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Abstract

Corresponding to a hypergraph G with d vertices, a quantum hypergraph state is defined by

|G〉 = 1√
2d

∑2d−1
n=0 (−1)f(n) |n〉, where f is a d-variable Boolean function depending on the hypergraph

G, and |n〉 denotes a binary vector of length 2d with 1 at n-th position for n = 0, 1, . . . (2d − 1). The
non-classical properties of these states are studied. We consider annihilation and creation operator
on the Hilbert space of dimension 2d acting on the number states {|n〉 : n = 0, 1, . . . (2d − 1)}. The
Hermitian number and phase operators, in finite dimensions, are constructed. The number-phase
uncertainty for these states leads to the idea of phase squeezing. We establish that these states are
squeezed in the phase quadrature only and satisfy the Agarwal-Tara criterion for non-classicality,
which only depends on the number of vertices of the hypergraphs. We also point out that coherence
is observed in the phase quadrature.

1 Introduction

The quantum graph states, also called the cluster states [1], are well-studied quantum states which are
used in different quantum information theoretic tasks [2]. The quantum hypergraph states [3, 4] are a
generalization of these states. There is a one-to-one correspondence between the set of n-qubit hypergraph
states and the set of n-variable Boolean functions [5]. In recent years they have been utilized in quantum
error correction [6, 7] and quantum blockchain [8]. Quantum optics provides a prominent platform for
the physical implementation of quantum information theoretic tasks [9, 10, 11, 12]. For instance, optical
squeezing is applied for carrying out the algorithms in quantum cryptography [13]. Hence, investigating
the non-classical properties of quantum hypergraph states from the perspective of quantum optics would
be pertinent.

The quantum hypergraph state is a family of finite dimensional quantum states. The recent de-
velopments in quantum state engineering, computing and communication stimulate the production and
manipulation of finite dimensional quantum states. Non-classicality of these quantum states is an impor-
tant facet of investigations in quantum optics [14, 15, 16]. Different finite dimensional quantum states
are considered in this context, for instance, the binomial states [17, 18], negative binomial states [19],
hypergeometric states [20]. Most of these analysis are focused on their constructions as well as the pos-
sible occurrence of various nonclassical effects exhibited by them. Introducing a graph-theoretic or a
combinatorial framework in the investigation sheds further light in this direction [21]. Entanglement of
quantum states is a non-classical property. Graph theory has been emploed to the problem of detecting
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entanglement [22, 23, 24]. Entanglement in quantum hypergraph states are well-studied in literature, see,
for instance, [25] and references therein.

Here, we study the nonclassical behavior of quantum hypergraph states. An analytical study of non-
classicality for finite dimensional states turns out to be difficult [26, 27, 28]. Given any hypergraph with d
vertics, the general analytical form of these states is spanned by 2d number states |0〉 , |1〉 , |2〉 , . . . |2d − 1〉
in a 2d dimensional Hilbert space H2d . The physical variables, which are the expectation values of
Hermitian operators are evaluated in this basis. Therefore, these mean values depend parametrically on
the number of vertices d. The number and phase operators are seen to be non-commutative for these
states. Although, the quantum hypergraph states allow non-zero number-phase uncertainty we detect
squeezing, a prominent aspect of non-classicality, in phase quadrature only. Recall that, the existence
of a Hermitian phase operator of the harmonic oscillator is a long-standing open problem in quantum
mechanics [29, 30, 31]. We follow the Pegg-Barnett formalism in the construction of the phase operator
in finite dimensional space [32, 33, 26]. Interestingly, the Agarwal-Tara criterion for non-classicality [34],
which is associated to the higher order moments of number operator, holds for these states. Coherence is
another important facet of quantumness [35]. Evolution of coherence has been studied in the context of
open quantum systems [14], as well as in sub-atomic systems [36]. Coherence is studied, here, for various
classes of hypergraphs in both number and phase basis.

The description of quantum hypergraph states and their relevance to quantum information theory is
discussed in section 2. The preliminary concepts of annihilation and creation operators acting on finite
dimensional Hilbert spaces are also presented. In section 3, the study of squeezing in quantum hygregraph
states is made. The construction of Hermitian phase operator for the finite dimensional Hilbert space
as well as the number-phase uncertainty relation is also developed. We establish that these states are
squeezed in phase quadrature only. The degree of squeezing is calculated for different types of hyper-
graphs. Section 4 discusses the Agarwal-Tara criterion for non-classicality, which depends on the number
of vertices of the hypergraphs. Coherence for various classes of hypergraphs in both number and phase
basis is discussed in section 5. We then make our Conclusions. In appendix A we present a few essential
tools of linear algebra as well as properties of Toeplitz and circulant matrices, of relevance to our work.
The appendix B contains the expressions of higher order moments of the number operator, essential for
the detailed calculation of the Agarwal-Tara criterion.

2 The hypergraph states

In combinatorics, a graph G = (V (G), E(G)) is a combination of a set of vertices V (G) and a set of
edges E(G) [37]. Throughout this article, d denotes the number of vertices in a graph or hypergraph
with the vertex set V (G) = {1, 2, . . . d}. A simple edge is a set of two vertices e = {u, v}. A hypergraph
G = (V (G), E(G)) is a generalization of graphs, such that, E(G) contains at least one hyperedge e, that
is a set of more than two vertices [38].

To define a graph state or a hypergraph state we assign a |+〉 = 1√
2

[

1
1

]

state corresponding to every

vertex of the graph or the hypergraph G. Now, for edge {u, v} we apply a 2-qubit controlled-NOT gate
on the states corresponding to u and v. Similarly, for a hyperedge containing r vertices we apply an
r-qubit controlled-NOT gate on the states corresponding to the vertices in the hyperedge. It generates
the following quantum state, known as the quantum hypergraph state:

|G〉 = 1√
2d

2d−1
∑

n=0

(−1)f(n) |n〉 , (1)

where |n〉 = (0, 0, . . . 0, 1((n+1)-th position), 0, . . . 0)t is a basis vector in H2d , and f : {0, 1}d → {0, 1} is
a Boolean function of d variables depending on G. The explicit relation between G and f is discussed in
[5]. In quantum information parlance, |n〉 is expressed as a d-qubit state which is a basis of H⊗d

2 , where

H2 is the space generated by the basis vectors

[

1
0

]

and

[

0
1

]

. Here, we neglect the multi-qubit structure.

This enables the application of the annihilation and creation operators to a broad range of number states
|n〉. As |G〉 is described by the state vector of multi-qubit hypergraph states, the present study could be
expected to have practical implications.
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(a) A hypergraph with four vertices 0, 1, 2 and
3 as well as an edge (0, 3) and two hyperedges
(0, 2, 3) and (1, 2, 3).

|+〉

|+〉

|+〉

|+〉

0

1

2

3

(b) Quantum circuit for generating the hyper-
graph state corresponding to the hypergraph
depicted in figure 1a.

Figure 1: A hypergraph and its corresponding quantum circuit

Example 1 A hypergraph G = (V (G), E(G)) with V (G) = {0, 1, 2, 3} and E(G) = {(0, 1), (0, 2, 3), (1, 2, 3)}
is depicted in the figure 1a. For generating its corresponding hypergraph state, we apply the multi-qubit
CNOT gates on |+〉⊗4

which are drawn in figure 1b. The resultant quantum state is given by

|G〉 = 1

4
[1, 1, 1, 1, 1, 1, 1,−1, 1,−1, 1, 1, 1,−1, 1,−1]t

=
1

4
[|0〉+ |1〉+ |2〉+ |3〉+ |4〉+ |5〉+ |6〉 − |7〉+ |8〉 − |9〉+ |10〉+ |11〉+ |12〉 − |13〉+ |14〉 − |15〉] .

(2)

In the Hilbert space H2d the creation and annihilation operators are represented by the following
matrices

a† =



















0 0 0 . . . 0 0√
1 0 0 . . . 0 0

0
√
2 0 . . . 0 0

0 0
√
3 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . .
√
2d − 1 0



















and a =



















0
√
1 0 0 . . . 0

0 0
√
2 0 . . . 0

0 0 0
√
3 . . . 0

...
...

...
...

. . .
...

0 0 0 0 . . .
√
2d − 1

0 0 0 0 . . . 0



















. (3)

Matrix multiplication brings out the commutation relation between the annihilation and creation operator
as [26, 28]

[a, a†] = aa† − a†a = I − 2d |2d − 1〉 〈2d − 1| , (4)

which is different from the commutation relation aa† − a†a = I in infinite dimensional Hilbert space
[39, 32, 33]. The annihilation operator a acts on a number state |i〉 as a |i〉 =

√
i |i− 1〉 for i = 1, 2, . . . (2d−

1), and a |0〉 = 0, which is the all zero vector. Similarly, for the creation operator we have a† |i〉 =√
i+ 1 |i+ 1〉 for i = 0, 1, . . . (2d − 2) and a† |2d − 1〉 = 0. Note that, this assumption is different from

the action of annihilation and creation operators on qubit states.

3 Squeezing in number and phase quadrature

We denote and define the average and the variance of an operator Â with respect to the state |G〉 by
〈Â〉 = 〈G|Â|G〉 and 〈(∆Â)2〉 = 〈Â2〉 − 〈Â〉2, respectively. Two operators Â and B̂ commute with respect
to |G〉 if 〈[Â, B̂]〉 = 〈G|ÂB̂ − B̂Â|G〉 = 0. If Â and B̂ do not commute we have the uncertainty relation
[40]

〈(∆Â)2〉〈(∆B̂)2〉 ≥ 1

4
|〈[Â, B̂]〉|. (5)

We say that the variances of the operators Â and B̂ are squeezed if 〈(∆Â)2〉 < 1
2 |〈[Â, B̂]〉| or 〈(∆B̂)2〉 <

1
2 |〈[Â, B̂]〉| [41]. The degree of squeezing in the quadrature of Â and B̂ are given by

SÂ =
〈(∆Â)2〉 − 1

2 |〈[Â, B̂]〉|
1
2 |〈[Â, B̂]〉|

and SB̂ =
〈(∆B̂)2〉 − 1

2 |〈[Â, B̂]〉|
1
2 |〈[Â, B̂]〉|

, (6)

3



respectively. It is observed that if SÂ < 0 then SB̂ > 0 and if SB̂ < 0 then SÂ > 0.
A number of squeezed states have been studied in the literature [42]. Among them are states squeezed

in position and momentum quadrature. The position and momentum operators are defined by X̂ =
1√
2
(a+ a†), and P̂ = 1

i
√
2
(a− a†), respectively. Applying equation (4) we can show that

[X̂, P̂ ] =iI − 2di |2n − 1〉 〈2n − 1|
or 〈[X̂, P̂ ]〉 =i 〈G|G〉 − 2di 〈G|2n − 1〉 〈2n − 1|G〉 = 0.

(7)

Further we can prove that 〈[X̂k, P̂ k]〉 = 0 for any positive integer k. These calculations leads us to the
conclusion that there is no uncertainty in the quadrature X̂ and P̂ for the hypergraph states.

Considering the number and phase operators instead of X̂ and P̂ we observe an uncertainty relation for
the hypergraph states [43, 26]. Recall that in equation (1) we assume the states {|n〉 : n = 0, 1, . . . , (2d −
1)} as the number states. Clearly, 〈m|n〉 = δm,n and

∑2d−1
n=0 |n〉 〈n| = I2d . Now, the number operator is

defined by N̂ =
∑2d−1

n=0 n |n〉 〈n|. The average of N̂ is given by

〈N̂〉 = 〈G|N̂ |G〉 = 1

2d

2d−1
∑

n=0

(−1)f(n)+f(n)n =
(2d − 1)2d

2× 2d
=

2d − 1

2
. (8)

Also,

〈N̂2〉 = 〈G|N̂2|G〉 = 1

2d

2d−1
∑

n=0

(−1)f(n)+f(n)n2 =
(2d − 1)2d(2d+1 − 1)

6× 2d
=

(2d − 1)(2d+1 − 1)

6
. (9)

Therefore,

〈(∆N̂)2〉 = 〈N̂2〉 − 〈N̂〉2 =
(2d − 1)(2d+1 − 1)

6
−
(

2d − 1

2

)2

=
(2d − 1)(2d + 1)

12
. (10)

Note that, 〈N̂〉 and 〈(∆N̂)2〉 depend only on the number of vertices in the hypergraph G.
For m = 0, 1, . . . (2d − 1), the phase θm is defined by θm = θ0 + 2πm

2d
, where we consider θ0 = 0, for

simplicity. The phase states [44, 45] are defined by

|θm〉 = 1√
2d

2d−1
∑

n=0

exp (ιθmn) |n〉 . (11)

Note that, in the above expression exp (ιθmn) are the 2d-th complex root of unity. It can be proved that

〈θi|θj〉 = δi,j and
∑2d−1

i=0 |θi〉 〈θi| = I.

The phase operator [46, 47, 48, 49] is defined by P̂ =
∑2d−1

m=0 θm |θm〉 〈θm|, which can be expanded in
the number basis as:

P̂ =

2d−1
∑

q=0

2d−1
∑

r=0

pqr |θq〉 〈θr| where pqr =

{

θr for q = r

0 otherwise

=

2d−1
∑

q=0

2d−1
∑

r=0

pqr





1√
2d

2d−1
∑

k=0

exp (ιθqk) |k〉









1√
2d

2d−1
∑

l=0

exp (−ιθrl) 〈l|





=
1

2d

2d−1
∑

q=0

2d−1
∑

r=0

pqr





2d−1
∑

k=0

2d−1
∑

l=0

exp (ιθqk − ιθrl) |k〉 〈l|





=
1

2d

2d−1
∑

r=0

2πr

2d





2d−1
∑

k=0

2d−1
∑

l=0

exp (ιθr(k − l)) |k〉 〈l|



 [putting q = r and θr =
2πr

2d
]

=
2π

4d

2d−1
∑

k=0

2d−1
∑

l=0





2d−1
∑

r=0

r exp (ιθr(k − l))



 |k〉 〈l|

(12)

4



or P̂ =
2π

4d

2d−1
∑

k=0

2d−1
∑

l=0

Pk,l |k〉 〈l| , wherePk,l =

2d−1
∑

r=0

r exp (ιθr(k − l)) .

The above calculation suggests that P̂ is a Hermitian circulant matrix which is proved in appendix A.
The expectation value of P̂ is

〈G|P̂ |G〉 =
2d−1
∑

m=0

θm 〈G|θm〉 〈θm|G〉 =
2d−1
∑

m=0

θm〈θm|G〉 〈θm|G〉 =
2d−1
∑

m=0

θm| 〈θm|G〉 |2. (13)

Also,

〈G|P̂ 2|G〉 =
2d−1
∑

m=0

θ2m 〈G|θm〉 〈θm|G〉 =
2d−1
∑

m=0

θ2m〈θm|G〉 〈θm|G〉 =
2d−1
∑

m=0

θ2m| 〈θm|G〉 |2. (14)

Therefore the variance of P̂ is given by

〈(∆P̂ )2〉 = 〈G|P̂ 2|G〉 − 〈G|P̂ |G〉2 =

2d−1
∑

m=0

θ2m| 〈θm|G〉 |2 −

∣

∣

∣

∣

∣

∣

2d−1
∑

m=0

θm| 〈θm|G〉 |2
∣

∣

∣

∣

∣

∣

2

. (15)

It can be observed that

〈θm|G〉 = 1√
2d

2d−1
∑

n=0

exp (−ιθmn) 〈G|n〉 =
1√
2d

2d−1
∑

n=0

(−1)f(n) exp (−ιθmn) . (16)

The number phase commutation operator [N̂ , P̂ ] is given by

[N̂ , P̂ ] = N̂ P̂ − P̂ N̂

=
2π

4d









2d−1
∑

k=0

2d−1
∑

l=0

nk,l |k〉 〈l|









2d−1
∑

k=0

2d−1
∑

l=0

Pk,l |k〉 〈l|



−





2d−1
∑

k=0

2d−1
∑

l=0

Pk,l |k〉 〈l|









2d−1
∑

k=0

2d−1
∑

l=0

nk,l |k〉 〈l|









where nk,l =

{

l for k = l

0 otherwise

=
2π

4d





2d−1
∑

k=0

2d−1
∑

l=0

kPk,l |k〉 〈l| −
2d−1
∑

k=0

2d−1
∑

l=0

Pk,ll |k〉 〈l|



 =
2π

4d

2d−1
∑

k=0

2d−1
∑

l=0

(k − l)Pk,l |k〉 〈l| .

(17)

The matrix [N̂ , P̂ ] is a skew-Hermitian Toeplitz matrix. The proof can be seen in appendix A. As [N̂ , P̂ ]
is a skew-Hermitian matrix, its diagonal entries are all zero. Also, by expanding [N̂ , P̂ ] we observe that
∑2d−1

l=1 |a0,l| = max{
∑

k 6=l |ak,l| : for k = 0, 1, . . . (2d− 1)}, where ak,l = 2π
4d
(k− l)Pk,l where k 6= l are the

off diagonal entries of [N̂ , P̂ ] in a particular row. Therefore if λ is an eigenvalue of [N̂ , P̂ ], the Gershgorin

circle theorem suggests that |λ| ≤ ∑2d−1
l=1 |a0,l|. This is shown in appendix A. Further, as [N̂ , P̂ ] is a

Toeplitz matrix, all the rows of [N̂ , P̂ ] are determined by the entries of its k = 0-th row, which is given
by a row vector

2π

4d

2d−1
∑

l=0

(−l)P0,l 〈l| = −2π

4d

2d−1
∑

l=0

2d−1
∑

r=0

lr exp

(

−i2πlr
2d

)

〈l| . (18)

Recall that exp
(

−i 2πlr
2d

)

is a 2d-th root of unity. Now, summing over the absolute values of the individual
entries we find

2d−1
∑

l=1

|a0,l| =
2π

4d

2d−1
∑

l=0

2d−1
∑

r=0

∣

∣

∣

∣

lr exp

(

−i2πlr
2d

)∣

∣

∣

∣

=
2π

4d

2d−1
∑

l=0

2d−1
∑

r=0

lr =
2π(2d − 1)2

4d+1
. (19)

5



d 4 5 6 7 8 9 10 11 12 13
SP̂ −0.2238 −0.6817 −0.8686 −0.9449 −0.9764 −0.9898 −0.9955 −0.998 −0.9991 −0.9996

Table 1: Squeezing of hypergraphs with single hyperedge containing all vertices

Therefore, for any eigenvalue λ of [N̂ , P̂ ] we find |λ| ≤ 2π(2d−1)2

4d+1 . As [N̂ , P̂ ] is a skew-Hermitian matrix,

ι[N̂ , P̂ ] is Hermitian. Also 〈ι[N̂ , P̂ ]〉 = ι 〈[N̂ , P̂ ]〉. Taking the absolute value we have | 〈[N̂ , P̂ ]〉 | =
|ι 〈[N̂ , P̂ ]〉 |. Using the idea of Rayleigh quotient, see appendix A, we have

λmin ≤ | 〈[N̂ , P̂ ]〉 | ≤ λmax, (20)

for any possible state. The degree of squeezing with respect to the number operator N̂ is defined by

SN̂ =
〈(∆N̂)2〉 − 1

2 | 〈[N̂ , P̂ ]〉 |
1
2 | 〈[N̂ , P̂ ]〉 |

. (21)

Now,

〈(∆N̂)2〉 − 1

2
| 〈[N̂ , P̂ ]〉 | ≥ 〈(∆N̂)2〉 − 1

2
|λmax| ≥

(2d − 1)(2d + 1)

12
− π(2d − 1)2

4d+1
≥ 0, (22)

for any d. Therefore, the quantum hypergraph state |G〉 has no squeezing with respect to the number
operator. This observation can be precisely written as follows:

Theorem 1 There are quantum hypergraph states which are squeezed in the phase quadrature only.

But, not all hypergraph states are squeeed in phase quadrature. The hypergraph in figure 1a is a negative
example, for which 〈(∆P̂ )2〉 = 3.4312, 〈(∆N̂)2〉 = 21.25 and 1

2 | 〈[N̂ , P̂ ]〉 | = 1.8624.
Now, we shall discuss about the hypergraph states with phase squeezing. The degree of squeezing

with respect to the phase operator P̂ is defined by

SP̂ =
〈(∆P̂ )2〉 − 1

2 | 〈[N̂ , P̂ ]〉 |
1
2 | 〈[N̂ , P̂ ]〉 |

. (23)

Equation (15) suggests that SP̂ depends on the choice of the hypergraph states |G〉. However, we have
not yet succeeded in obtaining an explicit expression of SP̂ depending on the hypergraph G. In addition,

for any integer d ≥ 2 there are 22
d

quantum states of dimension 2d. Hence, numerical evaluation of SP̂

for all hypergraphs with d vertices is a very tedious task. Therefore, we choose a very special class of
hypergraphs for our investigations. We have the following numerical observations:

1. Let the hypergraph G have d vertices and no hyperedge. Therefore the corrsponding hypergraph

state is |G〉 = 1√
2d

∑2d−1
n=0 |n〉, which is a constant vector. From equation (11) it can be seen that

〈G|θm〉 = 1

2d

2d−1
∑

n=0

exp (ιθmn) = 0, (24)

as exp (ιθmn) are the complex 2d-th root of 1. Putting this in equation (15) we find that the varience
of P̂ is zero. But 〈[N̂ , P̂ ]〉 need not be zero. Hence, the degree of squeezing mentioned in equation
(23) is −1, which is the minimum value of squeezing.

2. Let G be a hypergraph with number of vertices d > 3 and exactly one hyperedge containing
all the vertices. Then |G〉 is squeezed in the phase quadrature. Also, the values of SP̂ become
asymptotically close to −1. The values are plotted in figure 2a and mentioned in table 1. We depict
some of these hypergraphs in figure 3.

3. A k-graph is a hypergraph containing the hyperedges with k vertices only. There is no state
showing phase squeezing corresponding to connected 3-graphs with 4 vertices. For d ≥ 5 we have
connected (d−1)-graphs with phase squeezing. The maximum and minimum values of squeezing in
(d− 1)-graphs are mentioned in the table 2 and plotted in the figure 2b. The hypergraphs with the
maximum and the minimum degree of phase squeezing are depicted in figure 4 and 5, respectively.
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(a) Squeezing of connected hypergraphs with
single hyperedge

(b) Maximum and minimum values of squeez-
ing for (d − 1)-graphs. (Red and blue points
represent the minimum and maximum)

Figure 2: Squeezing for different hypergraph states.
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Figure 3: Hypergraphs with exactly one hyperedge containing all vertices. The border indicates the
hyperedge and the numbered dots are the vertices.

d max|G〉{SP̂ } Combination of hyperedges ob-
taining max|G〉{SP̂ }

min|G〉{SP̂ } Combination of hyperedges ob-
taining min|G〉{SP̂ }

5 −0.0265 [(0, 1, 2, 3), (0, 1, 2, 4), (0, 1, 3,
4), (0, 2, 3, 4)]

−0.4968 [(0, 1, 2, 3), (0, 1, 2, 4), (0, 1, 3, 4)]

6 −0.0066 [(0, 1, 2, 3, 4), (0, 1, 3, 4, 5), (0,
2, 3, 4, 5), (1, 2, 3, 4, 5)]

−0.7862 [(0, 1, 2, 3, 4), (0, 1, 2, 3, 5), (0,
1, 2, 4, 5)]

7 −0.1013 [(0, 1, 2, 3, 5, 6), (0, 1, 3, 4, 5,
6), (0, 2, 3, 4, 5, 6), (1, 2, 3, 4, 5,
6)]

−0.9113 [(0, 1, 2, 3, 4, 5), (0, 1, 2, 3, 4,
6), (0, 1, 2, 3, 5, 6)]

8 −0.1273 [(0, 1, 2, 4, 5, 6, 7), (1, 2, 3, 4, 5,
6, 7)]

−0.9633 [(0, 1, 2, 3, 4, 5, 6), (0, 1, 2, 3, 4,
6, 7)]

9 −0.5749 [(0, 1, 2, 4, 5, 6, 7, 8), (1, 2, 3, 4,
5, 6, 7, 8)]

−0.9851 [(0, 1, 2, 3, 4, 5, 6, 7), (0, 1, 2, 3,
4, 5, 7, 8)]

10 −0.3705 [(0, 1, 3, 4, 5, 6, 7, 8, 9), (0, 2, 3,
4, 5, 6, 7, 8, 9)]

−0.9937 [(0, 1, 2, 3, 4, 5, 6, 7, 8), (0, 1, 2,
3, 4, 5, 6, 8, 9)]

11 −0.6754 [(0, 1, 3, 4, 5, 6, 7, 8, 9, 10), (0,
2, 3, 4, 5, 6, 7, 8, 9, 10)]

−0.9973 [(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), (0, 1,
2, 3, 4, 5, 6, 7, 9, 10)]

12 −0.8281 [(0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11),
(0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)]

−0.9988 [(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11),
(0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11),
(0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11)]

Table 2: Maximum and minimum squeezing for (d− 1)-graphs
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Figure 4: Connected (d − 1)-graph with maximum squeezing. Here the vertices are represented by the
horizontal lines and the hyperedges are represented by the vertical lines. The inclusion of a vertex in a
hyperedge is indicated by a bullet (•) at the intersection.
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d k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11
5 −0.401 −0.6817
6 −0.5061 −0.664 −0.5307 −0.8686
7 −0.2925 −0.8166 −0.6357 −0.8636 −0.9449
8 −0.873 −0.6821 −0.8753 −0.9253 −0.9764
9 −0.6502 −0.9085 −0.4676 −0.8921 −0.9178 −0.9736 −0.9898
10 −0.8093 −0.9366 −0.8181 −0.8715 −0.8964 −0.9769 −0.9868 −0.9955
11 −0.1274 −0.8312 −0.959 −0.9602 −0.712 −0.9832 −0.988 −0.9949 −0.998

Table 3: Squeezing in complete k-graph

m1 =
〈a†a〉

m2 =
〈(a†)2a2〉

µ1 =
〈N̂〉

µ2 =
〈N̂2〉

detm(2) detµ(2) A2

d = 2 1.5 2 1.5 3.5 -0.25 1.25 -0.166
d = 3 3.5 14 3.5 17.5 1.75 5.25 0.5

Table 4: Agarwal-Tara measure of non-classicality for A2

4. The complete k-graphs with d vertices exhibit phase squeezing when d ≥ 5 and k ≥ 4. The
hypergraph state corresponding to the complete graph has no phase squeezing when d < 11. For
different values of d and k the values of phase-squeezing are shown in table 3.

4 Agarwal-Tara criterion

The Agarwal-Tara criterion is a well-known criterion of non-classicality of quantum states [34]. It is
stronger than many other criteria, such as, the determination of squeezing and sub-Poissonian photon
statistics, because it may reveal nonclassicality even when the other criteria fail. Using the conventional
notations used in literature we mention that for any classical probability distribution the matrix

m(n) =











1 m1 . . . mn−1

m1 m2 . . .
...

...
. . .

...
mn−1 . . . m2n−2











(25)

is positive definite given any value of n = 1, 2, 3, . . . , where mk = 〈(a†)kak〉. The existence of negative
eigenvalues ofm(n) is a witness of non-classicality. Following this observation, a measure of non-classicality
is represented by

An =
detm(n)

detµ(n) − detm(n)
< 0, where µ(n) =











1 µ1 . . . µn−1

µ1 µ2 . . .
...

...
. . .

...
µn−1 . . . µ2n−2











(26)

contains the moments of number operator µk = 〈N̂k〉 = 〈(a†a)k〉.
In appendix B, we explicitly construct the expressions of mk and µk for different values of k. We

observe that these values depend only on the number of the vertices d of the hypergraph. Below we
summarize our numerical findings:

1. The non-classicality measure A2 < 0 for d = 2. For higher values of d we have A2 > 0. In table 4
the values of A2 for d = 2 and 3 are tabulated.

2. For d = 2 the number states |0〉 , |1〉 , |2〉 and |3〉 forms the basis of the hypergraph states. Hence, we
can not determine the moments of the number operators 〈N̂k〉 for k > 3. Therefore, we calculate
A3 when d ≥ 3. We find that A3 < 0 for d = 3 and d = 4. For the larger values of d non-classicality
can not be determined by A3 which assumes positive value. Table 5 presents the values of A3 for
d = 3, 4 and 5.
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m3 =
〈(a†)3a3〉

m4 =
〈(a†)4a4〉

µ3 =
〈N̂3〉

µ4 =
〈N̂4〉

detm(3) detµ(3) A3

d = 3 52.5 168 98 584.5 -61.2499 110.25 -0.3571
d = 4 682.5 6552 760 11144.5 -2091.25 7586.25 -0.2160
d = 5 6742.5 151032 7068 526984.5 77600.749 494194.25 0.1862

Table 5: Agarwal-Tara measure of non-classicality for A3

m5 =
〈(a†)5a5〉

m6 =
〈(a†)6a6〉

µ5 =
〈N̂5〉

µ6 = 〈N̂6〉 detm(4) detµ(4) A4

d = 3 420 720 3526 23102.5 12405393 187211.06 -1.0153
d = 4 60060 514800 190792.5 2028032.5 3.01293 ×

1011
1.5322×1011 -2.0348

d = 5 3398220 75731760 5081768 1.371 ×
1018

−2.6151×
1018

−6.6556 ×
1016

-1.0261

Table 6: Agarwal-Tara measure of non-classicality for A4

3. In a similar fashion, we calculate the values of A4 for d = 3, 4 and 5 and collect them in the table
6.

The above numerical calculations suggest that the Agarwal-Tara criterion for non-classicality is satisfied
by the quantum hypergraph states. Depending on the number of vertices d in the hypergraphs An < 0
for n = 2, 3, 4 and d = 2, 3, 4, 5.

5 Coherence

In the literature, quantum coherence is studied via the measures; the relative entropy of coherence, and
the l1 norm of coherence. Given a density matrix ρ, we define the matrix ρdiag by deleting all off-diagonal
elements. The relative entropy of coherence is defined by [35]

Crel.ent(ρ) = S(ρdiag)− S(ρ), (27)

where S(ρ) is the von-Neumann entropy. The l1 norm of coherence is given by Cl1(ρ) =
∑

i,j,i 6=j |ρij |.
The quantum hypergraph state |G〉mentioned in equation (1) is also represented by the density matrix

ρG = |G〉 〈G| = 1
2d
(ρi,j)2d×2d , where ρi,j ∈ {1,−1}. In other words, the absolute value of the entries of

ρG is 1
2d
, when it is expressed in number basis. As the hypergraph state is a pure state the von-Neumann

entropy S(ρG) = 0. Therefore, the relative entropy of coherence of quantum hypergraph states in number
basis [25] is

Crel.ent(ρG) = S(ρdiag) = −2d × 1

2d
× log

(

1

2d

)

= d log(2). (28)

In addition, the l1 norm of coherence for any quantum hypergraph state Cl1(ρG) = 2d − 1. Coherence in
l1 norm and relative entropy are plotted in figure 6a and 6b, respectively.

We also calculate coherence of the hypergraph states in phase basis. We find that different classes of
hypergraph states have different values of coherence. Here, we study coherence of states for (d−1)-graphs.

d 4 5 6 7 8 9 10
Coherence in l1 norm 15 31 63 127 255 511 1023

Table 7: Coherence in l1 norm in number basis for (d− 1)-graphs
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d 4 5 6 7 8 9 10
Coherence in entropy 2.772 3.465 4.158 4.852 5.545 6.238 6.931

Table 8: Coherence in entropy in number basis for (d− 1)-graphs

(a) l1 norm of coherence for any hypergraph in
number basis

(b) Relative entropy of coherence for any hyper-
graph in number basis

Figure 6: Coherence in number basis. The number of vertices are plotted in the x axis.

d max|G〉 Ce Combination of hyperedges obtaining
max|G〉 Ce

min|G〉 Ce Combination of hyper-
edges obtaining min|G〉
Ce

4 2.4889 (0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3) 1.709 (0, 2, 3), (1, 2, 3)
5 2.5315 (0, 1, 2, 3), (0, 1, 2, 4), (0, 1, 3, 4), (0, 2,

3, 4),(1, 2, 3, 4)
1.2645 (0, 2, 3, 4), (1, 2, 3, 4)

6 1.9539 (0, 1, 2, 3, 4), (0, 1, 2, 3, 5), (0, 1, 2, 4, 5),
(0, 1, 3, 4, 5), (0, 2, 3, 4, 5), (1, 2, 3, 4, 5)

0.8317 (0, 1, 2, 3, 4), (1, 2, 3,
4, 5)

7 1.579 (0, 1, 2, 3, 4, 5), (0, 1, 2, 3, 4, 6), (0, 1, 2,
3, 5, 6), (0, 1, 2, 4, 5, 6), (0, 1, 3, 4, 5, 6),
(0, 2, 3, 4, 5, 6), (1, 2, 3, 4, 5, 6)

0.496 (0, 1, 2, 4, 5, 6), (1, 2,
3, 4, 5, 6)

8 0.9944 (0, 1, 2, 3, 4, 5, 6), (0, 1, 2, 3, 4, 5, 7), (0,
1, 2, 3, 4, 6, 7), (0, 1, 2, 3, 5, 6, 7), (0, 1,
2, 4, 5, 6, 7), (0, 1, 3, 4, 5, 6, 7), (0, 2, 3,
4, 5, 6, 7), (1, 2, 3, 4, 5, 6, 7)

0.2513 (0, 1, 3, 4, 5, 6, 7), (1,
2, 3, 4, 5, 6, 7)

9 0.6774 (0, 1, 2, 3, 4, 5, 6, 7), (0, 1, 2, 3, 4, 5, 6,
8), (0, 1, 2, 3, 4, 5, 7, 8), (0, 1, 2, 3, 4, 6,
7, 8), (0, 1, 2, 3, 5, 6, 7, 8), (0, 1, 2, 4, 5,
6, 7, 8), (0, 1, 3, 4, 5, 6, 7, 8), (0, 2, 3, 4,
5, 6, 7, 8), (1, 2, 3, 4, 5, 6, 7, 8)

0.1324 (0, 2, 3, 4, 5, 6, 7, 8),
(1, 2, 3, 4, 5, 6, 7, 8)

10 0.3135 (0, 1, 2, 3, 4, 5, 6, 7,8), (0, 1, 2, 3, 4, 5,
6, 8,9), (0, 1, 2, 3, 4, 5, 7, 8,9), (0, 1, 2, 3,
4, 6, 7, 8,9), (0, 1, 2, 3, 5, 6, 7, 8,9), (0, 1,
2, 4, 5, 6, 7, 8,9), (0, 1, 3, 4, 5, 6, 7, 8,9),
(0, 2, 3, 4, 5, 6, 7, 8,9), (1, 2, 3, 4, 5, 6, 7,
8,9),(0, 1, 2, 3, 4, 5, 6, 7,9)

0.0078 (0, 2, 3, 4, 5, 6, 7, 8, 9),
(1, 2, 3, 4, 5, 6, 7, 8, 9)

Table 9: Maximum and minimum coherence in entropy in phase basis for (d− 1)-graphs
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d max|G〉 Cl1 Combination of hyperedges obtaining
max|G〉 Cl1

min|G〉 Cl1 Combination of hyper-
edges obtaining min|G〉
Cl1

4 12.8646 (0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3) 7.4926 (0, 2, 3), (1, 2, 3)
5 19.4148 (0, 1, 2, 3), (0, 1, 2, 4), (0, 1, 3, 4), (0, 2,

3, 4),(1, 2, 3, 4)
9.0122 (0, 2, 3, 4), (1, 2, 3, 4)

6 25.6414 (0, 1, 2, 3, 4), (0, 1, 2, 3, 5), (0, 1, 2, 4, 5),
(0, 1, 3, 4, 5), (0, 2, 3, 4, 5), (1, 2, 3, 4, 5)

10.8189 (0, 2, 3, 4,5), (1, 2, 3,
4, 5)

7 31.4497 (0, 1, 2, 3, 4, 5), (0, 1, 2, 3, 4, 6), (0, 1, 2,
3, 5, 6), (0, 1, 2, 4, 5, 6), (0, 1, 3, 4, 5, 6),
(0, 2, 3, 4, 5, 6), (1, 2, 3, 4, 5, 6)

10.234 (0, 2, 3, 4, 5, 6), (1, 2,
3, 4, 5, 6)

8 35.805 (0, 1, 2, 3, 4, 5, 6), (0, 1, 2, 3, 4, 5, 7), (0,
1, 2, 3, 4, 6, 7), (0, 1, 2, 3, 5, 6, 7), (0, 1,
2, 4, 5, 6, 7), (0, 1, 3, 4, 5, 6, 7), (0, 2, 3,
4, 5, 6, 7), (1, 2, 3, 4, 5, 6, 7)

11.4444 (0, 2, 3, 4, 5, 6, 7), (1,
2, 3, 4, 5, 6, 7)

Table 10: Maximum and minimum coherence in l1 norm in phase basis for (d− 1)-graphs

3

2

1

0

(a) d = 4,
max|G〉{Crel.ent} =
2.4889

4

3

2

1

0

(b) d = 5,
max|G〉{Crel.ent} =
2.5315

5

4

3

2

1

0

(c) d = 6,
max|G〉{Crel.ent} =
1.9539

6

5

4

3

2

1

0

(d) d = 7,
max|G〉{Crel.ent} =
1.579

7

6

5

4

3

2

1

0

(e) d = 8, and
max|G〉{Crel.ent} =
0.9944

Figure 7: Connected (d − 1)-graph with maximum relative entropy of coherence calculated in phase
basis. Here the vertices are represented by the horizontal lines and the hyperedges are represented by the
vertical lines. The inclusion of a vertex in a hyperedge is indicated by a bullet (•) at the intersection.
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Figure 8: Connected (d − 1)-graph with minimum relative entropy coherence calculated in phase basis.
Here the vertices are represented by the horizontal lines and the hyperedges are represented by the vertical
lines. The inclusion of a vertex in a hyperedge is indicated by a bullet (•) at the intersection.
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Figure 9: Connected (d− 1)-graph with minimum l1 norm coherence, calculated in phase basis. Here the
vertices are represented by the horizontal lines and the hyperedges are represented by the vertical lines.
The inclusion of a vertex in a hyperedge is indicated by a bullet (•) at the intersection.
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(a) Maximum and minimum values of relative
entropy coherence for (d − 1)-graphs. (Red
and blue points represent the minimum and
maximum.)

(b) Maximum and minimum values of l1 norm
of coherence for (d − 1)-graphs. (Red and
blue points represent the minimum and max-
imum.)

Figure 10: Range of coherence for (d− 1) graphs. The number of vertices d is plotted in the x-axis.

1. An interesting observation is that if the hypergraph contains all possible combination of (d − 1)
hyperedges then the corresponding state has the maximum value of relative entropy as well as the
maximum value of l1 norm. These hypergraphs are plotted in the figure 7.

2. The maximum and minimum values of relative entropy of coherence in phase basis of (d−1)-graphs
are listed in the table 9 and plotted in the figure 10a. The hypergraphs with minimum coherence
of entropy are depicted in figure 8.

3. The maximum and minimum values of l1 norm of (d−1) graphs in phase basis are plotted in figure
10b. The hypergraphs with minimum coherence of l1 norms are depicted in figure 9.

Since coherence is observed in phase basis, this observation is consistent with the earlier observation of
squeezing, a quantum feature, being observed in the phase quadrature.

6 Concluding remarks

Given any hypergraph with d vertices, there is a quantum hypergraph state in 2d dimensional Hilbert

space H2d . We studied the non-classical properties of these states. Their number-phase uncertainty
relations were examined. It was observed that though there is no squeezing in the number quadrature for
any hypergraph, there are states squeezed in the phase quadrature. We chose a number of hypergraphs
and numerically compute their phase squeezing, which include the connected hypergraph with single
hyperedge, complete (d − 1)-graphs. In case of the connected hypergraphs with single hyperedge the
degree of squeezing is close to −1 when d increases. We also establish that the Agarwal-Tara criterion
for non-classicality holds for quantum hypergraph states when number of vertices d ≤ 5. Our numerical
observations may help an interested reader, in future, to produce a general statement in this regard
applicable to all hypergraph states. Coherence, an important facet of quantumness, was also studied
in different basis using various measures for the relevant states. It was seen that coherence exhibits
non-trivial behavior in phase basis.

An interested reader may attempt further works in this direction. The concepts of squeezing and
general uncertainty relations in continuous variable quantum states have been investigated in the literature
[50]. It can be extended to the discrete qubit based entangled states, considering the examples of highly
entangled hypergraph states. For this purpose, the appropriate oscillator algebra in the finite dimensional
Hilbert space should be constructed with a hypergraph based network of multi-party oscillators. This
naturally leads to analogs of squeezing and uncertainty relations, which assist in characterizing the
underlying entanglement. This is in parallel to the use of Peres-Horodecki PPT criterion of the finite
dimensional Hilbert space to the Gaussian entangled states. Now, an entanglement measure through
the uncertainty relations can be proposed. One may extend it for the non-Gaussian states, based on
higher order uncertainties, originating from SU(2) and SU(1, 1) group theoretical descriptions of quantum
optical entangled states.
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A Essential concepts of linear algebra

Hermitian and skew-Hermitian matrix: A matrx Â is called Hermitan if Â† = Â, where Â† is
the conjugate transpose of Â. Also, a matrix Â is skew-Hermitan if Â† = −Â. Note that, if Â is
skew-Hermitian, then ιÂ is Hermitan, where ι is the complex identity.

Lemma 1 Gershgorin circle theorem: Let Â = (ai,j)n×n be a complex square matrix and Ri =
∑n

j 6=i,j=1 |ai,j |. Also, D(ai,i, Ri) ⊂ C is a closed dice centered at ai,i of radius Ri. Then, every eigenvalue
of A lies within at least one of the discs D(ai,j , Ri). In other words for any eigenvalue λ there is an i,
such that [51],

|λ− ai,i| ≤
n
∑

j 6=i,j=1

|ai,j |.

Rayleigh quotient: Given any Hermitian matrix Â and a non-zero vector x, the Rayleigh quotient is
defined by [51]

R(Â, x) =
x†Âx

x†x
. (29)

If x represents a quantum state |x〉, then x†x = 〈x|x〉 = 1, and the Rayleigh quotient is R(Â, |x〉) =
〈x|Â|x〉. If λmin and λmax be the minimum and maximum eigenvalues of Â, then λmin ≤ R(Â, |x〉) ≤ λmax,
for any quantum state |x〉.
Circulant matrix: A circulant matrix [52] C or order n has the following form

C =

















c0 cn−1 . . . c2 c1
c1 c0 cn−1 . . . c2
... c1 c0

. . .
...

cn−2
. . .

. . .
. . . cn−1

cn−1 cn−2 . . . c1 c0

















. (30)

Recall the phase operator P̂ in equation (12), which is a matrix of order 2d. If s = |k− l| for some k and
l then

cs =
2π

4d
Pk,l =

2π

4d

2d−1
∑

r=0

r exp

(

2πιr|k − l|
2d

)

=
2π

4d

2d−1
∑

r=0

r exp

(

2πιrs

2d

)

. (31)

Also, it is easy to check that c2d−s = cs. Therefore, P̂ is a Hermitian circulant matrix.
Toeplitz matrix: An n× n Toeplitz matrix [52] A has the form

A =

























a0 a−1 a−2 · · · · · · a−(n−1)

a1 a0 a−1
. . .

...

a2 a1
. . .

. . .
. . .

...
...

. . .
. . .

. . . a−1 a−2

...
. . . a1 a0 a−1

an−1 · · · · · · a2 a1 a0

























(32)
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The equation (17) suggests that the elements of [N̂ , P̂ ] can be expressed as

as =
2πs

2d

2d−1
∑

r=0

r exp

(

2πιrs

2d

)

, (33)

where s = (k − l). It is easy to verify that a−s = −as. Therefore, matrix [N̂ , P̂ ] is a skew-Hermitian
Toeplitz matrix.

B Calculations for Agarwal-Tara criterion

Here, we calculate the higher order moments of the number operator N̂ and verify the Agarwal-Tara
criterion of non-classicality mentioned in equation (26) for different values of n. We observe that these
calculations depend on the number of vertices in the hypergraph but independent of the distribution of
the hyperedges. The calculations are as follows.

Applying an annihilation operator on |ψ0〉 = |G〉, mentioned in equation (1) we obtain an unnormal-
ized state vector,

a |ψ0〉 =
1√
2d

2d−1
∑

i=0

(−1)f(i)a |i〉 = 1√
2d

2d−1
∑

i=1

(−1)f(i)
√
i |i− 1〉 . (34)

The normalization factor is given by 1√
W1

, where

W1 =
2d−1
∑

i=1

[

(−1)f(i)
√
i√

2d

]2

=
1

2d

2d−1
∑

i=1

i =
2d(2d − 1)

2.2d
=

(2d − 1)

2
. (35)

Normalizing the state in equation (34) we find

|ψ1〉 =
√

2

2d(2d − 1)

2d−1
∑

i=1

(−1)f(i)
√
i |i− 1〉 . (36)

Symbolically, we can write a |ψ0〉 =
√
W1 |ψ1〉. Applying the annihilation operator on |ψ1〉 we have

a |ψ1〉 =
√

2

2d(2d − 1)

2d−2
∑

i=1

(−1)f(i+1)
√
i+ 1

√
i |i− 1〉 . (37)

Here, the coefficient of |i− 1〉 is
√

2
2d(2d−1)

(−1)f(i+1)
√
i+ 1

√
i. Hence, the normalization factor will be

given by 1√
W2

, where

W2 =

2d−2
∑

i=1

[√

2

2d(2d − 1)
(−1)f(i+1)

√
i+ 1

√
i

]2

=
2

2d(2d − 1)

2d−2
∑

i=1

i(i+ 1)

=
2

2d(2d − 1)

1

3
(2d − 2)(2d − 1)(2d) =

2(2d − 2)

3
.

(38)

After normalization the state is

|ψ2〉 =
√

3

2(2d − 2)

√

2

2d(2d − 1)

2d−2
∑

i=1

(−1)f(i+1)
√
i+ 1

√
i |i− 1〉

=

√

3

2d(2d − 1)(2d − 2)

2d−3
∑

i=0

(−1)f(i+2)
√
i+ 2

√
i+ 1 |i〉 .

(39)
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Now, equation (39) indicates a2 |ψ0〉 = a
√
W1 |ψ1〉 =

√
W1W2 |ψ2〉. In general, for 0 < k < (2d − 1), we

can prove that

ak |ψ0〉 =
√

W1W2 . . .Wk |ψk〉 ,

where |ψk〉 =
√

k + 1
2dP(k+1)

2d−(k+1)
∑

i=0

(−1)f(i+k)
√

i+kPk |i〉 , and Wk =
k(2d − k)

k + 1
.

(40)

Here, we denote 2dPk = 2d!
(2d−k)!

= 2d(2d − 1)(2d − 2) . . . (2d − k + 1). Several numerical values of Wk

depending on d are mentioned in the table below.

W1 W2 W3 W4 W5 W6

d = 2 3
2

4
3

3
4

d = 3 7
2 4 15

4
16
5

5
2

12
7

d = 4 15
2

28
3

39
4

48
5

55
6

60
7

d = 5 31
2 20 87

4
112
5

45
2

156
7

Note that, the calculation of Wk for k ≥ 2 needs the notion of sum of products of consecutive
integers [53]. Given two dummy indices r and i we define fr(i) = i(i + 1)(i + 2) . . . (i + r − 1) and
Fr(i) =

1
r+1 i(i+ 1)(i+ 2) . . . (i+ r). Clearly, Fr(0) = 0, and

Fr(i)− Fr(i− 1) =
1

r + 1
i(i+ 1)(i+ 2) . . . (i+ r)− 1

r + 1
(i− 1)i(i+ 1) . . . (i+ r − 1)

=
1

r + 1
i(i+ 1) . . . (i+ r − 1)[(i+ r)− (i− 1)] = fr(i).

(41)

Therefore, for any integer n with 1 ≤ n ≤ (2d − 1) we have

n
∑

i=1

fr(i) = Fr(n) =
1

r + 1
n(n+ 1)(n+ 2) . . . (n+ r) (42)

For r = 1 and n = (2d − 1) we have

2d−1
∑

i=1

f1(i) =

2d−1
∑

i=1

i =
(2d − 1)2d

2
, (43)

and for r = 2 and n = (2d − 2) we have

2d−2
∑

i=1

f2(i) =

2d−2
∑

i=1

i(i+ 1) =
(2d − 2)2d(2d + 1)

3
. (44)

Note that, the dimension of the state |ψk〉 is 2d for all k. Also, the coefficients of the vectors |i〉 for
i > 2d − (k+1) in |ψk〉 are 0. Hence, they are excluded from the above equation. Considering conjugate
transpose on both sides of equation (40), we have

〈ψ0| a†
k
=

√

W1W2 . . .Wk 〈ψk|

where 〈ψk| =
√

k + 1
2dP(k+1)

2d−(k+1)
∑

i=0

(−1)f(i+k)
√

i+kPk 〈i| .
(45)

Equations (40) and (45) together indicate

mk = 〈a†kak〉 = 〈ψ0|a†
k
ak|ψ0〉 =W1W2 . . .Wk 〈ψk|ψk〉 =W1W2 . . .Wk, (46)

since, 〈ψk|ψk〉 = 1. For k = 1 , we have 〈a†a〉 =W1 and for k = 2 we have 〈(a2)†a2〉 =W1W2.
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Next, we calculate the values of µk = 〈N̂k〉 = 〈(a†a)k〉. Recall that, in finite dimensions the relation
between the creation and the annihilation operators are given by equation (4). Thus

N̂2 = (a†a)2 = a†aa†a = a†(I + a†a− 2d |2d − 1〉 〈2d − 1|)a = a†a+ (a†)2a2 − 0

or 〈N̂2〉 = 〈a†a〉+ 〈(a†)2a2〉 =W1 +W1W2.
(47)

Now we take up the Agarwal-Tara criterion for checking non-classicality. Putting n = 2 in equation
(26) and applying equation (46), we have

detm(2) =

∣

∣

∣

∣

1 〈(a)†a〉
〈(a)†a〉 〈(a2)†a2〉

∣

∣

∣

∣

=

∣

∣

∣

∣

1 W1

W1 W1W2

∣

∣

∣

∣

=W1W2 −W 2
1 ,

and detµ(2) =

∣

∣

∣

∣

1 〈a†a〉
〈a†a〉 〈(a†a)2〉

∣

∣

∣

∣

==

∣

∣

∣

∣

1 W1

W1 W1 +W1W2

∣

∣

∣

∣

=W1 +W1W2 −W 2
1 .

(48)

Hence,

A2 =
detm(2)

detµ(2) − detm(2)
=

W1W2 −W 2
1

W1 +W1W2 −W 2
1 − (W1W2 −W 2

1 )
=W2 −W1 =

2(2d − 2)

3
− (2d − 1)

2
.

(49)

For d = 2 and 3 we calculate the values of detm(2), detµ(2) and A2 and collect them in table 4.
For calculating A3 we need higher values of 〈N̂3〉 and 〈N̂4〉. Making use of the commutation relation

between a and a†, equation (4), we have

(a†)2a2.a†a = (a†)2a(aa†)a = (a†)2a(I + a†a− 2d |2d − 1〉 〈2d − 1|)a
= (a†)2a2 + (a†)2aa†a2 − 0 = (a†)2a2 + (a†)2(I + a†a− 2d |2d − 1〉 〈2d − 1|)a2

= (a†)2a2 + (a†)2a2 + (a†)3a3 − 0 = 2(a†)2a2 + (a†)3a3,

and (a†)3a3.a†a = (a†)3a2(aa†)a = (a†)3a2(I + a†a− 2d |2d − 1〉 〈2d − 1|)a
= (a†)3a3 + (a†)3a2a†a2 − 0 = (a†)3a3 + (a†)3a(aa†)a2

= (a†)3a3 + (a†)3a(I + a†a− 2d |2d − 1〉 〈2d − 1|)a2

= (a†)3a3 + (a†)3a3 + (a†)3aa†a3 − 0

= 2(a†)3a3 + (a†)3(I + a†a− 2d |2d − 1〉 〈2d − 1|)a3

= 2(a†)3a3 + (a†)3a3 + (a†)4a4 − 0 = 3(a†)3a3 + (a†)4a4.

(50)

Continuing in this fashion we find

(a†)kak.a†a = k(a†)kak + (a†)k+1ak+1, (51)

for k = 1, 2, 3, . . . .
Applying this relation it can be seen that

N̂3 = (a†a)3 = N̂2a†a = (a†a+ a2†a2)(a†a) = a†aa†a+ a2†a2a†a

= a†a+ a2†a2 + 2a2†a2 + a3†a3 = a†a+ 3a2†a2 + a3†a3

or 〈N̂3〉 =W1 + 3W1W2 +W1W2W3,

and N̂4 = (a†a)4 = N̂3a†a = (a†a+ 3a2†a2 + a3†a3)(a†a)

= a†aa†a+ 3a2†a2a†a+ a3†a3a†a = a†a+ a2†a2 + 6a2†a2 + 3a3†a3 + 3a3†a3 + a4†a4

= a†a+ 7a2†a2 + 6a3†a3 + a4†a4

or 〈N̂4〉 =W1 + 7W1W2 + 6W1W2W3 +W1W2W3W4.

(52)
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Putting these values in the Agarwal-Tara criterion for n = 3 we find

detm(3) =

∣

∣

∣

∣

∣

∣

1 m1 m2

m1 m2 m3

m2 m3 m4

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 〈a†a〉 〈(a2)†a2〉
〈a†a〉 〈(a2)†a2〉 〈(a3)†a3〉

〈(a2)†a2〉 〈(a3)†a3〉 〈(a4)†a4〉

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 W1 W1W2

W1 W1W2 W1W2W3

W1W2 W1W2W3 W1W2W3W4

∣

∣

∣

∣

∣

∣

=W 2
1W2W3(W2 −W1)(W4 −W2) +W 3

1W
2
2 (W3 −W2).

and detµ(3) =

∣

∣

∣

∣

∣

∣

1 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 〈a†a〉 〈(a†a)2〉
〈a†a〉 〈(a†a)2〉 〈(a†a)3〉

〈(a†a)2〉 〈(a†a)3〉 〈(a†a)4〉

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 W1 W1 +W1W2

W1 W1 +W1W2 W1 + 3W1W2 +W1W2W3

W1 +W1W2 W1 + 3W1W2 +W1W2W3 W1 + 7W1W2 + 6W1W2W3 +W1W2W3W4

∣

∣

∣

∣

∣

∣

(53)

detm(2), detµ(2), A3 for different values of d are tabulated in table 5.
To calculate A4 we need the expressions of N̂5 and N̂6, which are as follows:

N̂5 = (a†a)5 = N̂4a†a = (a†a+ 7a2†a2 + 6a3†a3 + a4†a4)(a†a)

= a†aa†a+ 7a2†a2a†a+ 6a3†a3a†a+ a4†a4a†a

= a†a+ a2†a2 + 14a2†a2 + 7a3†a3 + 18a3†a3 + 6a4†a4 + 4a4†a4 + a5†a5

= a†a+ 15a2†a2 + 25a3†a3 + 10a4†a4 + a5†a5

(54)

or 〈N̂5〉 =W1 + 15W1W2 + 25W1W2W3 + 10W1W2W3W4 +W1W2W3W4W5,

and N̂6 = (a†a)6 = U5a†a = (a†a+ 15a2†a2 + 25a3†a3 + 10a4†a4 + a5†a5)(a†a)

= a†aa†a+ 15a2†a2a†a+ 25a3†a3a†a+ 10a4†a4a†a+ a5†a5a†a

= a†a+ a2†a2 + 30a2†a2 + 15a3†a3 + 75a3†a3 + 25a4†a4

+ 40a4†a4 + 10a5†a5 + 5a5†a5 + a6†a6

= a†a+ 31a2†a2 + 90a3†a3 + 65a4†a4 + 15a5†a5 + a5†a5

or 〈N̂6〉 =W1 + 31W1W2 + 90W1W2W3 + 65W1W2W3W4 + 15W1W2W3W4W5 +W1W2W3W4W5W6

(55)

These expressions allow us to calculate the values of A4 for different values of d in table 6.
The propagation of the coefficients in the expression of N̂k for k = 1, 2, . . . 6 can be seen in the table

below. The higher powers of N̂k for larger values of k will also follow a similar pattern.

a†a (a†)2a2 (a†)3a3 (a†)4a4 (a†)5a5 (a†)6a6

N̂ 1

N̂2 1 1

N̂3 1 3 = 1 +
1 + 1

1

N̂4 1 7 = 1 +
3 + 1× 3

6 = 1 +
3 + 2× 1

1

N̂5 1 15 = 1 +
7 + 1× 7

25 = 7 +
6 + 2× 6

10 = 1 +
6 + 3× 1

1

N̂6 1 31 = 1 +
15+1×15

90 = 15+
25+2×25

65 = 25+
10+3×10

15 = 10+
1 + 4× 1

1
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