k — oo, where w denotes a Radon measure. So for any ¢ € C2°(Q2) we get

lim (/ Fly, ur) dy> f%'g% do = / ¢ dw, ¥V ¢ € CZ(Q).
Q Q

k—o0 Jq ly|*|z — y|»

Since uy, satisfies (2.2), for any measurable set £ C Q and ¢ € Cg°(€2) such that supp ¢ C E
we get that

o) = fLowo=im [ [ (5 r:c—yw V) T 20
_klgrolo// <ly| x—y[“dy> z ’ Mo do = hmM (|Jur]?) /V up. V"¢ dx

< Cl/ VT™u.N"¢ dx
E
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where we used (m2) in the last inequality and weak convergence of uy to u in Wy" 2(0).
This implies that w is absolutely continuous with respect to the Lebesgue measure. Thus,
Radon-Nikodym theorem establishes that there exists a function g € Li () such that for
any ¢ € C2(Q), [ ¢ dw = [, ¢g dx. Therefore for any ¢ € C°(Q) we get

. F(yvuk?) ) f(ﬂl',Uk) _ _ < F(ya UO) > f($au0)
1 d dr = dr = d d
o Q</Q wele — gt ™) TR 0 /Q@g v /Q /Q|y|a|x—y|ﬂ V) e 0w

which completes the proof. [ |

Lemma 2.5 Let {ux} C Wg"’2(§2) be a Palais Smale sequence of J at ¢ € R and (h4) holds.
Then there exists a u € Wg”’2(Q) such that, up to a subsequence, uy — u weakly in Wgn’2((2)

(/Q F(y,u) dy> Fw,u) </Q F(y,u) dy) F(z,u) L) .10

ly|@|z — y|+ || y|*|z — y|» ||

and

as k — oo.

Proof. Let {u} C Wy" 2(Q) be a Palais Smale sequence of J at level ¢ then from Lemma
2.2 we know that {uy} must be bounded in W{"*(€2). Thus there exists a u € Wj"*(Q) such
that up — u weakly in Wén’Q(Q), ur — u pointwise a.e. in £ and uy — wu strongly in L9(Q),
for each ¢ € [1,00) as k — oo. Also from (2.2), (2.3) and (2.4) we get that there exists a
constant C' > 0 such that

F(y, ug) ) F(x,uy) < F(y, ug) ) Iz, ug)uy,
Jo (b ) R s o ma [[(f gty o) o

Consider

/” </Q m dy) W dx _/Q (/Q Iy!fl(;/f;u d?/) Fl(;jfau) dx‘
Fly, ) = Fly, v F(z,u

: /ﬂ</ﬂ (yly\‘fl):v—y(lg ) dy) (Iylak) d
Fly,u F(z,u) — F(z,u

J ety o) =ttt

Using the semigroup property of the Riesz potential we can write

(g ) ety
8 (/Q (/Q wﬁif@w dy) Fﬁfc‘jj’“) dx)g. (2.16)
(P o) een. )

L e o) dg’“’); (2.17)

déf I + Is.

_|_
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Therefore, by using (2.16) and (2.17) we obtain,

L+, <20 < /Q < /Q F (y‘;ﬁ)x—_i%,u) dy) F(a:uk’)x; F(z,u) dw)é

where we used (2.15) to get the last inequality. Now the proof of (2.14) follows similarly as

the proof of equation (3.19) of Lemma 3.4 in [6]). ]

Now we define the associated Nehari manifold as
N = {ue W5 (@)\ {0} : (J'(u),u) = 0}
and I** = inf,epn J (u).
Lemma 2.6 If (m3) and (h3) holds then I* < I**.
Proof. For u € N, we define a map h : (0,400) — R such that h(t) = J(tu). Then

(0 = M)l ~ | ( / Fly, tw) dy) flotuu g,

ly|*|z — y|» ||

and since u € N, therefore

M(ltl®)  M(ul?)
W) = |lu 4t3< —
0= ) s
F(y,tu) f(x,tu)

+t3 // / t3u(x) dy U2($) dx
lylola — y|# Iaf - yl“ o lyl*lz —yl# ||

f(x,t2) o
t

2

From (h3), we get

t1f(z,t1) = 2F (z, 1) < t1f(w,t1) — 2F (z, b9) + 2=—=(t3 — 1]) < taf(x,t2) — 2F (x, ta).

for 0 < t1 < to. Using this we get that ¢f(z,t) — 2F(x,t) > 0 for ¢ > 0 and for any = € Q,
t — tf(x,t) — 2F(x,t) is increasing on R*, which further implies that ¢ — w is non-
decreasing for ¢ > 0. Therefore for 0 < t < 1 and z € 2, we get (x ) < F(z,u) and (h3)
gives that £ (Zu) >/ (iutu) then

) > s (M0 _ (1)

[l [ul?

oL (P = T5) pe) (@\% e

This gives that h/(t) > 0 for 0 < ¢ < 1 and similarly we can show that h'(t) < 0 for ¢t > 1.
Hence J(u) = max;>o J(tu). Now we define ¢ : [0,1] — Wgn’Q(Q) as g(t) = (tou)t where
to > 1 is such that J(tou) < 0. So g € T', where I" is as defined in the definition of [*.
Therefore,

I* < mmax J(g(t) < max J(tu) = J (u).

and since u € N is arbitrary, so we get [* < [**. [

Now we recall the following higher integrability Lemma from [27]( also refer Lemma 1 of [23]).
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Lemma 2.7 Let {v;} be a sequence in WmQ(Q) such that ||vg|| = 1 converging weakly to a
non zero v € Wé"’Q(Q). Then for every p <

1- HvHQ’

sup / exp (pGm,2m|vi|®) < +o0.
Q

Proof of Theorem 1.5: Let {uy} be a (PS);+ sequence at the critical level [* and hence
considered as a minimizing sequence associated to the variational problem (2.8). Then by
Lemma 2.5, there exists a ug € Wy" 2(Q) such that up to a subsequence u; — ug weakly in

wy" 2(Q) as k — oo. First we claim that ug is non-trivial. So if ug = 0 then using Lemma

2.5, we infer that
F F
/ (/ a(y’uk) dy> (:U’ij) dr — 0 as k — oo.
o \Ja [y|*|z —y[* |z|

Therefore limg_yoo J (ug) = %limkﬁoo./\/l(HukHz) = [* and then for large enough k Theorem

M) < (=00,

2.3 gives

Then by monotonicity of M, we obtain

2n 9
P —— < .

Now, this implies that we can choose a ¢ > m such that supy, [o |f(2, ug)|? de < +oc.

Using Proposition 1.3, Theorem 1.1 and the Vitali’s convergence theorem we conclude that

/ (/ L dy> S R gy 0 s b oo,
a \Ja [yl°le =yl [

Hence limy_ o0 (T’ (ug), ug) = 0 which gives limy_, M (||ug]|?)||ug||* = 0. From (m1) we then

obtain limy_,o ||uz||? = 0. Thus using Lemma 2.5, it must be that limy_,o J(uy) = 0 = [*
which contradicts I* > 0. Thus ug #Z 0. Now we show that ug > 0 in Q. From Lemma 2.2 we
know that {uj} must be bounded. Therefore there exists a constant p > 0 such that up to a
subsequence |lug|| — p as k — oo. Let ¢ € Wgng(Q) then by Lemma 2.4 we have

F(y, ug) >f( ( (y, uo) >f(x,u0)
/Q(/Q |y!a|x—y|#dy 2] ‘de_>/ /Q|Z~/’ |x_y|#dy PR ¢ dz as k — cc.

Since J'(ux) — 0 and uy, — ug weakly in Wg"’Q(Q), we get

2)/ V"ug. V™o dx —/ (/ Fa(y,uo) dy> f(x’go)go dz,
Q o \Ja lyl*|z —y|# |z

as k — oo. In particular, taking ¢ = u; in the above equation we get M (p?)||uq ||* = 0 which

implies together with assumption (m1) that v, = 0 a.e. in Q. Therefore ug > 0 a.e. in .
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Claim (1): M(Juol)lluol> = Jo, (Jo el dy) L0 o,

Arguing by contradiction, suppose that

F(y, ’
il eol” < [ ([ e 5 40) e

which implies that (J'(up),up) < 0. For t > 0, using the map ¢t — tf(z,t) — 2F(x,t) is

increasing on R*, we have

<j’(tu0),ug) > M(”tUOHQ)tHUOHQ / ( [y, tuo)tuo(y) dy) f(z, tug)ug dx

PRERTE e
tug)t t

> Mool [ ([ Literlteels) g ) KB g,
Yyl —y 4

Since (h3) gives that
T

t—0t

= 0 uniformly in x € Q, for all v € [0, 1],

we can choose ¢t > 0 sufficiently small so that (7' (tug),uo) > 0. Thus there exists a ¢, € (0,1)
such that (J'(tsup),up) = 0 i.e. tyug € N. So using Lemma 2.6 and (m3)" we get

1
I <1 < J(teug) = T (teug) — ZU’(t*uO),t*UO)

_ M(l[tuol®) 1 / ( / F(y, teup) dy) Fa,taw)
2 2 Jo \Ja lyl*z —yl* EE
1 1 F ,t*u J;’t*u t*u
R AR rerr) e et
4 4 Q Q

yielz — gl et
M(Jluo]?) 1
< (||20H) - Zj\/[(HUOHQ)HuoH2
+ 1/ </ F(y,uo) dy) fl@,uo)uo = 2F (2, uo)
1 Jo \Jo g2l — yl® |z[
k—ro00 4

This gives a contradiction and hence Claim (1) holds.
Claim (2): J(up) = I*.

From Lemma 2.5 we know that

[ ) P e (] ) P

and by using the weakly lower semicontinuity of norms in limy_, J(ur) = I*, we obtain
T (ug) < 1*. If T (up) < I* then it must be limg_,oo M(|lugl|?) > M(||uo|/?) which implies that

limy o0 [Jug|?® > [Juol/?, since M is continuous and increasing. From this we get p* > |jugl|?.

w67 = (o [ (e 5p) e ) 21

Moreover we have
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Now we define the sequence v, = m and vy = “70 such that vy — v weakly in W(" 2((2)

and |lvg]| < 1. Then from Lemma 2.7 we obtain

Cm 2m
sup/ exp (plop]?) < +oo, for p < " (2.19)
b o o (el T ool

Also from (m3)’, Claim (1) and proof of Lemma 2.6 we obtain

1 1
T (o) = S M(Jluol*) = 3 M([[uol*) o]

+1/ </ F(y,uo) dy) (f (2, up)up — 2F (x,up)) dz > 0,
a \Ja

i [yl -yl FR

Using this with (2.18) and Theorem 2.3 we get that

2n — 2a+ p)

M(p?) = 20" = 27 (ug) + M([Juo|*) < M ( m

Gnam ) + Mol
which implies together with (m1) that

Cm2m <2n7(22§+u))

1 —wol?

p* <

Thus it is possible to find a p, > 0 such that for & € N large enough

Gm.2m (2n — (20 + 1))
2n(1—lwl?)

Jug]? < ps <

Then we choose a ¢ > 1 but close to 1 such that

2n
2n — (2a0+ )

2n e < Cm,2m
2n — (2a+p)"" " (1= [lvol?)

glluxl® <

Therefore from (2.19) we conclude that

2n 2
_ < 2.2
Lo (G yiu?) <€ (2.20)

for some constant C' > 0. Using (2.20) and ideas similar as in Lemma 2.5 we obtain

F(yauk) > f(l',’U,k)Uk < F(yvuo) ) f(x7u0)u0
/Q (/Q e —yp ™) T Jge %/Q /Q e —yr ) T jae @

We conclude that ||ug|| — |lug|| and we get a contradiction to the fact that J(ug) < I* .

Hence J(up) = I* = limg_,00 J (ug) and |lug|| — p implies p = ||ug||. Then finally we have,

F
M(||u0|]2)/Vmuo.Vm<p dx:/ (/ a(y’“())udy) fo,uw0) o gy,
Q o \Ja [y[*|z —y| |z

for all p € W" () and which completes the proof of Theorem 1.5. [ ]
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3 The problem (P, )

In this section, we consider the problem (P) js) with Kirchhoff non-linearity of the form
M(t) = at + b where a,b > 0. We observe that J s (defined in Section 1) is unbounded
on Wy" 2(€2) but bounded below on suitable subsets of wy" (). To show the existence of
weak solutions to (Py a), we establish the existence of minimizers of 7y »s under the natural
constraint of the Nehari Manifold which contains every solution of (Py ar). So we define the

Nehari manifold as
Noar = {u € W5 (@) \ {0}] (Fy pr(u), u) = 0}

where (. ,.) denotes the duality between WW’Q(Q) and W=2(Q) i.e. u € Ny if and only if

!WWAHMW)—{AthW“dw—A<l; Flw) <w>fwmdx:a (3.1)

|z — yl#ly| Eds

For u € W" 2(Q)), we define the fiber map ®,, s introduced by Drabek and Pohozaev in [13]
as @, : RT — R such that @, (t) = Ty (tu). Thus we get

%M@=mw%ﬂwwwmﬂémww“%m—é<éFW”@)“W“m

|z — y[ly|* ||

and

0 (8) = 26%fu][* M (ltu]]) + [lul*M ([ftul?) — /\qtq‘l/Qh(%)IUI‘I+1 dx

) e )

Since the fiber map introduced above are closely related to Nehari manifold by the relation

tu € Ny iff @;M(t) = 0, so we analyze the geometry of the energy functional on the

following components of the Nehari Manifold:
Ny = {u € Naas: @ (1) > 0} = {tu € Wi™(Q) \ {0} : @,, (1) = 0,2, 5,(t) > 0},

Nyag o= {u € Naar: @ 57(1) < 0} = {tu € Wi (@) \ {0} : @, (1) = 0,®,, 5,(t) < 0},
NS ap o= {u € Naar : @ (1) = 0} = {tu € W5 () \ {0} : @, 5 (1) = 0, %,

Due to presence of sign changing non-linearity in (P as), we also decompose W" 2(Q) into the
following sets to study the behavior of fibering maps ®,, 17. We define H (u) = [, h(x)|

and
HY = {uec W) : H(u) > 0},

Hy = {ue WJ"*(Q) : H(u) < 0}.
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3.1 Fiber Map Analysis

In this section, we study the geometry of Jy ps on the Nehari manifold. We split the study
according to the decomposition of Ny js and the sign of H(u). Define ¢ : Rt — R such that

a0 =l - o0 [ ([ EEay) TR g

|z —y[#y|*

Case 1: ue H; \ {0}

Since

B, 07() = t1((£) — A / W) ulT da),
Q
so tu € Ny iff t > 0 is a solution of ¥, () = A [, h(z)|u|?™ dz. We have

Yult) = (1= )t~ IM(|[tul|)fu® + 2629 (|[tu]| ) |

), (L% dy) fl(jlb‘i ot q“ </ !x—yyuyy|a ) fy(gtjju e

U ) S o]

(3.2)
Due to the presence of exponential non-linearity, for large ¢ we have 1/);( t) < 0 and since
u € Hy , there exists a unique t* > 0 such that 1, (¢t*) = X [, h(z)|u|?  da, i.e. t*u € Ny p.
Suppose there exists an another point ¢, (t* < t1) such that ¢, (t1) = A [ h( x)|ulitt <0, d.e.
_ _ F(tiu) ftiu)
I—q ,2) 112 2 q (t1 1
el o <60 [ ( ) (33
! Yo g le —yllyle \$|“

and v, (t1) > 0. Then from (3.3) and by using f/'(t1u)tiu > (p+1)f(t1u), f(t)t > (p+2)F(t)

we obtain,
w;<t1><<3—q>[ et + Dl - 67 [ ( |t dy) UG dx] <0.

|z — yl#fyl |z[*

which is a contradiction. Also for 0 < ¢ < t*, <I>, v =t (u(t) = X fo h(2)[u|th dz) > 0.

Consequently, ®,, )s is increasing in (0,¢*) and also decreasing on (t*,00). Therefore ¢t* i

unique critical point of ®, s which is also a point of global maximum. Furthermore, since
(1071, (1) — 4/, (1))
ta

Yu(t) =

, therefore t*u € N/;M.

Case 2: ue HT

In this case, we establish that there exists a A\g > 0 and a t, > 0 such that for A € (0, \g),
®,, has exactly two critical points t1(u) and to(u) such that t1(u) < t.(u) < to(u) where t1(u)
is local minimum point and t2(u) is local maximum point. To prove this, we require further

analysis and a priori estimates.
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3.2 Preliminary Results for Case-2

For small ¢ > 0, 1, (t) > 0 and 1, (t) — —oc as t — oo for u € HT. Then there exists at least
one point ¢* such that w;(t*) =0, i.e.

_ _ fltau)u
(3 — )2 %aflul* + (1 — ) £79b]|ul® + q+1/</ rm—yrury\a ) (a:\a) dz

A= - A ) e

So by AM-GM inequality we obtain 21/(3 — q) ab (1 — q)||t«u||* < B(t.u) where

B<“):/Q(/Q|x—imdy) f/|(x\) e +/Q</Q |a:f(;|il|by|a dy) f|(a:|i o

Using 1, (t.) = 0, we replace the value of a||t,u|[* in the definition of 1/, (t) to obtain
1 F(t, LU
balt) = — [B(t*u) - 3/ (/ (tu) dy) ftwta oy 2th*uHQ] (3.4)
(3—q)t! o \Ja |z —yl*ly|° ||
Lemma 3.1 Let

Then there exists a A\g > 0 such that for every A € (0, ), T'o > 0 holds where

To=  inf [B(u)—S/Q (A% dy) s ol — A (3 — ) H(u)|.

we\ {0} H+ ||

Proof. We establish the proof through various steps.

Step 1: Claim: inf,cp\ o3+ [ull > 0.

We argue with contradiction, suppose there exists a sequence {ug} C T'\{0} N H" such that
|luk|| = 0. Then using Proposition 1.3 and putting the value of f(u) = ululP exp(|u|?) as well
as £ (u) = ((p+ 1) +ylul")[ul? exp(|ul?) we obtain

J Ui an) P e [ (i ) P o

2n—(2a+p) 2n—(2a+4p)

gq( / (lux P2 exp(lug ")) =557 d:c> SRES ( / (F (uy)) 7=t daz) -
Q Q

| B(ur)| =

2n—(2a+p)
2n

2n
) (/ (0 + 1) + Yl g2 exp(jug 7)) =T df”) ,
Q
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where C, Cy are positive constants independent of ug. Now (p+2)F(t) < tf(t) and Holder’s
inequality implies that
n—(2a+p) 2n—(2a+p)

5 <c 2n62(;7+2)) J QT . 2nd d no
2n—(2a+pu -
| W”L-1<4W” a> X<Af”<”“2n—@a+m> @

2n—(2a+p) 2n—(2a+4p)

o 2n52(p+2)) p >2m;/ (/ <| |’Y 210 ) g )277,6
+ Up | 2n—Ratu) dx X ex A R e —— X X
o [ o P 5 ")

2n—(2a+p) 2n—(2a+4p)
2n6/(p+2) 2né’ 2”5 2nd
|ug| 2ot dx X exp | |ug|! =—————— | dz
Q Q 2n — (2a + p)
2n—(2a+p) 2n—(2a+p)

| |2n5’((17+"/+2)) d 2nd7 </ ( o Mo ) P > 2nd
+ Up| 2= Catr) dyx X exp | |ug|' m————— | dz )
Q o P\ e T Ra 1)

where § > 1 (which depends on k) and §’ denotes its Holder conjugate. Using Moser-Trudinger

inequality for ug with large enough k such that %HUHP < (m,2m (such k can be

chosen because ||ug|| — 0 as k — 00) and vy, = HZ—:H, we obtain
2n—(2a+p) 2n—(2a+p)
2nd’ (p+2) nés’ no
|wwa0mwwwﬁ x@w/mmmmm)

lvell<1 /9

2n—(2a+p) 2n—(2a+p)

2n8'(p+2)_ 2né’ s

—|—C'2( |uy,| 2= et dx) X ( sup /exp(|vk|7(m,2m) d:c) X

Q lvell<1 /9

2n—(2a+p) 2n—(2a+p)
2068’ (p+2) 2ns! 2nd’ (p+y+2) 2nd’
|uk‘| 2n—(2a+p) dx + |uk‘| 2n—(2a+p) dx
Q Q

Finally the Sobolev embedding gives the following upper bound.
|B(ug)| < Ca(llug]PPH + [Jugl| P2 (g | P+ 4 [fuge | PF742)) < Cllug]| PP 4 [lug | P2+,

Using u, € T\{0} we get 1 < C(|lug)|®tY + ||lupl|®t2+Y, which is a contradiction as

[ur|| — 0 as k — co. Therefore we have inf,cp\ joynp+ [[u|| > 0.

Y |qy P2
Step 2: Claim: 0 < inf,cp\ jo}np+ {/ / <f(u)uady> (p—2+~|ul") M d:z}.
aJo \lz —yl*lyl ||

Since F'(s) < J;(j)zs, then by the definition of I" and from Step 1, we obtain 0 < inf,,cp\ (oynm+ B(u)

i.€.

. uer\i{%{mm {/Q (/Q - —Fy(ll*?lyfa dy) ’( ‘l da:+/%</Q E f(yu\lqry!a dy) flfzj‘))‘u dx}
= uer\i{%gmH+ {/Q </Q E f(;fjfy‘a dy) e Tx{a(U)m df’«"}

p+2 vy vy
o {/(/‘ f(wu @O|m emwm>(1+ur+n+vm|)}_
wer\{0ynH+ | Jo \Jao |7 — yl#|y| |z[* p+2
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Since p > 2, we infer

| F(w)u > exp(u[") [l
0< inf //< p—2+7u?") ——————dzx ;.
uer\{O}mH+{ o Jo Tz iy ) P 2 F 1) =g

Step 3: Claim: I'g > 0. Firstly, we have

) = [ ol < ([ rh<x>|P)1/p( / |u<1+q>p')”pl <l (35)

where | = ||h||zo(q) and p > 1 will be specified later. Choosing

2b
A< —My:= X 3.6
G-l 30
where My = inf,ep jopnm+ llull'™7 > 0, we get that Al (3 —q) [|ul'T® < 2b]u?* for any
we T\{0} N HT . Then for u € T\{0} N H* and p > 2,

B(u) + 2b||u|? —3/ (/Q Flu) dy) T (3= g) Hw)

0 |z — y|#y| |z|*

> (i ) T e [ (i ) T
+ 2b||ul|* = (3 — ¢) AH (u) > 0.

Therefore I'g > 0. [ ]

Next we move on the proof of the claim made in Case 2. From Lemma 3.1 and (3.4), we notice
that for u € HT\{0}, there exists a t, > 0, local maximum of 1,, verifying 1, (t.) — AH (u) > 0
since t,u € '\ {0} N HT. From ¢,(0) = 0, ¥y, (tx) > AH(u) > 0 and limy_,o0 ¢y, () = —o0,
there exists t; = t1(u) < t. < ta(u) = t2 such that ¥,(t1) = X [ h(@)[u|tT do = ¢u(t2)
with ¢ (t1) > 0,¢],(t2) < 0. Therefore, tju € N)T,M and tou € Ny ;. Now we show that
tiu € N;M and tou € N/\_,M are unique. Suppose not, then there exists t3 > 0 such that
t3u € N/QL,M and t,. such that to <ty < t3, ¥, (tx) = 0 and ¥y (ts) < AH(u). Our Lemma
3.1 then induces that if ¢, (t.) = 0 then 1)y, (tx) > AH (u) which is a contradiction. We will

denote t, as the smallest critical point of %, in the sequel.
Lemma 3.2 If X € (0, \o) then NRM = ().

Proof. Let u € Nf\), s then u satisfies

allul|* + b||lul|® = NH (u) —1—/9/Q <|ac _F;myady) flu)u dxr and (3.7)

kg

3al|ul|* + blju||®* = AgH (u) + B(u). (3.8)
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Let ue HT N NRM, then substituting the value AH (u) from (3.7) into (3.8), we obtain

2¢/(3 — q) (1 — q) abllul® < B(u)

which implies u € T'\{0} N H*. Again substituting the value of alju|[* from (3.7) into (3.8),

we obtain

) Flu) Fu e
B -3 [ [ <|x—y|#|y\a dy) P do 2l = A3 - q) H(w) =0

which contradicts Lemma 3.1. If w € H; N NQM then Case 1 implies that 71”7 is the only

critical point of ®,, »s and @Z}M(l) < 0 which is a contradiction to the fact that uw € N} ,,. m

3.3 Energy functional estimates

In this section we prove that Jy as is bounded below on N j; and achieves its minimum, with

the help of some estimates on 6, where 0 = infyen, ,, T a(u).

2
Theorem 3.3 J) ys is bounded below and coercive on Ny pr. Moreover § > —CA1-4 where

C depends on q,b.

Proof. Let u € Ny i.e. ®, /(1) = 0. Then,
af P—2 2 P p+1—gq
T (w) = alf] <4<p+2>>+ Il <2<p+2>> A<<1+q><p+2>> (u)

F(u) — 2f(u)u
_1//( F(u) dy> (u) P2 g
2 Jo Jao \ |z —y|*ly|* ||

Since 0 < F(u) < ]%f(u)u and ¢ < 1, (3.5) and Sobolev embedding implies that Jy as is

coercive on N) ps that is as |Ju|| = oo,

p—2 p p+1—gq q
)2 (55575 ) + e (g y) ~ (107 =

Similarly, we have

B b by 1 F(u) F(u)
I (u) = 5”“”2 - ﬁH(u) a 2/Q/Q <|x —ylHlyl* dy) g o

ea(ms [ (e ) T e o)
> ol = A( g - ) )

qg+1 4

Then for v € Hy , we get Jy pm(u) > 0 and for u € H, the Sobolev embedding implies

9 2 )\(3 - C_I) 9 2 )\(3 — q)l (1+(1)p/ 1/P/
Farlw) 2§l = 0w > Jlul - 520 ([ 0497 o

= bsllull* — baflu] ™
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where b3 = % and by = 2((2:113 So by finding the minimum of function g(z) = bsz? — byt
we can conclude that Jy ps is bounded below on N j/. [ |

Lemma 3.4 There exists a constant Cy > 0 such that 6 < —Cj.

Proof. Letu € HT, then from the fibering map analysis we know that there exists a t1(u) > 0
such that tju € Ny, , N HT and ¢, ar(t1) = AH (u). Since @;,M(tl) > 0, from (3.2) we obtain

(/ﬂ F(tu) dy> fuwte (3.9)

=yl PR

-3
g aHtluH4< (1-gq) th1u||2 —B(tlu)—i-q/
m Q

Using <I>;M(t1) =0, we get that

= L (Gt ) = [ ([ ) Flow
Fuautw) = 5 (Ghocal* +oewt®) =5 [ ([ EN an) S
1 , ) / </ F(tu) > fthiw)tiu )
— —— | alltyul|® + bl|t ul]” — d dz ).
(et o = [ ([ SR ay) HO

In that case, by (3.9) we obtain,

 —(1-q) ull? F(tyu) 44q f(tiu)tiu
Faultrn) = 3oy bl +/Q(/Q T ylyl dy) <4<q+1> o
1F(tu) f/(tlu)(tu)2) d — 1 / </ ftiu)tiu p > f(tiuw)tiu i
Q Q

2 Jel g+ Dape RSy [ — gyl
(=9, e F(tyu) i+q  (p+2)
S g e +/Q</Q T gy dy) <4<q+1> ig+ )
(p+ 1) fliw)tiu L1 F(tiu) F(tu) .
4<q+1>> e 2/Q</Q Tyl dy) e

Since 1 + ¢ — 2p < 0 therefore 0 < infueNijHJr I (u) < —=Ch < 0. [

Using Theorem 3.3 and Ekeland variational principle, we know that there exists a sequence
{ug}en C Ny such that

1
I (ug) <0+ Z
(3.10)

1
I (V) > Taom(ug) — %Huk —v|l, Yv € Nyum.

Then by (3.10) and Lemma 3.4, we have for large k,

C
T (ug) < —70. (3.11)

Also since ug, € Ny pr we have

Frastun) =l (220 ) ol (55 ) - M (o ) )

A(p+2) 2(p+2) (1+q)(p+2)

_1/</ F(uy) dy> Flug) — =555 e
2 Jo \Ja |z —y|*y|* ||
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This together with (3.11) gives

p+1—gq Co Co(p+2)(1+q)
N ———F———|H <—-——=H > >0
(s < =5 = ) = A
i.e.
H(ug) > C >0, for large k and u, € Ny NHT. (3.12)

The following result shows that minimizers for J) ps in any subset of the decomposition of
Ny, m are critical points of Jy »s and the proof follows from the Lagrange multipliers rule (see
Lemma 4.7 in [6]).

Lemma 3.5 Let u be a local minimizer for Jx pr on any subsets of Ny pr such that u ¢ NRM.
Then u is a critical point of Jx -

Lemma 3.6 Let A > 0 satisfies (3.6). Then for any u € Ny r\{0}, there exists a € > 0 and
a differentiable function & : B(0,€) C Wén’2(Q) — R such that

£(0) =1 and {(w)(u—w) € Ny u
for all w € WJ"*(Q). Moreover

_ 22al|ull* +b) [ V™u.V™w dz — g + 1) [o h(z)[u|T tuw dz — (S(u), w)

(€(0),w) = a3 ) [ul T b(1—q) [ul? + R(w)
where
B F) Y\ ol — f(u)u o
R(“)‘/Q</mx—ywyra> E /Q</er—ywy\a dy) o
and

(st = | (/Q ER dy) f,(U)rZ;f(U)““/ﬂ </Q g dy) i

Proof. For u € Ny ps, we define a continuous differentiable function G, : R x Wén 2(9) —R
such that

Gu(t,v) = at® 9 |Ju — v||* + bt*79||u — v||? — L /Q (/Q F(t(u—v)) dy> ft(w—v))(u—v) dx

t |z —y|*|yl* ||

- )\/ h(z)|u — vt da.
Q

Then G,(1,0) = ®/,(1) = 0 and ;Gu(l,O) = ¢/(1) # 0. Hence by the implicit function
theorem, there exists € > 0 and a differentiable function £ : B(0,e) C W," 2(Q) — R such
that £(0) = 1 and G,(§(w),w) = 0 Yw € B(0,€) which is equivalent to (J} 5/ (§(w)(u —
w)),&(w)(u —w)) = 0 V w € B(0,¢). Thus, {(w)(u — w) € Ny and differentiating
Gu(§(w), w) = 0 with respect to w, we obtain the required claim. [ ]
Similarly, by following the proof of Lemma 4.9 of [6] and using Lemma 3.6, we have the

following result.
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Lemma 3.7 Let A > 0 satisfies (3.6) then given any u € N, ,,\{0}, then there exists € > 0
and a differentiable function &~ : B(0,€) C Wgn’2(Q) — R such that

£7(0) =1 and £ (w)(u—w) € Ny
and for all w € Wén’Z(Q)

., ~2Q2alull® +b) fo V™.V w dz — Mg+ 1) fo h(@)|ulf  uw de — (S(u), w)
(&0 = e ) T B (1= ) [l + R

where R(u) and S(u) are as in lemma 3.6.

Now we prove the following result.

Proposition 3.8 Let A\ > 0 satisfies (3.6) and uy, € Ny a satisfies (3.10). Then H,];M(uk)ﬂ* —
0 as k — oo.

Proof.  Step 1: liminfg_ oo |Juk|| > 0.

We know that {uy} satisfies (3.12) for large k, thus H(uy) > C > 0 for large k. So by using
Holder inequality we obtain C' < H(ug) < Oy |lug||?H.

Step 2: We claim that

dx — B(ug)| > 0.

i |3 o)l + 01 ) hufP g [ ([ o) T

|z —ylHyl*/) [z

Without loss of generality, we can assume that up € N ;r y (if not replace uy, by t(ug)ug).
Arguing by contradiction, suppose that there exists a subsequence of {uy}, still denoted by
{uy}, such that

dx — B(ug) = og(1).

0< (3=l +b(1 - ) [ulP + | </Q Fuy) >f<uk>uk

o= yllyle) el
From Step 1 and the above equation we obtain that liminfy .., B(ug) > 0 and
(3 — @) allugl* +b(1 = ) [lug|® < B(uy,)

i.e. up € I'\{0} for all large k.
Since uy € N;FM, we get

—2b\|uk\|2 +A(3—q) H(ug) + 3/Q

(/Q F(ug) ) fug)ug g — Blug) = ox(1)

[z —yltyle) el

which is a contradiction since I'g > 0. The remaining proof follows similarly as the proof of
Proposition 4.10 of [6]. ]
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3.4 Existence of local minimum of J, 5 in Ny y/

Theorem 3.9 Let 1 < v < 2 and X\ > 0 satisfies (3.6). Then there exists a weak solution
uy € N;fMﬁHJr to (Pam) such that Ty ar(uy) = infyen, 400} I (u) and uy € N;fMﬁHJr

is a local minimum for Jx n in Wan’2(Q).

Proof. Let {ur} C N be a minimizing sequence satisfying Jx ar(ug) — 6 as k — oo and
I (v) > Taoar(ug) — £l — v||, Yo € Ny (as in (3.10)). Then by Theorem 3.3 we obtain
{ux} is a bounded sequence in Wy" (). Also there exists a subsequence of {uy} (denoted by
same sequence) and uy such that up — uy weakly in Wgn’z(Q), up, — uy strongly in L"(Q)
for > 1 and up — uy a.e. in Q as k — oo. Then using f(t) < C..exp(et?) for € > 0
small enough and Theorem 1.1 with n = 2m, we obtain that f(ux) and F'(uy) are uniformly
bounded in L4(Q2) for all ¢ > 1. Then by Proposition 1.3 and Vitali’s convergence theorem,

we obtain

/Q</Q F(uy) dy) Flu)uk —w) o g o

|z =yl ]yl ||

Thus by Proposition 3.8, we have (j),“M(uk), (ug — uy)) — 0. Then we conclude that
M (||lug)?) /Q V™ V™ (up —uy) de — 0 as k — co. (3.13)
On the other hand, using u; — uy weakly and by boundedness of M (||uy||?) we have
M(||lug|?) /Q Vuy.V™(up — uy) de — 0 as k — oo. (3.14)
Substracting (3.14) from (3.13), we get,
M([Jug]?) /Q(vmuk V).V (w — uy) da — 0 as k —> oo.

which gives
M(HukHZ)/ |V, — V™uy|* dz — 0 as k — oo.
Q

Since M (t) > My, we obtain uy — uy strongly in Wgn’z(ﬂ). By Lemma 2.4
F F
/ (/ (ur) dy> (k) 4 g, _>/ </ (ur) dy> Fw) g g,
o \Ja |z —y[*ly|* Ed o \Ja |z —y*ly|* k4

/h(x)\uk\qlukqﬁ dr — / h(z)|ul?  urne da
Q Q

and also

for all ¢ € WS”Q(Q). Therefore, uy satisfies (Py ar) in weak sense and hence uy € Ny y.
Moreover, 8 < Jy ar(uy) < liminfy_o Taar(ux) = 6. Hence uy is a minimizer for Jy as in

Ny m-
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Using (3.12), we have [, h(z)|ux|9T" > 0. Then there exists a ¢1(uy) > 0 such that t; (ux)uy €
N;’M. We now claim that ¢1(uy) =1 i.e. uy € N)“M. Suppose not then to(uy) = 1 and uy €
Ny - Now Tom(ta(un)un) < Ty m(un) < 0 which yields a contradiction, since ¢y (ux)ux €
N v The proof for uy being a local minimum for J) »s in W(;n’Q(Q) follows exactly as the
proof of Theorem 4.12 in [6]. [ |

Theorem 3.10 Let 1 <y <2 and A > 0 satisfies (3.6). Then Jxn achieves its minimizer
on Ny -

Proof. Let u € N/;M. Then
Q Q

=yl V) TJalo

-, </Q = ﬁw dy) f/|(5)chQ <0

This along with (3.1) gives us

=gl + = appful? + [ ([ EWay) Lt g,

- LUt o) T o= [ (e ) T oo <o

This implies that N, ,, C I' and then following step 1 of Lemma 3.1 we get that 3 ¢ >

0, ||ul| > ¢ > 0 for any u € N, ,, from which it follows that N, ,, is a closed set. Also this
gives inf - \{0} B(u) > ¢é > 0. Therefore, for A < )¢ small enough,
A, M

inf  B(u) +2b]lul* — (3 — g) A\H (u /(/ e ) (l“dx>o.
WEN, ,\{0} |z — ylmyl™ y! !yl ||

Now let = = min, Ny M0} Ixnm(u) > —oo then from Ekeland variational principle, we

know that there exist {vg }ren @ minimizing sequence such that

. 1 1 _
I (vg) < Elj{flf I (u) + % and Ty v (u) > Iy v (vr) — %Hvk —ul| Yue Ny,
UCINN M

From Jyar(vx) = 0~ as k — oo and vy € N u, it is easy to prove that ||vgx]| < C (as in
Lemma 2.2). Indeed,

-+ =1t [ ([ i a) £ o

|z — yl#fyl Eds

= o([lvxl)

and
C+o(llvgll) > T na(vk) — *<~7A M (Vk), V) = *HkaQ" — C(A)[|ug |7

implies that ||vg]| < C. Thus we get ||S(vg)||+ < C1 and from (3.4) we have ||, (0)[« < Cs.
Now the rest of the proof follows as in the proof of Theorem 3.9 with the help of Lemma 3.7
(refer Theorem 4.13 of [6]). [ ]
Proof of Theorem 1.7 : The proof follows from Theorem 3.9 and Theorem 3.10. [ |
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