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Abstract—In this paper, a method to design the reduced order
sliding mode control is proposed for the robust output tracking
of arbitrary signal for non-minimum phase systems. The main
contributions in this paper include design of the reduced order
switching function that ensures the asymptotic tracking of an
arbitrary reference signal during sliding motion, design of the
reduced order sliding mode controller that enforces the sliding
motion in finite time and computation of bounds on stable
and virtually stable zero dynamics that is required for the
output tracking. To show the effectiveness of the proposed design
method, results of implementation on the experimental setup of
inverted pendulum system are also presented here.

Index Terms—Non-minimum phase systems, Output tracking,
Reduced order Control, Sliding Mode control.

I. INTRODUCTION

A
SYMPTOTIC tracking of an arbitrary signal is one of the

basic objectives of the control system design. If the zero

dynamics of the system is stable, all the established controller

design methodologies for the stabilization of the system are

applicable for the output tracking. However, many of the

engineering applications such as flexible-link manipulators

[1], [2], aircraft control [3], [4], DC-DC power converters

[5], [6], high speed linear motor [7] etc. have unstable zero

dynamics. In such class of systems, the control problem

becomes challenging.

The tracking problem in a non-minimum phase system is

twofold, the stabilization of the unstable zero dynamics and the

tracking of the reference signal. However, the basic problem

in the output tracking of non-minimum phase system is to get

the bounded solution of the unstable zero dynamics.

There have been a few methods found in literature to get the

bounded solution to the unstable zero dynamics. For instance,

the method of stable system center [8], which essentially is the

solution of differential-algebraic equations formed from zero

dynamics and output equation. Also, a bounded solution of an

unstable zero dynamics can be obtained by computing non-

causal inverse if the reference trajectory is known a priori [9],

[10]. In [11], it has been shown that inverse dynamics solution
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can be used to compute the feed-forward control as well as in

regulator approach [12].

In [13], [14], non-causal inverse of a trajectory known

for some preview-time is utilized for online computation

feed-forward tracking control. However, tracking performance

depends on the preview-period. To improve the tracking

performance, optimal control is found to be employed with

preview based stable inversion method in [15].

In case of uncertain non-minimum phase systems, presence

of the disturbance degrades the tracking performance. Such

situation demands the robust controller that minimizes the

adverse effect of disturbance on the tracking performance.

To achieve robustness, the tracking problem can be for-

mulated as H-∞ control problem that essentially finds the

feedback control to decouple the disturbance, e.g. see [16],

[17], [18]. Tracking controller performance depends on the

predefined L2 gain between disturbance and the output.

Therefore, H-∞ based designs are essentially the controller

synthesis for the best performance.

Sliding mode control (SMC) is one of the attractive design

methods as design method is simple and ideally it annihi-

lates the matched disturbance completely [19], [20]. Various

applications found in literature that employs the sliding mode

control for robust performance, for example, slosh-free motion

of partially filled liquid container using a nonlinear sliding

surface in [21], motion control of a linear motor positioner

in [22], robust control of piezoelectric-driven nanopositioning

system via third-order integral terminal sliding mode control

in [23] and parameter estimation-based time-varying sliding

mode controller for the multi-motor driving servo systems in

[24].

Also, the strength of SMC has been explored in the area of

fractional order switching control [25]. Recently, an adaptive

sliding mode technique based on a fractional-order switching-

type control for uncertain 3D fractional-order nonlinear sys-

tems and exponential switching technique with fractional-order

proportional-integral switching surface has been reported in

[26] and [27].

Numerous works are found in the area of sliding mode

control for output tracking of non-minimum phase systems.

In [28], the output tracking has been achieved via sliding

mode based tracking control of the redefined output such that

the original output tracks the desired trajectory asymptotically.

The method of system center is exploited for the causal output

tracking using dynamic sliding surface in [29], [30] and using

higher order sliding mode observer in [31].

Also, using non-causal system inverse, SMC based tracking
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of predefined smooth arbitrary reference signal without an ex-

osystem has been found in [32]; and multirate output feedback

based sliding mode control for a non-minimum phase system

using non-causal inverse has been found in [33].

A sliding surface design with the reduced order state vector

is rarely found in literature mainly because of difficulty in

proving the finite time reachability, or they are not applicable

to systems with unstable internal dynamics. Reduced order

sliding mode control for stability of the system has been found

in [34], [35], [36]. However, output tracking problem that

usually arises in non-minimum phase systems has not been

addressed. Also, reduced order switching function design in

[34] restricts the sliding motion in ‘quasi sliding band’ that

results in poor disturbance rejection. Recently, output tracking

of constant reference signal for uncertain non-minimum phase

systems using reduced order SMC is addressed in [37], [38].

Also, computation of bounds on the total disturbance has not

been addressed.

In this paper, the reduced order sliding mode design is

proposed for the output tracking of arbitrary reference signal.

The proposed controller design method has two advantages

such as (i) a design involves only the part of the state vector,

this greatly simplifies the switching function and the controller

design. (ii) inherent robustness property of the SMC does not

allow the disturbances (in the input channels) to affect the

output tracking. Note that, the reduced order control is possible

only with sliding mode control as the effect of excluded

states can be completely disregarded by considering them as

a disturbance.

To validate the proposed method experimentally, we have

designed and implemented the reduced order SMC for non-

minimum phase inverted pendulum system developed by ed-

ucational control products [39]. The experimental results are

found to be quite satisfactory with respect to simulation results.

II. PROBLEM FORMULATION

Consider a non-minimum phase system,

ż = Az +Bu+Bφ (1a)

y = Cz (1b)

Where z ∈ Rn, u ∈ Rm and y ∈ Rm are the state, the input,

and the output vectors of the system respectively. φ ∈ Rm is

vector of matched disturbances with known bounds. Let the

disturbances |φ| < L.

Assume that,

1) (A,B) pair is controllable, (A,C) pair is observable and

(A,B,C) triplet is invertible. Also, B and C are of full

rank i.e. no redundancy in input and output vectors.

2) There exists none of the invariant zeros of triple

(A,B,C) on origin of s-plane.

3) For the purpose of reduced order design of the sliding

mode control, we consider that the system (1) is in

canonical form as given in the following section. It

is always possible to construct the transformation that

represents the system into such a canonical form. Please

refer Appendix A for construction of such a canonical

transformation.

A. Canonical form

The system (1) in canonical form is typically given by

ż−a = A−
aaz

−
a + L−

adFaz
+
a + L−

adCdzd (2a)

ż+a = (A+
aa + L+

adFa)z
+
a + L+

adCdzd (2b)

żi = Aqizi +Bqi(E
−
iaz

−
a + E+

iaz
+
a + Eizd + ui + φi) (2c)

y = Faz
+
a + Cdzd (2d)

Where z⊤i = [zi1, · · · , ziqi ] ∈ R
qi are phase variable for

all i ∈ {1, · · · ,m}. zd = [z1, · · · , zm]. Integer qi can be

obtained from structural invariant index list I4 due to Morse

[40]. Also, z−a ∈ Rn−

a and z+a ∈ Rn+
a . Note that, zd ∈ Rnd ,

where nd =
m
∑

i=1

qi and n−

a + n+
a + nd = n.

The structure of matrices associated with the above system

are as follows,

Aqi =

[

0 I(qi−1)

0 0

]

, B⊤

qi =
[

0 0 · · · 1
]

Cqi =
[

1 0 · · · 0
]

, Cd = diag(Cqi)

and; A−

aa and A+
aa are in diagonal form.

Remark 2.1: λ(A−

aa) and λ(A+
aa) represents the stable and

unstable invariant zeros of the system respectively. However,

(A+
aa + L+

adFa) is made stable via virtual feedback gain Fa

chosen for (A+
aa, L

+
ad) pair. Also, subsystem (2a)-(2b) is driven

by Cdzd = [z11, z21, · · · , zm1]
⊤.

B. Control objective

This paper is aimed to address the design of a reduced order

sliding mode control for the output tracking of an arbitrary

signal. Advantage of this method is that the output tracking

can be achieved by designing the sliding mode control for

asymptotic stability of integrator chains only i.e. subsystem

(2c). This is possible due to the ability of sliding mode

controller to annihilate the disturbance that includes terms in

z−a and z+a along with external disturbance φ in the control

space.

Similar approach is found in [38], however that has been

designed for a constant reference tracking. For the tracking

of constant reference R, the solution z+a was determined for

zi1 = GaR with some feed-forward gain Ga that eliminates

the steady-state tracking error Faz
+
a (∞) in the output equa-

tion.

For example, let the system (2) be the single input-single

output system (i.e. i = 1). Suppose that there exists a control

that forces the solution zi1 = GaR. Then, from (2b) and (2d)

steady state output of the system can be obtained as,

z+a (∞) = −(A+
aa + L+

adFa)
−1L+

adzi1(∞)

y(∞) = Faz
+
a (∞) + zi1(∞)

=
[

−Fa(A
+
aa + L+

adFa)
−1L+

ad + 1
]

zi1(∞)

=
[

−Fa(A
+
aa + L+

adFa)
−1L+

ad + 1
]

GaR

Clearly, if we choose forward gain,

Ga =
[

−Fa(A
+
aa + L+

adFa)
−1L+

ad + 1
]−1

(3)

then we get y(∞) = R. Thus, asymptotically output can be

regulated at the constant reference input R.
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However, for time varying signal we can not achieve the

output tracking with such a feedforward gain as tracking error

Faz
+
a is time varying.

In this paper, a method to design a reduced order sliding

mode control for the output tracking of an arbitrary signal is

addressed systematically and demostrated the effectiveness of

the design method on Inverted pendulum test bench.

III. BOUNDED SOLUTION OF THE UNSTABLE ZERO

DYNAMICS

Let z∗ = (z∗−⊤

a , z∗+⊤

a , z∗⊤i )⊤ be the reference state trajec-

tory for the system (2). As the reference trajectory satisfies

the system equations, we can write,

ż∗+a = (A+
aa + L+

adFa)z
∗+
a + L+

adCdz
∗

d (4)

y∗ = Faz
∗+
a + Cdz

∗

d (5)

Substituting Cdz
∗

d from (5) into (4), we get,

ż∗+a = A+
aaz

∗+
a + L+

ady
∗ (6)

Note that, A+
aa is unstable zero dynamics of the system. Thus

for any arbitrary reference (desired) output y∗, the solution

z∗+a is unbounded.
If the reference signal is uniformly bounded and known a

priory then it is possible to compute the bounded solution of
the system [11]. The solution of the unstable zero dynamics
(6) is given by,

z∗+a (t) = exp(A+
aat)z

∗+
a (0) +

t
∫

0

exp(A+
aa(t− τ))L+

ad y
∗(τ)dτ

= exp(A+
aat)



z∗+a (0) +

t
∫

0

exp(−A+
aaτ)L

+
ad y

∗(τ)dτ



 (7)

Choose initial condition,

z∗+a (0) = −
∞
∫

0

exp(−A+
aaτ)L

+
ad y

∗(τ)dτ

Therefore, from (7), the solution is given by,

z∗+a (t) = −
∞
∫

t

exp(A+
aa(t− τ))L+

ad y
∗(τ)dτ

Define s := τ − t,

z∗+a (t) = −
∞
∫

0

exp(−A+
aas)L

+
ad y

∗(t+ s)ds (8)

As A+
aa is unstable and y∗(t) is uniformly bounded, therefore solution

(8) is uniformly bounded. With such bounded solution z∗+a , we can
generate bounded z∗−a and z∗d trajectory.

IV. ERROR DYNAMICS

Let z∗ be the desired bounded reference trajectory that satisfies
the system (1) giving the desired output y∗ = Cz∗. Let this desired
trajectory z∗ is generated by nominal input u∗. Then the output
tracking problem can be converted into stabilization of error between
state trajectory and desired trajectory using the control ∆u = u−u∗.
Define the output tracking error ye := y− y∗ and error between the

state trajectory and the desired trajectory e := z − z∗. Therefore the
system (1) can be described in terms of error states as,

ė = Ae+B∆u+Bφ (9a)

ye = Ce (9b)

Clearly, the output tracking can be achieved if control ∆u is designed
such that ‖e‖ → 0 as t→ ∞.

As the system is in canonical form, therefore error dynamics can
be written as,

ė−a = A−
aae

−
a + L−

adFae
+
a + L−

adCded (10a)

ė+a = (A+
aa + L+

adFa)e
+
a + L+

adCded (10b)

ėi = Aqiei +Bqi(E
−
iae

−
a + E+

iae
+
a + Eied +∆ui + φi) (10c)

ye = Fae
+
a + Cded (10d)

where ei = (zi − z∗i ) ∈ Rqi , ∆ui = ui − u∗
i and u∗

i is the ith

nominal input that generates the output y∗i , given by,

u∗
i =

(qi)

y∗i − E−
iaz

∗−
a − E+

iaz
∗+
a − Eiz

∗
d (11)

An objective here is to design reduced order robust control ∆u
independent of e−a and e+a such that full error vector ‖e‖ → 0
as t → ∞, which implies z → z∗ and y → y∗ asymptotically.
Clearly, exclusion of e−a and e+a in the control ∆u may not guarantee
the asymptotic stability of the system with other control designs.
However, the sliding mode control design can ensure the asymptotic
stability of (10) by considering the terms e−a and e+a in RHS of (10c)
as disturbance since e−a and e+a states are bounded. This motivates us
to design the sliding mode control ∆u = u−u∗ using ed = zd− z∗d
vector only. Typical block diagram of the sliding mode control with
reduced order design is shown in Fig. 1.

Σ

System

(z−a , z
+
a )

+

-ed = zd − z∗d

zd

z∗d

Reduced Order
SMC

Error in
States

Σ

Nominal Control

u∗

∆u

u

Control
Input

+

+ y = y∗

Trajectory
Reference

(z∗, u∗)

y∗

Fig. 1: Block diagram representation of reduced order control

design.

In the following section, reduced order sliding mode design is
addressed that involves subsystem (10c) only.

V. MAIN RESULTS

Let us define,

ψi = E−
iae

−
a + E+

iae
+
a + φi and |ψi| < γi (12)

As the subsystem (10c) is in phase variable form, therefore subsytem
dynamics for each i can be given by,















ėi1
...

ėi(qi−1)

ėi(qi)















=













ei2
...

ei(qi)

Eied













+













0

...

0

∆ui













+













0

...

0

ψi













(13)

Let Ri(s) be the real Hurwitz polynomial of order qi − 1,

Ri(s) = sqi−1 + ci1s
qi−2 + ci2s

qi−3 + · · ·+ ci(qi−1) (14)
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Theorem 5.1 (Sliding motion): For each i ∈ {1, · · · ,m}, if the
trajectory,

ei = zi − z∗i =
[

ei1 ei2 · · · ei(qi−1) ei(qi)
]⊤

(15)

of the subsystem (10c) is restricted on the the switching manifold

σi =
[

ci(qi−1) · · · ci2 ci1 1
]

ei = 0 (16)

then output vector y → y∗ as t→ ∞.
Proof: As ei is error vector of length qi, from (16) we can write

ei(qi) = −ci(qi−1)ei1 − · · · − ci2ei(qi−2) − ci1ei(qi−1) (17)

Follow from (13), we can write the sliding motion as,











ėi1

.

.

.

ėi(qi−1)











=















0 1 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · 1

−ci(qi−1) −ci(qi−2) · · · −ci1

























ei1

.

.

.

ei(qi−1)











(18)

A subsystem matrix in (18) is stable as its characteristic polynomial
is represented by (14). This implies that, for each i, ‖ei‖ → 0 as
t→ ∞.

Also, as (10a) and (10b) subsystems are input-to-state stable and
driven by all ei1, so ‖(e−a , e+a )‖ → 0 as every ‖ei1‖ → 0. Thus,
the full state vector e = z − z∗ converges to 0 asymptotically. This
implies that y → y∗ as t→ ∞ if the trajectories ei are restricted on
σi.

Remark 5.1: Note that, each ei subsystem as in (13) always form
chain of integrators. Therefore, sliding surface is always designed for
the pair

G :=

[

0 I(p−1)×(p−1)

0 0

]

p×p

and H :=

[

0(p−1)×1

1

]

p×1

This is typical controllable canonical form. Clearly, pole placement
for desired sliding motion can be done simply by utilizing the
coefficients of desired polynomial in reverse order as a feedback
gain. Therefore, coefficients of desired polynomial (14) are utilized
for sliding surface (16) that results into desired sliding motion (18).
As the seen in Theorem 5.1, if each trajectory ei is restricted on the
switching manifold σi then asymptotic tracking of arbitrary signal
can be achieved. Therefore, it is necessary to design the sliding mode
control that enforces the trajectory ei to reach on the corresponding
switching manifold and restrict the motion on it.

Proposition 5.1 (Reduced order SMC): For each i ∈ {1, · · · ,m},
if ki > 0 and Qi > γi then reduced order control input,

∆ui =−
(

ci(qi−1)ei2 + · · ·+ ci2ei(qi−1) + ci1ei(qi)

+ Eied + kiσi +Qisgn(σi)) (19)

initiate the sliding motion of error vector ei = zi − z∗i in finite time,
so that asymptotic output tracking can be achieved.
Proof: From (16), the time derivative of σi is given by,

σ̇i = ci(qi−1)ėi1 + · · ·+ ci2ėi(qi−2) + ci1ėi(qi−1) + ėi(qi)

= ci(qi−1)ei2 + · · ·+ ci2ei(qi−1) + ci1ei(qi) + Eied +∆ui + ψi

(20)

Let for each i, Vi(σ) = σ2
i /2 be the Lyapunov function, so the time

derivative of Vi along the trajectory ei is given by,

V̇i =σiσ̇i

=σi

(

ci(qi−1)ei2 + · · ·+ ci2ei(qi−1) + ci1ei(qi)

+Eied +∆ui + ψi) (21)

Substituting the control law (19) in (21),

V̇i = σi (−kiσi −Qisgn(σi) + ψi)

= −kiσ2
i − σi(Qisgn(σi)− ψi) (22)

Define ηi := Qi−γi. If we select ki > 0 and Qi > γi, we can write

V̇i ≤ −kiσ2
i − ηi|σi| (23)

As Vi = σ2
i /2, therefore from (23), we can write

V̇i ≤ −2kiVi − ηi
√
2Vi

⇒ 1

2kiVi + ηi
√
2Vi

dVi ≤ −dt

Integrating on both th sides, we get

[

log(ηi + ki
√
2Vi)

ki

]V (tf )

V (0)

≤ − [t]
tf
0

At t = 0, Vi = Vi(0) and at t = tf , Vi = 0. Therefore,

log(ηi)− log(ηi + ki
√

2Vi(0))

ki
≤ −tf

Thus, the trajectory reaches the surface in utmost

tf =
log(ηi + ki

√

2Vi(0))− log(ηi)

ki
sec. (24)

Thus with the control (19), the sliding mode is initiated in finite time
and as given in Theorem 5.1 output tracking can be achieved.

Remark 5.2: It can be seen from (10), e−a and e+a are bounded
if ei is stable. However, stability of ei is assured by the reduced
order control only if the bound γi is known. Total disturbance ψi =
E−

iae
−
a +E+

iae
+
a +φi is function of error states e−a and e+a . Therefore,

γi can be computed if bounds on the magnitude of e−a and e+a are
known. The bounds on e−a and e+a can be easily obtained if the region
for ed is defined. Refer Appendix B for computation of γi.

A. Selection of ki and Qi

Suppose that ki = 0, then (23) becomes,

V̇i ≤ −ηi|σi| (25)

Note that, this inequality also assures finite time reachability with

tf =
√

2Vi(0)/ηi. Comparing this reaching time with (24), it is
clear that reaching time is less with ki > 0 than reaching time with
ki = 0. Thus, ki > 0 increases the rate of convergence of trajectory
towards the sliding surface. Note that, as trajectory approaches the
sliding surface, rate of convergence decreases and on the surface, kis
term in the control law (19) plays no role in asymptotic convergence
of trajectory towards the equilibrium.

Also, convergence of the trajectory towards surface is possible
only when ηi > 0 i.e. Qi > γi. Therefore, for sliding mode to
exist switching gain Qi must be greater than bound on the maximum
possible absolute value of disturbance. In practice, the bounds of the
disturbance are usually computed via statistical analysis. Alternately,
one can increase the switching gain gradually by trials until the
satisfactory response is achieved.

B. Improvement in tracking performance

To improve the tracking performance, reduced order nonlinear
switching surface as given in [38] can be designed instead of a linear
switching surface (16). Typically, the nonlinear sliding function can
be given by

σNi =
[

C0i − ρ(ye)A
⊤
12P 1

]

ei (26)

Where,

C0i =
[

ci(qi−1) · · · ci2 ci1
]

A12 =
[

0 · · · 0 1
]⊤
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Fig. 2: Laboratory setup of pendulum system, ECP-Model 505.

and P is the positive definite solution of Lyapunov equation solved
for a subsystem matrix of the sliding motion (18). Note that, such a
matrix P exists as sliding motion (18) is asymptotically stable.

Note that, C0i is designed so that the sliding motion (18) exhibit
underdamped response with small rise time. The nonlinear function
ρ(ye) is chosen in such a way that initially its value is 0 and gradually
it changes switching gain the from C0i to Cfi as ‖ye‖ → 0 and final
Cfi switching gain ensures the overdamped response that will not
exhibit overshoot. For instance, ρ can be chosen as follows,

ρ(ye) = −β exp(−‖ye(0)‖)− exp(−‖ye‖)
exp(−‖ye(0)‖)

(27)

Clearly, initally ye is ye(0), therefore ρ(ye) = 0 and finally for

ye = 0 we get ρ(ye) = −β. This implies, Cfi = C0i + βA⊤
12P .

Therefore, Cfi should be designed by selecting parameters β and P
in such a way that the sliding motion has overdamped response.

Thus, using nonlinear sliding surface (26) tracking error converges
to 0 rapidly without exhibiting the overshoot.

VI. IMPLEMENTATION ON INVERTED PENDULUM SYSTEM

To demonstrate the effectiveness, proposed reduced order sliding
mode control scheme is implemented on ECP Model 505 inverted
pendulum system [39].

Fig.2 shows the photograph of actual laboratory setup on which
experiments have been performed and Fig.3 shows the constructional
features of the system. The experimental setup consists of a pendulum
with the sliding balance rod at the top. The sliding rod is driven by
the dc servo motor, which is mounted below the pendulum, through
the drive shaft and belt-pulley mechanism. The balancing of the
pendulum rod at the commanded angular position can be achieved by
steering horizontal sliding rod. High resolution encoder is connected
to the pivoting base of the pendulum rod for the measurement of
the angular position (θ) of the pendulum rod. Also, Shaft encoder
at the back of motor is connected for the measurement of the
translational position (x) of sliding rod. The velocity of the pendulum
swing and translational motion of the sliding rod can be obtained
numerically using backward difference between two consecutive
samples of respective measured displacements. For instance, with a
sampling period τ , angular velocity of pendulum can be obtained by

θ̇ = (θ(t)− θ(t− τ))/τ . Alternately, robust exact differentiator [41]
can be employed for the measurement of velocity.

A. Dynamical model of inverted pendulum system

The free body diagram shown in Fig.4a. The dynamical model of
the pendulum system is given by

F (t) =m1ẍ+m1l0θ̈ −m1xθ̇
2 −m1g sin θ (28a)

0 =m1loẍ+ J0(x)θ̈ + 2m1xẋθ̇ − (m1l0 +m2lc)g sin θ

−m1gx cos θ (28b)

Fig. 3: Constructional features of pendulum system, ECP-

Model 505 (Figure courtesy, ECP systems).

Where, x is the displacement traveled by sliding rod and θ is
pendulum angle measured from up-right initial position (900 to the
horizontal plane). m1, J1 and m2, J2 represent the mass and polar
moment of inertia of sliding balance rod and pendulum rod (including
motor and counter mass) respectively, while l0 and lc are as indicated
in Fig. 4a; and J0 is given by,

J0(x) = J1 + J2 +m1(l
2
0 + x2) +m2l

2
c

The system (28) at equilibrium (xe, θe) = (0, 0) can be represented
by linear model,

m1ẍ+m1l0θ̈ −m1gθ = F (t) (29a)

m1loẍ+ J0θ̈ − (m1l0 +m2lc)gθ −m1gx = 0 (29b)

Define state vector x with the state variables, x1 := θ, x2 := θ̇,
x3 := x and x4 := ẋ. Then, with the parameters of the system as in
Table I, the system can be represented as,

ẋ1 = x2 (30a)

ẋ2 = −14.1916x1 + 57.4827x3 − 9.0783v (30b)

ẋ3 = x4 (30c)

ẋ4 = 14.4932x1 − 18.9693x3 + 7.6907v (30d)

y = x1 (30e)

where v (external force F (t)) be the input and y (pendulum angle
θ) be the output of the system.

B. Canonical transformation of inverted pendulum system

The input and state transformations that transform the system (30)
into desired canonical form (2) are, v = −0.1102u and








x1
x2
x3
x4









=









0 −0.6455 1 0

0 1.2909 −7.4523 1

0.1804 0.3664 −0.8472 0

−0.9836 −2.0772 6.3132 −0.8472

















z1
z2
z3
z4









(31)

Then the pendulum system in the canonical form is given by

ż−a = −5.4523z−a − 7.4523z+a + 11.5458z11 (32a)

ż+a = −2z+a + 11.5458z11 (32b)

ż11 = z12 (32c)

ż12 = 10.3699z−a + 32.8033z+a − 77.7927z11 + 7.4523z12 + u1

(32d)

y = −0.6455z+a + z11 (32e)
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θ

g

F (t)

x

m1

J1

J2
m2

lc

l0

F (t)

O
Inductor Motor &
Counter Mass

(a) Free body diagram.

(θ, θ̇, x, ẋ)

T
(z−a , z

+
a , z11, z12)

(z∗−a , z∗+a , z∗11, z
∗

12)

Trajectory
Reference

SMC
Reduced Order

−
+

(e−a , e
+
a )

(e11, e12)

+
+ Γi

Transformation
Input

u1

u∗

1

∆u1

v = F y = θ

Inverted Pendulum
ECP-505

Computer

Plant

Transformation
Canonical

(b) Control scheme.

Fig. 4: Free body diagram and control scheme for Inverted pendulum system, ECP-Model 505.

Remark 6.1: The system has two invariant zeros at ±5.4523. As
one of the zeros of the system is unstable therefore system is non-
minimum phase. Also, virtual stabilization of the zero is achieved
through a gain Fa = −0.6455.

Remark 6.2: Note that, for the system (32), i = 1, qi = 2,
A−

aa = −5.4523, A+
aa = 5.4523, L−

ad = L+
ad = 11.5458,

E1 = [−77.7927 7.4523], E−
1a = 10.3699 and E+

1a = 32.8033.

TABLE I: Parameters of inverted pendulum at rest

Parameter Quantity Unit

m1 0.213 Kg

m2 1.7850 Kg

l0 0.33 m

lc -0.0295 m

J0 0.0595 Kg ·m2

g 9.81 m/s2

C. Reduced order SMC design for inverted pendulum system

Step-by-step procedure to design the reduced order SMC for the
inverted pendulum is as follows.

1) Computation of reference trajectory: The tracking signal
considered for the demonstration is y∗ = 0.1745 sin t. As discussed
in Section III, the desired trajectory for the system (32) can be
obtained using (8) and is given by,

z∗+a = −0.06558 cos t− 0.3576 sin t

z∗11 = y∗ + 0.6455z∗+a = −0.05629 sin t− 0.04233 cos t

z∗12 = ż∗11 = 0.04233 sin t− 0.05629 cos t

z∗−a = 0.065568 exp(−5.4523 ∗ t)− 0.36346 cos(t+ 1.3894)

and the nominal control as,

u∗
1 =ÿ∗ + 0.6455z̈∗+a − 10.3699z∗−a − 32.8033z∗+a

+ 77.7927z∗11 − 7.4523z∗12

2) System representation in error coordinate for tracking:
The tracking of the pendulum angle can be achieved by representing
the system into error coordinates and then design the controller for

stabilization of error dynamics. Using (10), we can represent the
system into error cordinates as,

ė−a = −5.4523e−a − 7.4523e+a + 11.5458e11 (34a)

ė+a = −2e+a + 11.5458e11 (34b)

ė11 = e12 (34c)

ė12 = 10.3699e−a + 32.8033e+a − 77.7927e11

+ 7.4523e12 +∆u1 (34d)

ye = −0.6455e+a + e11 (34e)

3) Reduced order sliding surface design: As given in (14),
we choose the real Hurwitz stable polynomial of order qi − 1 = 1
(with fast possible poles) as,

R1(s) = s+ 15 (35)

From (35), c11 = 15. Therefore, the surface σi using (16) is designed
as,

σ1 = c11e11 + e12 = 0 (36)

so that during sliding motion, the e1 vector dynamics is governed by

ė11 = −15e11 (37)

4) Reduced order sliding mode control design: For the
Inverted Pendulum system, we consider bounds on the original

states as |θ| ≤ 0.35 rad, |θ̇| ≤ 0.3 rad/s, |x| ≤ 0.03m and
|ẋ| ≤ 0.15m/s, which are well within safe operating limits of the
experimental setup.

In order to design the reduced order controller, the upper bound γ1
on the total disturbance (12) can be computed using results provided
in Appendix B.

• Select γd = 0.1 and Pd =

[

200 100

100 300

]

. From (51), we get

‖ed‖ ≤ 0.0166.
• For ea-subsystem, the Lyapunov solution Pa for the selected

Qa =

[

0.1 0

0 0.1

]

is Pa =

[

0.0433 −0.025

−0.025 0.025

]

.

• From (52), ‖ea‖ ≤ 0.3301. Choose α = 0.4301 that satisfies
(54).

• Hence, from (55), we get total disturbance bound γ1 = 18.5683.

Therefore, the reduced order sliding mode controller parameters can
be selected as, Q1 = 20 > γ1 and for the faster reachability of ed
towards the surface, we select k1 = 10.

Thus, the designed output tracking control to get the desired output
y∗ is given by

u1 = −(c11e12 + E1ed + k1σ1 +Q1sgn(σ1)) + u∗
1

= 77.7927e11 − 22.4523e12 − 10σ1 − 20sgn(σ1) + u∗
1 (38)
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Finally, the tracking input actually applied to the pendulum is

v = F (t) = −0.1102u1

= −705.9229e11 + 203.7414e12

+ 90.7441σ1 + 181.4882sgn(σ1)− 9.0744u∗
1 (39)

Remark 6.3: In the experiment, it is assumed that φi = 0.
Therefore, upper bound for E−

iae
−
a +E+

iae
+
a part of the disturbance is

computed in order to disregard it from range space of control, which
is quite essential for reduced order design. Q1 is selected grater than
this upper bound and then gradually increase it there on by trial to
achieve the satisfactory response.

D. Reduced order control for constant reference tracking

The reduced order sliding mode control for constant reference
tracking as given in [38]. This method involves the computation of
feed-forward gain Ga as in (3). Feed-forward gain for system in error
co-ordinates (32) is computed as,

Ga =
[

−Fa(A
+
aa + L+

adFa)
−1L+

ad + 1
]−1

= −0.3668 (40)

The desired trajectory for the system (32) to regulate the output
asymptotically at R = 0.1745 rad/sec (10 deg.),
i.e y∗(∞) = −0.6455z+a (∞)+ z11(∞) = R is obtained as follows,

z∗11 = GaR = −0.0640

z∗12 = ż∗11 = 0

z∗+a = −(A+
aa)

−1L+
adz

∗
11 = −0.3696

z∗−a = −(A−
aa)

−1(L−
adz

∗
11 + L−

adFaz
∗+
a ) = 0.3696

(41)

and thus the reference vector can be written as

z∗ =
[

0.3696 −0.3696 −0.0640 0
]

(42)

Therefore, with the nominal control

u∗
1 =− 10.3699z∗−a − 32.8033z∗+a + 77.7927z∗11 − 7.4523z∗12

we can represent the system in error co-ordinates as in (34). The
sliding surface is designed for response with time constant 0.25 sec.
Therefore,

σ1 = c11e11 + e12 = 4e11 + e12 = 0 (43)

The sliding mode control designed with the switching gain Q1 = 6
(by trial) and k1 = 10 is given by,

u1 = −(c11e12 + E1ed + k1σ1 +Q1sgn(σ1)) + u∗
1

= 77.7927e11 − 11.4523e12 − 10σ1 − 4sgn(σ1) + u∗
1 (44)

Thus, the controlling force applied to the system is given by

v = F (t) = −0.1102u1

= −705.9229e11 + 103.9229e12

+ 90.7441σ1 + 54.4465sgn(σ1)− 9.0744u∗
1 (45)

E. Experimental results

The reduced order tracking controller is implemented through
MathWorks R© MATLAB and Simulink R© RTWT (real time windows
target) with sampling time 0.001 second. Fig.4b shows representative
block diagram of the implementation of proposed control scheme.

The reference trajectory z∗ is generated in real time as discussed
in Step 1 of Section VI-C for the known desired output y∗ = θp sin t
with θp = 10π/180 for maximum 10 deg swing of pendulum
on either side of the rest position. Measured states of the system
are transformed to the canonical form (32) and only zd states are
used for feedback. The error e between the transformed state vector
of the system and the reference state trajectory is utilized for the
computation of the tracking control signal via reduced order sliding
mode control scheme. Initially the pendulum is kept at rest manually

in upright position (at unstable equilibrium point) before applying
the control.

Fig.5 shows the simulation and practical implementation results for
the ECP-505 inverted pendulum system with reduced order sliding
mode control. Note that, designed control (39) is independent of e−a
and e+a that guarantees error ‖e‖ → 0 as t→ ∞, which implies z →
z∗ and y → y∗ asymptotically. Fig. 5a shows the simulation of output
tracking of the reference signal y∗ = 10π

180
sin t using the control (39)

whereas Fig. 5b shows the experimental results of output tracking on
ECP-505 inverted pendulum system for the same reference signal.
Note that, in either case tracking is achieved in about 2sec.. Also, to
increase the speed of response in reaching phase the gain k1 = 10
is selected. As a results the trajectory reaches the sliding surface in
0.1sec, see Fig. 5e and Fig. 5f for simulation and implementation
results, respectively.

Simulation and practical implementation results with the controller
(45) as proposed in [38] are shown in Fig.6. However, arbitrary time-
varying reference signal cannot be achieved with such control for the
reasons as discussed in Section II-B.

Ideally, sliding motion occurs along the surface with infinite
switching frequency of controller. However, Practically, this is im-
possible to achieve. Therefore, in any sliding mode control design,
the practical sliding band is bound to exist, within which the sliding
motion is guaranteed. The amount of sliding band depends on the
switching frequency that is determined by the sampling time as well
as the actuator response time. Overall, in the presented experimental
results, sliding band happens to be around 0.6 with few sample
exceptions. The experimental results obtained are quite satisfactory
when compared to the simulation results.

VII. CONCLUSION

Systematic procedure to design the reduced order sliding mode
control for the output tracking of arbitrary signal for non-minimum
phase systems is presented. The system is transformed into canonical
form, in which the unstable zero dynamics is virtually stable.

The reduced order sliding function is designed with the coefficients
of selected Hurwitz polynomial. This is possible, as the subsystem
with which SMC is designed is always in phase variable form. During
the sliding motion of reduced order error dynamics, the full-state error
vector converges towards the equilibrium.

The reduced order controller is designed with the switching gain
higher than the total disturbance that includes stable and virtually
stable zero dynamic terms to ensure the finite time reachability and
exhibition of sliding motion.

In order to make the design possible, the construction of canonical
transformation and the guidelines for the computation of the bound on
stable and virtually stable zero dynamics is explained systematically.

Finally, results of implementation on the experimental setup of the
inverted pendulum system are presented to show the effectiveness of
the proposed design method.

APPENDIX A

CONSTRUCTION OF CANONICAL TRANSFORMATION

Let an invertible system is given by,

ẋ = Ax+ Bv
y = Cx

Where, x ∈ Rn, v ∈ Rm, y ∈ Rm.
Suppose x = Γ1x̄ and v = Γiu are state and input transformations

that transforms the given system into special coordinate basis (SCB)
form [42], [43]. A system can be brought into SCB form using soft-
ware toolbox for MATLAB [44]. Typically, the system transformed
in SCB from is represented as,

˙̄x−a = A−
aax̄

−
a + L−

adCdx̄d (46a)

˙̄x+a = A+
aax̄

+
a + L+

adCdx̄d (46b)

˙̄xi = Aqi x̄i +Bqi(Ē
−
iax̄

−
a + Ē+

iax̄
+
a + Ēix̄d + ui) (46c)

y = Cdx̄d (46d)
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Fig. 5: Simulation and practical implementation results of ECP-505 inverted pendulum system with the proposed reduced order

control.
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Fig. 6: Simulation and practical implementation results of ECP-505 inverted pendulum system with the reduced order control

as given in [38].
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Where, x̄d =
[

x̄⊤1 · · · x̄⊤m

]⊤

. Note that, A−
aa and A+

aa are in

diagonal form and contains the stable and unstable invariant zeros
of the system respectively.

Let Fa be the matrix chosen such that (A+
aa+L

+
adFa) is Hurwitz.

To transform the system (46) into the desired canonical form (2), the
state transformation x̄ = Γ2z can be constructed as,

z−a = x̄−a (47a)

z+a = x̄+a (47b)

zik = x̄ik − Fai(A
+
aa)

k−1x̄+a

−
m
∑

ρ=1

k−1
∑

j=1

Fai(A
+
aa)

k−1−j
L+

ad(ρ)x̄ρj (47c)

where k ∈ {1, · · · , qi}, qi > 1, for each i ∈ {1, · · · ,m}. Note

that, L+
adi ∈ Rn+

a ×1 and Fai ∈ R1×n+
a . Thus, the state x = Tz =:

Γ1Γ2z and input transformation v = Γi transformation the given
system into the desired canonical form (2).

APPENDIX B

COMPUTATION OF BOUND ON TOTAL DISTURBANCE

Define, ea := [e−⊤
a e+⊤

a ]⊤,

Aaa :=





A−
aa L−

adFa

0 A+
aa + L+

adFa



 and Lad :=





L−
ad

L+
ad





Therefore, (10a)-(10b) dynamics can be written as,

ėa = Aaaea + LadCded (48)

As Aaa is stable, there exists a positive definite symmetric solution
Pa to the Lyapunov equation, A⊤

aaPa+PaAaa = −Qa, for Qa > 0.
Define,

Ωa :=
{

ea ∈ R
na | e⊤a Paea ≤ γa

}

(49)

Let Pd be a positive definite symmetric matrix such that,

Ωd :=
{

ed ∈ R
nd | e⊤d Pded ≤ γd

}

(50)

As the trajectory of subsystem (13) reaches the sliding surface,
stability of the subsystem is guaranteed. This implies that Ωd is
invariant. Since Ωd ⊆ {ed ∈ R

nd | λmin(Pd)‖ed‖2 ≤ γd}, we use
the upper bound for ed as

‖ed‖ ≤
√

γd/λmin(Pd) (51)

With this bound on ed, the bound on ea can be determined. The time
derivative of Va along the solution of (48) is given by,

V̇a = ė⊤a Paea + e⊤a Paėa

= e⊤a A
⊤
aaPaea + e⊤d C

⊤
d L

⊤
adPaea + e⊤a PaAaa + e⊤a PaLadCded

= −e⊤a Qaea + 2e⊤d C
⊤
d L

⊤
adPaea

This implies,

V̇a ≤ −λmin(Qa)‖ea‖2 + 2‖Lad‖‖Pa‖‖ea‖ ‖ed‖

≤ −
(

λmin(Qa)‖ea‖ − 2

√

γd
λmin(Pd)

‖Lad‖‖Pa‖
)

‖ea‖

Therefore, V̇a is negative outside the ball

{ea ∈ R
na | ‖ea‖ ≤ α} (52)

where α := 2‖Lad‖‖Pa‖
λmin(Qa)

√

γd

λmin(Pd)
.

Note that,

Ωa ⊆ {ea ∈ R
na | λmin(Pa)‖ea‖2 ≤ γa}

⇒ ‖ea‖ ≤
√

γa/λmin(Pa) (53)

Thus, from (52)-(53)

α < ‖ea‖ ≤
√

γa/λmin(Pa) (54)

From (12), total disturbance is ψi = E−
iae

−
a + E+

iae
+
a + φi. This

implies,

ψi ≤ ‖E−
ia + E+

ia‖ · ‖ea‖+ L

≤ ‖E−
ia + E+

ia‖
√

γa
λmin(Pa)

+ L =: γi (55)

With this upper bound γi on the total disturbance, the sliding mode
control can be designed.
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