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Performance-Complexity Analysis for MAC

ML-based Decoding with User Selection
Hsiao-feng (Francis) Lu, Petros Elia, and Arun Singh

Abstract—This work explores the rate-reliability-complexity
limits of the quasi-static K-user multiple access channel (MAC),
with or without feedback. Using high-SNR asymptotics, the work
first derives bounds on the computational resources required to
achieve near-optimal (ML-based) decoding performance. It then
bounds the (reduced) complexity needed to achieve any (including
suboptimal) diversity-multiplexing performance tradeoff (DMT)
performance, and finally bounds the same complexity, in the
presence of feedback-aided user selection. This latter effort
reveals the ability of a few bits of feedback not only to improve
performance, but also to reduce complexity. In this context, the
analysis reveals the interesting finding that proper calibration
of user selection can allow for near-optimal ML-based decoding,
with complexity that need not scale exponentially in the total
number of codeword bits. The derived bounds constitute the
best known performance-vs-complexity behavior to date for ML-
based MAC decoding, as well as a first exploration of the
complexity-feedback-performance interdependencies in multiuser
settings.

I. INTRODUCTION

A. Multiple access system model

We consider a symmetric multiple access channel (MAC)

with K single-antenna users, communicating to a receiver with

nr receiving antennas, over a quasi-static fading channel. Each

user i, i = 1, 2, . . . ,K communicates over the same duration

of T time slots, while the receiver accumulates an nr × T

signal matrix Y taking the form

Y =
√

SNR

K
∑

i=1

hi x
⊤
i +W (1)

where hi ∼ CN (0, Inr
) is the ith user channel vector

with independent identically distributed (i.i.d.) zero-mean unit-

variance CN (0, 1) complex Gaussian entries, where W is

the received noise matrix with i.i.d. CN (0, 1) entries, where

SNR denotes the signal to noise ratio, and where xi =
[xi,1 · · ·xi,T ]

⊤ is a scaled version of a T -length code vector

of user i satisfying an average power constraint E ‖xi‖2 ≤
T, i = 1, . . . ,K.

1) Exploring the scenario of outage-limited communica-

tions with bounded computational resources: We here con-

sider the outage-limited MAC setting, where the channel in

(1) is randomly drawn but it remains fixed throughout the

coding duration of T channel uses. This common assumption

corresponds to scenarios where the channel changes slowly,

and where communication takes place under strict latency

This paper was presented in part at IEEE VTS APWCS 2014, Ping Tung,
Taiwan, August 28-29, 2014.

constraints that do not allow for encoding over a large number

of fading realizations.

This same outage-limited setting can often experience re-

duced reliability due to the event of outage where the in-

stantaneous channel cannot support the user rates, and due to

the fact that in cases like the MAC, the maximum allowable

rates are diminished by interference. Moreover, to meet the

strong demands for faster data rates on wireless and cellular

channels, most communications systems would opt to operate

closer and closer to the theoretical limits of capacity, at the

further expense of reliability. This in turn, naturally forces the

need for high-performance transceivers that will not further

sacrifice reliability performance, but which can often be com-

putationally expensive, or even computationally prohibitive.

What happens though to this performance if communica-

tion takes place under strict constraints on the computational

resources that can be used to encode and decode? Equiva-

lently, one can ask, what computational resources are needed

to achieve a certain rate-reliability performance. The main

objective of our work is to provide some understanding of such

complexity-performance interdependencies that are crucial in

the MAC.

2) Complexity-performance interdependencies in the MAC.:

Naturally there are many such interdependencies between the

key parameters of SNR, rate, computational complexity and

reliability. For example it is easy to imagine that, typically,

decreasing computational resources can potentially increase

the probability of error by placing a constraint on the coding

duration T , by forcing the use of less complex transceivers

with suboptimal performance, or even by requiring that the

decoding effort be terminated early (computational halt) at the

risk of additional errors. Similarly, increased user rates can

mean larger and denser codes, with more errors and larger

decoding algorithmic efforts. Along the same lines, fixing the

rate and increasing the SNR, will make the codewords sparser

and thus possibly easier to differentiate and decode.

B. Complexity-performance measures and high-SNR approxi-

mations

Let Nmax denote the amount of computational reserves, in

floating point operations (flops) per T channel uses, that the

system is endowed with, in the sense that after Nmax flops, the

decoder must simply terminate, potentially prematurely and

before completion of the task, thus declaring an error. Also

let Pe be the probability of error associated to the decoder,

in the presence of the aforementioned computational con-

straints. Motivated by the need for reduced-complexity high-

performance ML-based decoders (cf. [7]–[11]), we explore
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the properties of this quadruple
(

SNR, R, Pe, Nmax

)

, for ML-

based MAC decoding.

1) High SNR analysis of performance and complexity:

Towards making sense of the complexity-vs-performance in-

terdependencies, we will exploit carefully-chosen asymptotic

bounds, where analytical tools can rigorously and concisely

approximate these interdependencies, allowing for cleaner

insights that can yield impact. Such asymptotic bounds (gen-

erally mapping a random problem to its near-deterministic

limits), help to identify where the largest gaps in our under-

standing may lie. We will here focus on high-SNR asymptotic

bounds but note that the derived approximations can offer in-

sights in operational regimes of moderate-to-high SNR values.

Such emphasis on the moderate-to-high SNR values, can better

capture the core of the complexity-vs-performance problem

because such operational regions can eventually support higher

rates, corresponding to larger codebooks that are typically —

but not always, as we will surprisingly see later on — harder

to decode.

Towards this, we let each user’s rate scale as R =
r log2 SNR, where r denotes the multiplexing gain [6] de-

scribing the density of the constellation, and serving as a

measure of how far each user’s rate is from the capacity of an

AWGN channel. Each user i employs a code Xr,i of cardinality

|Xr,i| = 2RT = SNRrT , and the receiver uses a decoder Dr,

which is considered to make an error if any of the K users’

messages is not decoded correctly. We restrict our attention to

the class of lattice codes and joint ML decoders, which we

describe in Section I-D that follows.

2) Complexity and reliability exponents: For complexity

analysis we adopt the high-SNR approach in [1], [2], where

for some r, for some encoders {Xr,i}Ki=1, and for a decoder

Dr, the complexity exponent c(r) was defined to be

c(r) := lim
SNR→∞

logNmax(r)

log SNR
. (2)

We also adopt the well-known DMT approach of [6] where,

in the same high SNR regime, the diversity gain d(r) takes

the form

d(r) := − lim
SNR→∞

logPe(r)

log SNR
. (3)

Using this asymptotic approach, the work in [5] has shown

that the optimal K-user MAC DMT performance, takes the

form

d∗mac(r) :=

{

nr(1− r), if 0 ≤ r ≤ nr

K+1 ,

d∗K,nr
(Kr), if nr

K+1 < r ≤ nr

K
,

(4)

where d∗m,n(r) denotes the optimal DMT of an (m × n)
MIMO channel (cf. [6] for its exact characterization). Our first

effort here will be to bound the complexity exponent c(r) that

can guarantee any MAC-DMT performance d(r) ≤ d∗mac(r).
Before we do that, let us try to get some insight on these two

competing exponents.

3) Insight on d(r) and c(r): To gain some insight, we note

that in terms of the MAC-DMT performance, the above ex-

pression in (4) reflects the existence of two distinct r regions;

the lightly-loaded multiplexing gain region 0 ≤ r ≤ nr

K+1
where the MAC exhibits single-user behavior as if there

were no multiuser interference, and the heavily-loaded region
nr

K+1 < r ≤ nr

K
, where the MAC exhibits an antenna-pooling

behavior.

In terms of the complexity exponent c(r), it is easy to see

that in this MAC setting, there is a total of 2RKT = SNRrKT

codewords (jointly from all users), which means that a brute-

force joint ML decoder would always make 2RKT codeword

visits 1. Thus in terms of exponents, this means that such

a brute-force optimal ML decoder, can achieve the optimal

d∗mac(r) with a required complexity exponent c(r) = rKT that

is indeed the maximum (meaningful) complexity exponent in

this setting2. We will show that a properly designed sphere

decoder can achieve this same ML performance, with a

reduced complexity exponent c(r) < rKT . To give the reader

an idea, we can recall from the work in [1] that, if for example,

there is only one user (K = 1) who has nt transmit antennas,

and the receiver has nr ≥ nt antennas, then — again in the

high SNR limit — this same ML performance can be achieved

with computational resources that are substantially smaller

than brute force, and which corresponded to an (effective)

complexity exponent that was a non-monotonic3 piece-wise

linear function in r, of the form

c(r) = rT

(

1− r

nt

)

, r = 0, 1, 2, . . . , nt.

We will do something similar here, for the multiuser case K ≥
1, and we will also explore the effect of a few bits of feedback

on the d(r) and c(r).

C. Notation and assumptions

Following [6], we use
.
= to denote the exponential equality,

i.e., a function f(SNR) is said to be f(SNR)
.
= SNRb if

and only if limSNR→∞
log f(SNR)
log SNR

= b. Exponential inequalities

such as ≤̇, ≥̇ are similarly defined. By s = ⌈x⌉ we mean

the smallest integer s ≥ x, and by t = ⌊x⌋ we mean the

largest integer t ≤ x. Capital boldface letters are reserved for

matrices, and the lower-case boldface ones are for column

vectors. A† is the Hermitian transpose of matrix A, and

(x)+ := max{x, 0}. Finally, we define ν := min{K,nr}.

In terms of assumptions, we consider fading coefficients

that have a circularly symmetric complex-normal distribution

and which are i.i.d. in space. As stated, the coding duration is

smaller than the coherence interval of the channel, and hence

the fading is randomly drawn, but it is held fixed throughout

the communication process. We will assume that the receiver

has full channel state information, i.e., knows completely the

channel vectors hi of every user i, while the users have no

knowledge of hi in the case of no feedback. Furthermore,

1The number of codeword visits is — in the high SNR setting — in the
same order as the number of computational flops.

2Considering decoders with higher complexity than brute-force ML, is
unnecessary because ML decoders are already optimal.

3This non monotonic expression is maximum somewhere in the mid-ranges
of r, suggesting that the computational resources to achieve the asymptotically
optimal complexity need not necessarily increase with increasing rate. For
example, for the simple case of nt = 2, in the presence of the minimum
required T = nt = 2 in order to achieve the optimal DMT of d∗

2,nr
(r), the

complexity exponent was increasing as c(r) = r for 0 ≤ r ≤ 1, and was
then decreasing as c(r) = 2− r for 1 ≤ r ≤ 2.
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the rate of communication R is kept constant and thus does

not change as a function of the channel and of the feedback.

Finally, different assumptions regarding the structure of the

code and decoder, will be presented immediately below in

Section I-D. Assumptions on the feedback-aided user-selection

algorithm will be presented in Sec. III.

D. Lattice encoders and joint decoder

Directly from (1) we have the joint real-valued vectorized

model which takes the form

y =
√

SNRHx+w (5)

where

H = IT ⊗
[

Re {Heq} −Im {Heq}
Im {Heq} Re {Heq}

]

(6)

where

Heq = [h1 · · · hK ]

represents the entire (nr ×K) channel fading matrix, where

x = [Re{x1,1} Im{x1,1} · · ·Re{xK,1} Im{xK,1}
Re{x1,2} Im{x1,2} · · · Re{xK,T } Im{xK,T }]⊤

is the joint codeword vector aggregated over all users, and

where y and w are defined similarly to x. The joint codeword

x is decoded using a joint ML-based decoder which, in

its brute-force form, is MAC DMT optimal (cf. [5], [15]),

i.e., achieves the optimal MAC DMT d∗mac(r). x is taken

from a (sequence of) full-rate linear (lattice) code(s) Xr =
Xr,1 ⊕ · · · ⊕ Xr,K , where Xr,i = Λr,i ∩ Rr,i ⊂ R

2T is

the corresponding lattice code for the ith user consisting of

those elements of the rank 2T lattice Λr,i that lie inside the

shaping region Rr,i, which is properly chosen to meet the

rate requirement |Xr,i| = 2RT as well as the average power

constraint. The region Rr,i is a compact convex subset of R2T .

Specifically, we set Λr,i := SNR− r
2Λi, to be a scaled lattice of

another lattice Λi whose generator matrix is denoted by Gi.

Thus for G = diag(G1, . . . ,GK), the overall codeword is

given by x = SNR− r
2Gs for some s ∈ Z

2KT . Substituting

this into (5) yields the following equivalent channel input-

output relation which will be used for sphere decoding of s

y = Ms+w (7)

where M := SNR
1−r
2 HG.

This joint ML (or lattice) decoder is implemented as

a bounded-search sphere decoder (SD). For SD algorithm

details, readers are referred to [1], [2], [26] however for

clarity of exposition, wherever necessary, essential details are

provided during the complexity analysis. Implicit to the use

of a sphere decoder is a chosen search radius δ, a chosen

decoding order corresponding to an order with which symbols

of s are decoded, and a time-out policy that terminates the

decoder once the algorithm exceeds a certain computational

threshold. The termination policies that we use will be clarified

depending on the setting. Our results will optimize over δ by

setting δ :=
√
z log SNR, for a properly chosen z > 0. The

idea here is that the search radius should be big enough so

that — loosely speaking — the probability that AWGN noise

has a norm larger than this radius, is sufficiently smaller than

the probability of error under brute-force ML. At the same

time, this radius needs to remain sufficiently small so that the

number of elements within the search sphere is small enough

most of the time. Finally, the bounds will hold irrespective

of the decoding order. As a result, we will henceforth limit

reference to the search radius and the decoding order, mainly

in proofs. As suggested before, the derivations focus on ML-

based decoding, but given the aforementioned performance-

and-complexity equivalence between ML and regularized lat-

tice based decoding [2], these same results extend automati-

cally to the latter.

We finally note that the validity of the presented bounds

depends on the existence of actual coding schemes that meet

them, and which will be identified here, together with the

associated SD implementation and halting policies. Regarding

the codes, we hasten here to say that all rate-reliability results

can be achieved with uncoded QAM transmission for any nr.

This is one of the crucial contributions of this paper, and it is

presented in Theorem 2.

II. PERFORMANCE-COMPLEXITY TRADEOFF FOR MAC

ML DECODING

We first provide an upper bound on the complexity exponent

that guarantees a certain MAC-DMT performance d(r).

Theorem 1: For the K-user MAC, the minimum over all

ML-based decoders (all SD implementations, all halting and

all decoding order policies) complexity exponent cmac,d(r)
required to achieve a certain DMT d(r) ≤ d∗mac(r), is upper

bounded by

c̄mac,d(r) =



































sup
µ∈B(r)

(K − nr)rT

+T
∑ν

i=1 (r − (1− µi)
+)

+
, if K > nr,

sup
µ∈B(r)

T
∑ν

i=1 [min {r, r + µi − 1}]+ ,

if K ≤ nr,
(8)

where µ = [µ1 · · ·µν ]
⊤, ν = min{K,nr} and

B(r) :=
{

µ :
µ1 ≥ · · · ≥ µν , 0 ≤ µi ∈ R
∑ν

i=1 (|K − nr|+ 2i− 1)µi ≤ d(r)

}

.

Proof: See Appendix A.

Remark 1: A remark is in order, regarding the high com-

plexity present in the under-determined MAC case of nr < K,

and particularly regarding the term (K − nr)rT appearing

in (8) (and the same in (9) appearing later for T = 1),

which results in an increased complexity exponent, irrespective

of the desired diversity performance. To gain some insight

on this, we quickly recall that a sphere decoder performs a

QR decomposition of matrix M in (7), which though for

nr < K, results in a matrix R that is an upper trapezoid

matrix, whose bottom row contains 2T (K − nr) + 1 nonzero

entries. Therefore, prior to processing the root node of a

sphere-decoding tree, the sphere decoder must first search

exhaustively among N2T (K−nr) combinations of the N -ary
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PAM constellation points of the integer entries of s (cf. (7)).

For our particular case of having single antenna transmitters,

N suffices to be chosen as N = SNR
r
2 , which explains the

term (K − nr)rT in (8).

A. Complexity cost of achieving the optimal MAC-DMT

We here seek to derive the complexity exponent needed to

achieve the MAC-DMT optimal d∗mac(r) (cf. (4)). To answer

this question, we will need to understand the coding duration

requirement T for such DMT optimality. Towards this, we

recall that a first step towards coding that achieves the optimal

DMT performance, was taken in [5], which showed that for

the lightly-loaded multiplexing-gain region r ≤ nr

K+1 , uncoded

(QAM) transmission (T = 1) is in fact DMT optimal. The

question of deriving codes that can achieve DMT optimality

for all r, was resolved in [15]–[17], which provided —

depending on the values of K and nr — different DMT

optimal lattice coding schemes by encoding over time, thus

requiring T > 1.

The following theorem plays a crucial role in tightening the

complexity exponent, by proving that uncoded transmission

(T = 1, QAM) is indeed MAC-DMT optimal for all multiplex-

ing gains. The following result holds for all isotropic channel

probability distributions, and it extends the aforementioned

result in [15]–[17], [27] to all r, all nr and all K.

Theorem 2: Uncoded QAM for each user achieves DMT

optimality in the K-user symmetric SIMO MAC for all

r,K, nr.

Proof: See Appendix B.

We can now apply Theorem 1 to provide upper bounds

on the complexity exponent c∗mac(r) that guarantees the DMT

optimal d∗mac(r). The bound is constructive and is optimized

over all known ML-based decoders, and over all existing

codes. The result holds for i.i.d. Rayleigh fading statistics

and for any decoding order policy. It corresponds to a DMT

optimal transceiver that employs QAM transmission with

T = 1, a search radius δ >
√

d∗mac(r) log SNR, and a decoding

halting policy that naturally halts decoding at SNRc∗mac(r) flops.

Theorem 3: For the K-user MAC, the minimum over all

codes and all ML-based decoders (all SD implementations, all

halting and all decoding order policies) complexity exponent

c∗mac(r) required to achieve the optimal DMT d∗mac(r), is upper

bounded by

c̄mac(r) =



































sup
µ∈B(r)

(K − nr)r +
∑ν

i=1 (r − (1− µi)
+)

+
,

if K > nr

sup
µ∈B(r)

∑ν
i=1 [min {r, r + µi − 1}]+ ,

if K ≤ nr,
(9)

where µ = [µ1 · · ·µν ]
⊤, ν = min{K,nr} and

B(r) :=
{

µ :
µ1 ≥ · · · ≥ µν , 0 ≤ µi ∈ R
∑ν

i=1 (|K − nr|+ 2i− 1)µi ≤ d∗mac(r)

}

.

Proof: It is a direct consequence of Theorems 1 and 2.

The following corollaries provide explicit expressions for

c̄mac(r) for the single-input single-output (SISO) case of nr =
1, and for nr = K.

Corollary 4: For the K-user SISO MAC (nr = 1), the

complexity exponent required to achieve the optimal d∗mac(r),
is upper bounded by

c̄mac(r) = (K − 1)r, for 0 ≤ r ≤ 1

K
. (10)

Corollary 5: For the K-user MAC with nr = K, the

complexity exponent required to achieve the optimal d∗mac(r),
is upper bounded by

c̄mac(r) = r
⌊

√

K(1− r)
⌋

+



r − 1 +
K(1− r)− (

⌊

√

K(1− r)
⌋

)2

2
⌊

√

K(1− r)
⌋

+ 1





+

. (11)

Fig. 1 plots c̄mac(r) for K = 4, 5 and nr = 1, while

Fig. 2 plots c̄mac(r) for nr = K = 3, 4, 5. In interpreting

the plots below, we recall that the here maximum achievable

multiplexing gain is nr

K
.

Remark 2: As we see from (11) and Fig. 2, when nr = K,

the complexity exponent c(r) is not monotonically increasing.

This is simply because an increasing r might indeed increase

the objective function in the maximization, but at the same

time it also decreases d(r) and thus also decreases the volume

of B(r) over which maximization takes place.
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Fig. 1. Bound on the complexity exponent guaranteeing DMT optimality in
the K-user SISO MAC: K = 4, 5 and nr = 1.

B. The benefit of increasing the number of receive antennas

In the following we show the rather surprising result that a

substantial increase in the number nr of receive antennas, al-

lows for maximal reductions in the complexity exponent. This

is indeed surprising because, as nr increases, a MAC-DMT

optimal decoder must handle channels that are increasingly

more singular 4 and thus typically harder to decode because

near-singular channels typically result in denser signaling

constellations at the receiver.

4Recall from (4) that for nr > K the optimal MAC DMT is d∗mac(r) =
nr(1− r)+.
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Fig. 2. Bound on the complexity exponent guaranteeing DMT optimality in
the K-user SIMO MAC: K = 3, 4, 5 and nr = K.

Corollary 6: For the K-user SIMO MAC with nr ≫ K,

the complexity exponent for achieving the optimal MAC-DMT

d∗mac(r), approaches

c̄mac(r) = min

{

r,
K − 1

nr −K + 1
(1− r)

}

and in the limit of asymptotically large nr, the complexity

exponent tends to zero.

Proof: See Appendix C.

In Fig. 3(a) we plot the complexity-exponent upper bounds

c̄mac(r) for K = 3 users and for various values of nr. The

corresponding optimal diversity gains d∗mac(r) are shown in

Fig. 3(b). It can be easily seen that the bounds c̄mac(r) (with r

fixed) decrease monotonically for an increasing nr, and in the

limit of very large nr, the complexity exponent approaches 0,

meaning that the decoder Dr — with the proper halting policy

— can deliver the substantial diversity performance nr(1− r)
in a computationally inexpensive manner.

III. PERFORMANCE AND COMPLEXITY FOR MAC

ML-BASED DECODING WITH FEEDBACK-AIDED USER

SELECTION

We now explore the ramifications of feedback-aided user-

selection on the performance and complexity of ML-based

MAC communications. Our motivation in exploring user se-

lection comes from the associated gains in MAC reliability

which — particularly for the high multiplexing-gain region

— is typically quite low. This same method simultaneously

allows for a “simplification” of the communication problem,

from a larger multiple access channel, to a selectively reduced

smaller and more manageable setting. Finally, this ability to

provide simpler and more reliable communications, comes at

a very reasonable feedback cost, which renders user selection

applicable in the presence of limited feedback links.

We will here consider a MAC user-selection scheme, which

is modified from the Jiang and Varanasi (JV) antenna selection

algorithm in [25]. The JV algorithm, to the best of our

knowledge, is currently the best performing antenna-selection

algorithm for the point-to-point (single-pair) MIMO scenario.
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Fig. 3. Complexity-exponent upper bound c̄mac(r) (see subfigure (a)) for
achieving d∗mac(r) (see subfigure (b)) for K = 3 and for increasing nr .

The proposed user selection scheme, to be described in more

detail in Appendix D, selects which L out of K users will

transmit throughout the coherence period of the channel,

and then informs all users of the selection outcome via a

feedback channel using log2
(

K
L

)

bits per channel coherence

period. This selection decision is taken as a function of the

entries of a matrix RJV derived from the QR-decomposition

HeqΠ = QJVRJV where Π is a permutation matrix, where

QJV is a unitary matrix, and where — depending on the values

of K, L, and nr — RJV can be either upper triangular or upper

trapezoidal. This distinction in the shape of RJV will here limit

our consideration of L to an allowable set

L := {1, 2, · · · , ν,K}
where we recall that ν = min{K,nr}, and where L = K

corresponds to the case where no users are pruned out and thus

where all K users transmit simultaneously to the receiver. Such

choice of L = K can, especially at high values of multiplexing

gains, provide for the highest reliability.

We proceed to bound the DMT gains of user selection, and

— based on these bounds — to then show that any such

gains can come with a simultaneous exponentially-reduced

complexity, compared to the complexity associated to c∗mac(r)
in Theorem 3.

Remark 3: We note that under the adopted assumption that
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the fading statistics are uniform across users, then the user

selection algorithm will in fact ‘prune all users (statistically)

evenly and thus ‘fairly. It is important to note that the

rate considered here, does indeed account for the periods of

‘silence of a user that has not been selected. In other words,

the derived diversity-multiplexing expressions — which are

the same for all users — correspond to a user rate that is

simply the total number of bits sent by each user, divided by

the total number of time-slots including the time-slots during

which the user was kept silent by the selection algorithm.

A. Selection-aided MAC DMT bounds, for a fixed L

We first proceed with an upper bound on the selection-aided

DMT dus,L(r) for the employed user selection scheme, when

the number of selected users is fixed to a certain L.

Theorem 7: Given L, and given the JV-inspired user selec-

tion scheme, the MAC DMT is upper bounded as

dus,L(r) ≤ d̄us,L(r) := min
k≥0,,ℓ≥1
k+ℓ≤L

dk,ℓ

(

ℓKr

L

)

(12)

where

dk,ℓ(r) := inf
Aℓ(r)

Dk,ℓ(α),

Aℓ(r) :=

{

0 ≤ α1 ≤ · · · ≤ αℓ :

ℓ
∑

i=1

(1− αi)
+ ≤ r

}

and

Dk,ℓ(α) :=

ℓ
∑

i=1

(nr + ℓ− 2i+ 1)αi +

ℓ−1
∑

i=1

(K − k − ℓ)αi

+ αℓ(K − k − ℓ)(nr − k − ℓ+ 1). (13)

Proof: See Appendix E.

We here note that it is not hard to show when L = K, that

dus,K(r) = d∗mac(r) = d̄us,K(r). (14)

Also when nr = 1, it is easy to show that

dus,1(r) = d̄us,1(r). (15)

Hence the bound is tight for L = 1 and L = K.

In Fig. 4 we plot the DMT upper bounds d̄us,L(r) from

Theorem 7, for the (under-determined) case of K = 4, nr = 3,

with L = 1, 2, 3. In the same figure we compare the above

d̄us,L(r) to the optimal MAC DMT d∗mac(r) corresponding to

having no selection (or equivalently to having L = K = 4).

Fig. 5 plots the DMT bounds for the (over-determined) case

of K = 3, nr = 4, with L = 1, 2, 3. In interpreting the figures,

one must recall that, due to the fact that each user is selected

with probability L
K

, maintaining an average multiplexing gain

r, will require that each transmitting user communicates at a

multiplexing gain of K
L
r. This is indeed taken into account,

and the multiplexing gain reflects the true rate of communi-

cation, in full consideration of the fact that part of the time,

some users are not transmitting. It should also be noted that for

L ≤ ν, the maximal achievable multiplexing gain is L
K

or each

user. Furthermore, it can be seen from the curves in Fig. 4 and

Fig. 5 that the DMT performance of proposed feedback-aided

user-selection scheme strongly depends on the choice of L for

different regions of multiplexing gain values r. For instance,

in Fig. 5 of K = 3 and nr = 4, choosing L = 1 yields the

largest diversity gain whenever r ∈ (0, 0.2]. For r ∈ (0.2, 0.5],
L = 2 becomes the best choice, and if the desired multiplexing

gain r ∈ (0.5, 1], one should set L = K = 3. A similar

observation can be made in Fig. 4. These cross-points between

curves d̄us,L(r) for various L suggest further diversity gains

by optimizing over L as a function of r. This will be discussed

in more detail in Section III-C.

Another interesting observation from Fig. 4 and Fig. 5 is

that despite the different configurations of K and nr in these

figures, the respective initial values d̄us,L(0) are the same for

L = 1, 2, 3. This is actually no coincidence. To see it, note that

as multiplexing gain r approaches zero from the right, meaning

that the desired transmission rate R is arbitrarily close to zero,

the only way for the communication system being in outage

is exactly when all the major channel links are in deep-fade,

i.e., when α1 = . . . = αℓ = 1 in the set Aℓ(r). In this case,

the function Dk,ℓ(α = 1) simplifies to

Dk,ℓ(1) = Knr − k(K + nr) + k2 + kℓ,

hence the minimal Dk,ℓ(1) occurs at ℓ = 1 and

d̄us,L(0) = min
0≤k≤L−1

Knr − k(K + nr) + k2 + k.

This shows that the value of d̄us,L(0) is symmetric between

K and nr whenever L ≤ min{K,nr}. Moreover, with K =
4 and nr = 3 (and the same holds for K = 3 and nr =
4) we have d̄us,L(0) = min0≤k≤L−1 k

2 − 6k + 12, and it

is straightforward to see that d̄us,1(0) = 12, d̄us,2(0) = 7,

d̄us,3(0) = 4, and d̄us,4(0) = 3 as shown in Fig. 4.
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Fig. 4. Selection-aided DMT upper bounds d̄us,L(r), vs. the optimal MAC
DMT d∗mac(r) without selection. K = 4, nr = 3, and L = 1, 2, 3.

B. Selection-aided MAC complexity bounds, for a fixed L

We now use the previous DMT bound to upper bound

the complexity exponent cus,L(r) required to achieve this

selection-aided DMT dus,L(r) corresponding to the proposed

L-user selection algorithm, for any fixed L ∈ L. The result
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Fig. 5. Selection-aided DMT upper bounds d̄us,L(r), vs. the optimal MAC
DMT d∗mac(r) without selection. K = 3, nr = 4, and L = 1, 2.

is a direct consequence of Theorem 3, and it holds for i.i.d.

Rayleigh fading channel statistics.

Theorem 8: For the K-user MAC, the complexity exponent

cus,L(r) required to achieve the selection-aided DMT dus,L(r),
for a given L ≤ ν, is upper bounded as

cus,L(r) ≤ c̄us,L(r) = sup
α∈F(r)

L
∑

i=1

[

min

{

K

L
r,
K

L
r + αi − 1

}]+

(16)

where

F(r) :=

{

α :
α1 ≤ · · · ≤ αL, 0 ≤ αi ∈ R

D0,L(α) ≤ d̄us,L(r)

}

and where Dk,ℓ(α) is defined in (13). The performance-

complexity pair (dus,L(r), cus,L(r)) is achieved with uncoded

QAM (T = 1), a sphere decoder with a search radius δ >
√

d̄us,L(r) log SNR, any decoding ordering, and a decoding

halting policy that halts decoding if Nmax(r)
.
= SNRcus,L(r).

Proof: The result holds directly from Theorem 3 and

from the fact that the complexity needed to achieve dus,L(r) is

upper bounded by the complexity needed to achieve d̄us,L(r) ≥
dus,L(r).

C. Bound-based performance and complexity optimization

over L

The performance and complexity bounds in Theorems 7 and

8 suggest gains by optimizing over L as a function of r. Using

the bounds as an indicator to the best choice of L, we let

L∗(r) = argmax
L∈L

{d̄us,L(r)}, (17)

where we recall that L = {1, 2, . . . , ν,K}. Hence

d̄us,L∗(r) = max
L∈L

{d̄us,L(r)} (18)

can serve as an upper bound on the selection-aided DMT

maxL∈L{dus,L(r)} maximized — at any given r — over the

choices of L, including over the choice L = K that all users

are selected. As a result, going back to (16), we can calculate

c̄us,L∗(r) as a bound for the complexity required to achieve

the optimized selection-aided DMT maxL∈L{dus,L(r)}.

For the under-determined case of K = 4, nr = 3, Fig. 6

plots L∗(r), while Fig. 7 plots the optimized, over L, selection-

aided DMT upper bound d̄us,L∗(r). This bound is also com-

pared to the bound d̄us,L∗∗(r) where

L∗∗(r) = argmax
L≤ν

{d̄us,L(r)} (19)

corresponding to the case where selection always happens, i.e.,

corresponding to the case where we do not allow for L = K,

even if L∗(r) = K.

Fig. 8 plots the complexity exponent upper bound c̄us,L∗(r)
that guarantees the optimal — over all L — selection-aided

DMT dus,L∗(r). This complexity exponent bound is com-

pared to c̄mac(r) that achieves d∗mac(r) without user selection.

The same figure also gives an interesting comparison to the

complexity exponent c̄us,L∗∗(r) which, in conjunction with

d̄us,L∗∗(r) in Fig. 7, suggests that the choice of L∗∗(r) —

rather than L∗(r) — can provide substantial gains in com-

plexity, with possibly moderate losses in performance.
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Fig. 6. Optimal number of selected users L∗(r) for K = 4-user MAC with
nr = 3.
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Fig. 7. DMT upper bounds d̄us,L∗ (r) for user selection, compared to d∗mac(r)
without selection, and d̄us,L∗∗ (r) when user-selection is enforced, for the
K = 4-user MAC with nr = 3.
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Fig. 8. Complexity exponent upper bounds c̄us,L∗ (r) for user selection,
compared to c̄mac(r) without selection, and compared to c̄us,L∗∗ (r) corre-
sponding to when user-selection is enforced. Plots for K = 4 and nr = 3.

D. Selection-aided complexity reduction, at no performance

costs

We here explore the particular case where user selection is

calibrated to reduce complexity, while maintaining reliability.

The following quantifies this approach, based on the derived

bounds. A crucial element in this effort is that any gains

in the selection-aided DMT compared to the original MAC-

DMT d∗mac(r), can allow us to effectively ‘rest’ the decoder

often enough to reduce the complexity exponent, without

falling below the required d∗mac(r). In this case, the resulting

complexity exponent is upper bounded by

c̄red-us,L(r)

=



















sup
α∈Fred-us,L(r)

∑L
i=1

[

min
{

K
L
r, K

L
r + αi − 1

}]+
,

if d̄us,L(r) ≥ d∗mac(r),

c̄mac(r), if otherwise,

(20)

where

Fred-us,L(r) =

{

α :
α1 ≤ α2 ≤ · · · ≤ αL, 0 ≤ αi ∈ R

D0,L(α) ≤ d∗mac(r)

}

and where the second case in (20) refers to the situation where

L∗ = K. Hence an upper bound on the associated complexity

exponent, minimized over L, is given by

c̄red-us(r) = min
L∈L

c̄red-us,L(r). (21)

Fig. 9 explores this for the case of K = 4 and nr = 3, pre-

senting the resulting upper bounds c̄red-us,L(r) for all possible

L = 1, 2, 3. The optimized complexity reduction, under the

condition that we do not reduce reliability below d∗mac(r), is

given in Fig. 10. The striking observation is that at low or

moderate multiplexing gain regimes, the optimal d∗mac(r) can

be achieved with a complexity exponent that can be as small

as 0, i.e., with computational complexity that does not scale

exponentially in the total number of codeword bits. At high

multiplexing gains, no complexity reduction is available since

L∗ = K.

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Multiplexing gain r

C
om

pl
ex

ity
 e

xp
on

en
t

 

 

c̄red-us,1(r)

c̄red-us,2(r)

c̄red-us,3(r)

Fig. 9. Complexity exponent bounds c̄red-us,L(r) with L = 1, 2, 3, all
guaranteeing d∗mac(r) performance for K = 4 ,and nr = 3.
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Fig. 10. Complexity exponent bounds c̄red-us(r), c̄us,L∗ (r) and c̄mac(r), all
guaranteeing d∗mac(r) performance for K = 4, nr = 3.

IV. CONCLUSIONS

In this paper we derived bounds on the performance and

complexity behavior of ML-based (and lattice-based) decod-

ing, for the multiuser multiple access channel. Emphasis on

ML-based decoding was motivated by the fact that MAC-

related settings have distinctively reduced reliability, which

hinders the use of low-performance decoders that would

further reduce this reliability.

The derived complexity-vs-performance bounds were pre-

sented in the form of diversity and complexity exponents,

and can provide insight on how to tradeoff performance and

complexity in such outage-limited multiuser settings. The

analysis shows that, under the requirement of efficient ML-

based decoding, this tradeoff is not trivial; indeed we see that

complexity constraints can crucially deteriorate performance.

The derived bounds also suggest substantial reliability and

complexity benefits by increasing the number of receive anten-

nas, as well as substantial benefits by utilizing just a few bits of

feedback to allow for user selection. User selection is indeed

pertinent as it can inherently increase reliability through chan-

nel selection, as well as can inherently decrease complexity

by simply and selectively reducing the size of the problem at

hand. These gains are highly sought in multiuser settings like
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the MAC, which typically suffer from reduced reliability and

increased complexity of decoding. In this context the analysis

reveals the interesting finding that proper calibration of user

selection can reduce the complexity exponent of near-optimal

ML-based decoding, down to zero, thus revealing that — for

a substantial range of multiplexing gains — the computational

complexity of near-optimal ML-based decoding, need not

scale exponentially in the total number of codeword bits.

APPENDIX A

PROOF OF THEOREM 1

In the following we establish an upper bound on the min-

imum complexity exponent cmac,d(r) required by ML-based

decoding to achieve a MAC DMT performance d(r).
We recall from (7) that the sphere decoder ‘sees’ a channel

model

y = Ms+w (22)

where M = SNR
1−r
2 HG, where H is the equivalent channel

in (6), and where G is the generator matrix of the overall

(product) lattice code. To allow for sphere decoding in the

under-determined (K > nr), MMSE-preprocessing (cf. [26])

gives the MMSE-preprocessed code-channel matrix

M̃ =

[

M

αIu

]

= QR (23)

where Iu is the u×u identity matrix, where u = 2(K−nr)T ,

and where α = SNR− r
2 . If K ≤ nr, then simply α = u = 0.

After the QR decomposition in (23), we get

r :=
(

R†
)−1

M †y = Rs+w′

where w′ = −α2
(

R†
)−1

s+
(

R†
)−1

M †w. For

Sr :=
{

s ∈ Z
2KT : SNR− r

2Gs ∈ Xr

}

being the set of points in the product lattice Λ that constitute

Xr after scaling, the sphere decoder takes the form

ŝMMSE-SD = arg min
s∈Sr

‖r −Rs‖2 (24)

and it recursively enumerates all candidate vectors s ∈ Sr

within a given search sphere of radius δ =
√
z log SNR for

some z > d(r).
To compute an upper bound on the complexity exponent,

we follow the approach similar to [2]. Towards this, we first

let

λi = σi(H
†
eqHeq), i = 1, . . . , ν = min{K,nr}

be the nonzero singular values of H†
eqHeq, arranged in ascend-

ing order, and then we let

µi = − log λi

log SNR
. (25)

Hence we can write

σi(R) = σi(M̃) =

√

α2 + σi(M
†M), i = 1, . . . , 2KT.

(26)

For K ≤ nr, we have

σi(R)
.
= SNR

1
2 (1−r−µ

⌈ i
2T

⌉
)

and for K > nr we have

σi(R)
.
=

{

SNR− r
2 , if 1 ≤ i ≤ 2T (K − nr)

SNR− r
2+

1
2 (1−µj)

+

, otherwise

}

(27)

where j = ⌈ i−2T (K−nr)
2T ⌉. In the above we have used that

σi(G)
.
= SNR0, for all i.

We now see that for any given channel realization, corre-

sponding to a specific µ := [µ1 · · ·µν ]
⊤ (cf.(25)), the total

number of visited nodes is given by

NSD(µ) :=

2KT
∑

k=1

Nk(µ)

where, drawing from [1, Lemma 1], we can see that

Nk(µ) ≤
k
∏

i=1

[√
k + 2min

{

δ

σi(R)
,
√
kSNR

r
2

}]

and thus that

NSD(µ) ≤
2KT
∑

k=1

k
∏

i=1

[√
k + 2min

{

δ

σi(R)
,
√
kSNR

r
2

}]

.

Thus for the overdetermined case (cf. (26)), we have

NSD(µ) ≤̇ SNRT
∑K

i=1[min{r,r+µi−1}]+ (28)

while for the underdetermined case (cf. (27)) we have

NSD(µ) ≤̇ SNR(K−nr)rT+T
∑nr

i=1(r−(1−µi)
+)

+

(29)

where we have used the 2T -fold multiplicity of the singular

values of H .

At this point, in the same spirit as in [2], the upper bound on

the complexity exponent can be obtained as the solution to a

constrained minimization problem of finding a value cmac,d(r)
such that the probability of a premature termination of SD

algorithm is no larger than the channel outage probability, i.e.,

Pr
{

NSD(µ) ≥ Nmax(r) = SNRcmac,d(r)
}

≤ SNR−d(r).

(30)

This is the optimization reflected in the complexity exponent

bound of Theorem 1.

APPENDIX B

PROOF OF THEOREM 2: OPTIMALITY OF UNCODED QAM

For T = 1, the rank-2K overall (product) code-lattice Λ
is isomorphic to the rectangular lattice Z

2K , and the overall

(product) code

Xr =
{

SNR− r
2x : x ∈ (Z[ ı ])

K
, |xi|2 ≤ SNRr

}

is essentially uncoded (scaled) QAM. To show that the above

code Xr satisfies the probabilistic complexity constraint (30),

we follow the footsteps in [15], [16] and consider a K-fold

extension of Xr

Xr,ext =
K
⊕

i=1

Xr ⊂ SNR− r
2MK(Z[ ı ])
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where MK(Z[ ı ]) denotes the set of K × K matrices with

entries from Z[ ı ]. In other words, elements of Xr,ext are square

K×K matrices whose entries are independent QAM constel-

lation points after a scaling of SNR− r
2 . Naturally, for any given

decoder, Xr,ext and Xr achieve the same DMT performance.

Under brute force ML decoding, the error probability of Xr,ext

is upper bounded by

Pe,ext(r)

= EPr
{

X ′ ∈ E(X) decoded
}

= EPr

{

K
⋃

k=1

{

X ′ ∈ Ek(X) decoded
}

}

(i)

≤
K
∑

k=1

EPr
{

X ′ ∈ Ek(X) decoded
}

(ii)

≤
K
∑

k=1

EPr







⋃

X′∈Ek(X)

{

Heq :

∥

∥

∥SNR
1
2Heq(X −X ′)

∥

∥

∥

2

≤̇1

}

}

(31)

where the expectation is taken over all codeword ma-

trices X ∈ Xr,ext, where E(X) := Xr,ext \ {X} is

the set of all possible erroneous decoded outputs given

that codeword matrix X is transmitted, where Ek(X) :=
{

X ′ ∈ E(X) : rank(X −X ′) = k
}

with k = 1, . . . ,K
forms a partition of E(X), where step (i) follows from the

union bound, and where step (ii) is due to the use of a

suboptimal bounded distance decoder (cf. [15]).

For any X ′ ∈ Ek(X), set ∆X′ = X − X ′ and let

∆X′∆
†
X′ = UX′ΣX′U

†
X′ be the corresponding eigen-

decomposition. Note that as rank(∆X′) = k, the eigenvalue

matrix ΣX′ has form ΣX′ = diag(ΩX′ ,0K−k), where

the diagonal of ΩX′ consists of all nonzero eigenvalues of

∆X′∆
†
X′ . Substituting the above into (31), we obtain

Pr







⋃

X′∈Ek(X)

{

Heq :
∥

∥

∥SNR
1
2Heq∆X′

∥

∥

∥

2

≤̇1

}







= Pr







⋃

X′∈Ek(X)

{

Gk : SNR · Tr
(

G
†
kΩX′Gk

)

≤̇1
}







(32)

where Gk is an (nr × k) random matrix with i.i.d. CN (0, 1)
entries. Let λ1 ≤ · · · ≤ λm be the ordered nonzero

eigenvalues of G
†
kGk, where m = min{k, nr}. Noting

that det(ΩX′) ≥̇ SNR−kr and that Tr(ΩX′) ≤̇ 1, it can be

shown — drawing from [15] — that the condition of

Tr
(

G
†
kΩX′Gk

)

≤̇ 1 implies that
∑m

i=1(1 − µi)
+ ≤ kr,

which is independent of the choice of X ′. Hence we have

Pr







⋃

X′∈Ek(X)

{

Gk : SNR · Tr
(

G
†
kΩX′Gk

)

≤̇1
}







≤̇ Pr







⋃

X′∈Ek(X)

{

µ :

m
∑

i=1

(1− µi)
+ ≤ kr

}







= Pr

{

µ :
m
∑

i=1

(1− µi)
+ ≤ kr

}

.
= SNR−d∗

k,nr
(kr)

where the last exponential equality follows from [6]. Finally,

note that the error probability of Xr, subject to (unterminated)

joint ML decoding, is upper bounded by

Pe(r) ≤
1

K
Pe,ext(r) ≤̇

1

K

K
∑

k=1

SNR−d∗
k,nr

(kr) .
= SNR−d∗

mac(r),

which completes the proof.

APPENDIX C

PROOF OF COROLLARY 6

First let us recall that for nr > K, then ν = min{K,nr} =
K. Let us also recall from [6] that the joint probability density

function of µ = [µ1 · · · µK ]⊤ (cf. (25)) satisfies

p (µ)
.
= SNR−

∑K
i=1(nr−K+2i−1)µi

provided that µi ≥ 0 for all i. As a result, for each

µ ∈ (R+)K , the corresponding complexity exponent is upper

bounded by

c̄ (µ) =
K
∑

i=1

[min{r, r + µi − 1}]+ (33)

which is not a function of nr. At this point, let us consider a

decoder that decodes only when

K
∑

i=1

(nr −K + 2i− 1)µi < d∗1,nr
(r)

while when
∑K

i=1(nr − K + 2i − 1)µi > d∗1,nr
(r) the

decoder simply declares an error. Since, for nr > K, d∗1,nr
(r)

dominates the MAC DMT (cf. [5]), the extra declared errors

do not affect the overall diversity performance.

Now we note that for any µ1 ≥ · · · ≥ µK ≥ 0 such that
∑

i(nr −K + 2i− 1)µi = nr(1− r), we have that

∑

i

(nr −K +1)µi ≤ nr(1− r) ≤
∑

i

(nr −K +2K − 1)µi,

and thus that

nr

nr +K − 1
(1− r) ≤

∑

i

µi ≤
nr

nr −K + 1
(1− r) (34)

which, for nr ≫ K, implies that

nr

nr +K − 1
(1− r) ≈ nr

nr −K + 1
(1− r) ≈ (1− r).

Subject to the constraint in (34), we can see that the maximum

value of c̄(µ) in (33), is achieved by setting µ1 = nr

nr−K+1 (1−
r) and µ2 = · · · = µK = 0, where this maximal value takes

the form

K
∑

i=1

[min{r, r + µi − 1}]+ = min

{

r,
K − 1

nr −K + 1
(1− r)

}

.
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Hence for nr ≫ K,

c̄mac(r) = sup
µ∈B(r)

K
∑

i=1

[min {r, r + µi − 1}]+

≤ sup
µ∈B(r)

K
∑

i=1

[min {r, r + µi − 1}]+ (35)

= min

{

r,
K − 1

nr −K + 1
(1− r)+

}

where

B(r) :=
{

µ :
µ1 ≥ · · · ≥ µK , 0 ≤ µi ∈ R,
∑K

i=1 (K − nr + 2i− 1)µi ≤ nr(1− r)+

}

and

B(r) :=
{

µ :
µ1 ≥ · · · ≥ µK , 0 ≤ µi ∈ R
∑K

i=1 µi ≤ nr

nr−K+1 (1− r)+

}

.

The inequality in (35) is due to the fact that B(r) ⊆ B(r),
while note that equality holds when µ1 = nr

nr−K+1 (1 −
r), µ2 = · · · = µK = 0, which in turn implies that

c̄mac(r) = min

{

r,
K − 1

nr −K + 1
(1− r)+

}

which establishes the corollary.

APPENDIX D

DESCRIPTION OF USER-SELECTION SCHEME

The proposed user selection algorithm can be drawn from

[25], by restricting selection to only transmit antennas (no

selection of received antennas). In the setting with K single-

antenna users, Heq (cf. (6)) has as kth column the vector

hk corresponding to the channel vector of the kth user.

The goal is to select L out of K users for transmission

(L ≤ ν = min{K,nr}). The selection process is closely

related to the QR-decomposition of Heq using a Householder

transformation, which exhibits good numerical stability. The

selection takes L iterations, and each iteration consists of two

steps, a matrix-column permutation followed by a Householder

transformation. At the first iteration, the algorithm begins

by finding the column hj1 of Heq with the largest column

norm. Then it right-multiplies Heq by a permutation matrix

Π1 to swap h1 and hj1 . The second step is to apply a

unitary Householder transformation Q1 to HeqΠ1 such that

the top-left entry of Q1HeqΠ1 is the only nonzero (and

positive) entry in the first column. After finishing with the

first iteration, the algorithm shifts its focus to the trailing

(nr − 1) × (K − 1) submatrix H1 of Q1HeqΠ1. Similar to

the first iteration, the algorithm identifies the column with the

largest norm in H1, swaps it with the first column, and then

applies the Householder transformation. Thus, at the end of

this iteration, the channel matrix becomes Q2Q1HeqΠ1Π2.

The third iteration is the same as the previous ones but focuses

on the trailing (nr − 2) × (K − 2) submatrix. The same

process is repeated L times, resulting in an output matrix

RJV = QL · · ·Q1HeqΠ1 · · ·ΠL. The users associated to the

first L columns of RJV are the selected ones 5.

APPENDIX E

PROOF OF THEOREM 7

Recalling from the description in Appendix D of the se-

lection algorithm, to select the L users, there are L iterations

of applying column permutation matrix Πi and Householder

transformation Qi to obtain an output matrix RJV, which is

of the form

RJV = QL · · ·Q1HeqΠ1 · · ·ΠL

=





















r1,1 ∗ · · · ∗ ∗ · · · ∗
r2,2 · · · ∗ ∗ · · · ∗

. . .
...

...
...

...

rL,L ∗ · · · ∗
...

...
...

∗ · · · ∗





















.

Let ui be the user associated with the ith column of RJV, and

let {u1, u2, . . . , uL} be the set of selected users. Since entries

of Heq are i.i.d. CN (0, 1), to meet an average multiplexing

gain r for each user, the selected user has to transmit at

a possibly larger multiplexing gain of K
L
r. For the set of

‘modified’ outage events

Ok,ℓ := {the sum-rate of users uk+1, · · · , uk+ℓ is in outage}
(36)

for all k ≥ 0, ℓ ≥ 1, and k+ ℓ ≤ L, we will see later on — in

the process of the proof — that the outage event considered

by Jiang and Varanasi [25, Theorem 4.1], is a special case of

the above events corresponding to k = 0 and ℓ = L, i.e., a

special case of the outage event O0,L.

A. DMT Analysis for error event Ok,ℓ

To analyze the DMT for the error event Ok,ℓ for any k ≥ 0,

ℓ ≥ 1, and k + ℓ ≤ L, let Rk,ℓ be the matrix resulting from

applying (k + ℓ) iterations of the Jiang-Varanasi algorithm to

overall matrix Heq. We partition matrix Rk,ℓ as follows:

Rk,ℓ = Qk+ℓ · · ·Q1HeqΠ1 · · ·Πk+ℓ

=





RL RC,U RR,U

RC,B RR,M

RR,B



 (37)

where

RL =







r1,1 · · · r1,k
. . .

...

rk,k







RC,U =







r1,k+1 · · · r1,k+ℓ

...
...

...

rk,k+1 rk,k+ℓ







5It is worth mentioning that if K = nr = L, then RJV is an upper
triangular matrix, and thus HeqΠ1 · · ·ΠL has a QR-decomposition equal to

(QL · · ·Q1)
†RJV. Also, as the selection focuses only on a trailing submatrix

of Qm−1 · · ·Q1HeqΠ1 · · ·Qm−1 during the m-th iteration, one cannot say
that the ith column of RJV has the ith largest norm among all columns, for
i = 2, · · · , L.
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RC,B =







rk+1,k+1 · · · rk+1,k+ℓ

. . .
...

rk+ℓ,k+ℓ







RR,U =







r1,k+ℓ+1 · · · r1,K
...

. . .
...

rk,k+ℓ+1 · · · rk,K







RR,M =







rk+1,k+ℓ+1 · · · rk+1,K

...
. . .

...

rk+ℓ,k+ℓ+1 · · · rk+ℓ,K







RR,B =







rk+ℓ+1,k+ℓ+1 · · · rk+ℓ+1,K

...
. . .

...

rnr,k+ℓ+1 · · · rnr,K







and where the entries satisfy

|ri,i|2 ≥
nr
∑

m=i

|rm,j |2 , (38)

for i = 1, 2, . . . , k + ℓ and for j = i+ 1, . . . ,K.

For

RC :=

[

RC,U

RC,B

]

the probability that the sum-rate of users uk+1, · · · , uk+ℓ

results in an outage, takes the form

Pr {Ok,ℓ}

= Pr

{

log det
(

Inr
+ SNRRCR

†
C

)

<
K

L
ℓr log SNR

}

=

∫

I(r)

c ·





k+ℓ
∏

i=1

pχ2
2(nr−i+1)

(

|ri,i|2
)





K
∏

j=i+1

1

π
e−|ri,j |

2









× 1

π(K−k−ℓ)(nr−k−ℓ)
e−‖RR,B‖2

dRk,ℓ (39)

:
.
= SNR−dk,ℓ(K

L
ℓr) (40)

where c is a constant relating to ordered statistics (cf. the

first constraint in (41)), where pχ2
κ
(·) is the probability density

function for a χ2 random variable with κ degrees of freedom

and with mean κ
2 , and where the integration region is

I(r) :=











Rk,ℓ :

|ri,i|2 ≥ ∑nr

m=i |rm,j |2 ,
i = 1, . . . , k + ℓ, j = i+ 1, . . . ,K

det
(

Inr
+ SNRRCR

†
C

)

< SNR
K
L
ℓr











.

(41)

We have the following three remarks which we will jointly

use later on.

Remark 4: We first note that the diversity exponent associ-

ated to Pr {Ok,ℓ} from (39), takes the form

dk,ℓ

(

K

L
ℓr

)

= lim
SNR→∞

− log Pr {Ok,ℓ}
log SNR

= inf
Rk,ℓ∈I(r)

D (Rk,ℓ)

where the last equality is a manifestation of Laplace’s princi-

ple [6], and where D (Rk,ℓ) is a specific diversity-exponent

function corresponding to the integrand in (39). To understand

the above, we shall look for sub-events of I(r) that yield the

smallest possible diversity exponent D (Rk,ℓ). To this end,

note that the entries in RL and RR,U are not involved in

the second constraint in I(r), i.e., are not involved in the

constraint det
(

Inr
+ SNRRCR

†
C

)

< SNR
K
L
ℓr. Furthermore

one can see that smaller absolute values of nonzero entries in

RL and RR,U correspond to larger values of D (Rk,ℓ). We

hence conclude that the dominant sub-event of I(r), and the

one yielding the smallest diversity exponent D (Rk,ℓ)), must

consist of matrices Rk,ℓ for which the nonzero entries of the

associated submatrices RL and RR,U are the most typical

ones. In other words, the smallest value of D (Rk,ℓ) must

result from the case when the nonzero entries of submatrices

RL and RR,U have magnitudes in the order of SNR0.

Remark 5: Let λ1 ≥ · · · ≥ λℓ be the ordered singular

values of RC , and let ν1 ≥ · · · ≥ νℓ be the ordered singular

values of RC,B . Clearly, as RC,BR
†
C,B � RCR

†
C , we have

ν2i ≤ λ2
i , i = 1, 2, . . . , ℓ. (42)

Using [25, Lemma 3.3], we have

(RC,B)i,i = r2k+i,k+i ≥
∑ℓ

j=i ν
2
j

ℓ− i+ 1

.
= ν2i (43)

for i = 1, 2, . . . , ℓ. Moreover, from [25, Eq.(27)] we have that

the squared diagonal elements in RC,B are multiplicatively

majorized by its squared singular values, i.e., that

m
∏

i=1

ν2i ≥
m
∏

i=1

r2k+i,k+i ≥̇
m
∏

i=1

ν2i , m = 1, 2, . . . , ℓ (44)

where the second dotted inequality is due to (43). It then

follows that

r2k+i,k+i

.
= ν2i (45)

for i = 1, 2, . . . , ℓ.
Remark 6: After the first k iterations of the Jiang-Varanasi

algorithm, we get

Qk · · ·Q1HeqΠ1 · · ·Πk

=





















r1,1 ∗ · · · ∗ ∗ · · · ∗
r2,2 · · · ∗ ∗ · · · ∗

. . .
...

...
...

...

rk,k ∗ · · · ∗
...

...
...

∗ · · · ∗





















=

[

RL

0
RR

]

where RR is the (nr × (K − k)) matrix consisting of the

rightmost (K − k) columns of the above matrix. In Remark

4 we argued that the dominant matrices Rk,ℓ in event I(r)
— yielding the smallest possible diversity exponent D (Rk,ℓ)
— must have submatrices RL whose nonzero entries are of

magnitude that is in the order of SNR0. This implies that

the entries of RR can still be regarded as i.i.d. CN (0, 1)
random variables since any ensemble of random CN (0, 1)
variables has the same asymptotic probability as those subject

to an additional constraint of magnitude lesser than SNR0.

Consequently, the ordered singular values λi, i = 1, . . . , ℓ,
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of matrix RC are still of the same joint probability density

function as that for the ordered singular values of an (nr × ℓ)
random matrix with i.i.d. CN (0, 1) entries.

With the above three remarks in place, we now proceed to

analyze the integral (39) to obtain a formula for the DMT

function dk,ℓ(r). Specifically, we will show that

dk,ℓ(r) = inf
Aℓ(r)

{ ℓ
∑

i=1

(nr+ ℓ−2i+1)αi+

ℓ−1
∑

i=1

(K−k− ℓ)αi

+ αℓ(K − k − ℓ)(nr − k − ℓ+ 1)

}

(46)

where

Aℓ(r) =

{

0 ≤ α1 ≤ · · · ≤ αℓ :

ℓ
∑

i=1

(1− αi)
+ ≤ r

}

.

To see the above, set λ2
i

.
= SNR−αi with α1 ≤ α2 · · · ≤

αℓ. The first summand appearing in (46) follows from the

aforementioned fact that the joint probability density function

of ordered singular values λ1 ≥ · · · ≥ λℓ for an (nr × ℓ)
matrix with i.i.d. CN (0, 1) entries is (cf. [6], [25])

p(α1, · · · , αℓ)
.
= SNR−

∑ℓ
i=1(nr+ℓ−2i+1)αi .

Also by (38), (42), and (45), we have the following constraints

for the entries in matrix Rk,ℓ:

1) For i = 1, . . . , ℓ − 1, the entries rk+i,j (j = k + ℓ +
1, . . . ,K) must satisfy

|rk+i,j |2 ≤ |rk+i,k+i|2 ≤ λ2
i .

The constraints on rk+i,j contribute to (46) the second

summation, i.e. the term
∑ℓ−1

i=1(K − k − ℓ)αi.

2) Entries rk+i,j with i = ℓ, . . . , nr − k and j = k + ℓ +
1, . . . ,K, must satisfy

nr−k
∑

i=ℓ

|rk+i,j |2 ≤ |rk+ℓ,k+ℓ|2 .
= µ2

ℓ ≤ λ2
ℓ

Such constraints contribute to (46) the last summand,

i.e., the term αℓ(K − k − ℓ)(nr − k − ℓ+ 1).

This completes the proof of (46).

Finally, the proof of Theorem 7 is complete after noting that

the union of outage events Ok,ℓ, is a subset of the overall

outage event, i.e., that
⋃

k≥0,ℓ≥1,
k+ℓ≤L

Ok,ℓ ⊆
⋃

U⊂{u1,...,uL}

{Heq : users in U are in outage} .

Remark 7: It is interesting to see that the antenna-selection

DMT in Jiang and Varanasi ( [25, Theorem 4.1]), can be

derived as a special case of (46). Specifically it can be shown

that when k = 0 and ℓ = L ≤ ν, the corresponding

d0,L(r) coincides with the DMT in [25], as both functions

are piecewise linear, connecting the following (P + 2) points

(r, (K − r)(nr − r)), r = 0, 1, . . . , P, and (L, 0), (47)

where

P = arg min
p=0,1,...,L−1

(K − p)(nr − p)

L− p
. (48)
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