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Abstract

In this paper constant reference output tracking is achieved using second order sliding mode (SOSM) control. To achieve tracking

a new sliding surface is proposed and to ensure sliding motion super-twisting control (STC) is employed. The proposed sliding

surface is more general, and it can be used for constant reference tracking in both minimum phase and non-minimum phase systems.

The proposed method is validated on the unstable non-minimum phase inverted pendulum system and also the results are compared

with the first order sliding mode control (SMC) in simulation and experimentally both.
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1. Introduction

Output regulation is one of the classical control problems

and for the class of non-minimum phase systems the problem

becomes more difficult (Isidori, 2013; Byrnes and Isidori, 2000).

In earlier work, Francis and Wonham (1976) introduced internal

model principle to solve the tracking problem for linear systems

by incorporating the dynamical model of the plant in an ex-

osystem that generates the reference signal. Further, this work

is generalized by Isidori and Byrnes (1990) by identifying the

acceptable dynamics on a particular center manifold.

Sliding mode control (SMC) has been a topic of great in-

terest to researchers since it’s inception as it offers simplicity in

control structure, robustness and insensitivity to a class of dis-

turbances (see Utkin et al., 2009; Shtessel et al., 2014; Edwards

and Spurgeon, 1998; Boiko, 2008; Kamal et al., 2014; Hung

et al., 1993; Utkin, 1993).
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Numerous work on SMC in the direction of output regula-

tion has been found in literature such as a work by Edwards and

Spurgeon (1996) addresses observer based design, high perfor-

mance control using nonlinear sliding surface by Bandyopad-

hyay and Fulwani (2009). In recent work by Bandyopadhyay

and patil, reduced order SMC design method for continuous-

time systems has been addressed in (Bandyopadhyay and Patil,

2015) and for discrete-time system in Patil and Bandyopadhyay

(2013a).

Numerous literature found on the control of electro-mechanical

systems via the first or higher order SMC. For instance, see Yan

et al. (2000); Utkin and Chang (2002); Chalanga et al. (2015);

Chalanga and Plestan (2017); Khimani and Rokade (2017). How-

ever, in most of the cases, first order SMC may not be accept-

able for the discontinuous nature of the control as it leads to

chattering. Chattering may excite unmodeled dynamics, which

may hinder the stability of the system or may lead to actua-

tor failure. To make the first order SMC continuous, saturation

function can be employed instead of switching function. How-

ever, use of saturation function loses the robustness properties.

Preprint submitted to European Journal of Control September 23, 2018



Many authors came with different design procedures that

eliminate the chattering effect viz. (Bartolini et al., 1998; Lev-

ant, 2010). Using higher order sliding mode (HOSM), it is

possible to suppress the chattering effect without losing the ro-

bustness property (Levant, 1993, 1998, 2003). Therefore in

this article, super-twisting control (STC), which is one of sec-

ond order sliding mode controls, has been employed. This en-

sures the finite time reachability of the trajectory on the pro-

posed sliding surface. For more on STC design, refer Behera

et al. (2017); Polyakov and Poznyak (2009); Moreno and Oso-

rio (2012); Davila et al. (2005).

Often output tracking in SMC framework is achieved via

stabilization of the error between the system and the desired

state trajectory, while the desired state trajectory is generated

using exosystem. In this article, an effort is made to propose

a method for output tracking that involves a novel switching

surface and second order sliding mode controller without an

exosystem. This paper essentially contributes,

i. A design of novel sliding surface that involves the sys-

tem states and a reference signal. A sliding surface is de-

signed for the stable sliding motion while inclusion of the

reference signal ensures the tracking during sliding mo-

tion. A feed-forward gain, which is necessary for sliding

surface design to eliminate the asymptotic tracking error

during sliding motion is computed.

ii. A design of super-twisting control that initiates the slid-

ing motion on the proposed surface in finite time.

iii. To validate the proposed method experimentally, the slid-

ing surface and the controller as stated in (i) and (ii) are

designed and implemented on inverted pendulum labo-

ratory setup developed by educational control products

(ECP, 2004). The experimental results obtained are com-

pared with simulation results and they found to be quite

satisfactory.

The paper is organized as follows. Section 2 discusses moti-

vation behind the work. Section 3 details the main results of the

paper. An application of the proposed method to the inverted

pendulum system is discussed in Section 4. Section 5 contains

simulation and experiments results followed by the conclusion.

2. Motivation

Consider the linear time invariant (LTI) system,

ẋ = Ax + B(u + d)

y = Cx,
(1)

where x ∈ Rn, u ∈ R and y ∈ R are the states, input and out-

put of the system, respectively. d ∈ R represents the matched

disturbance. Assume–

1. (A, B) is controllable.

2. (A,C) is detectable and (A, B,C) has no zero at s = 0.

First assumption is made for existence of the control law while

the second assumption ensures the exact asymptotic tracking of

the desired step reference.

If we consider d = 0, then for such a system asymptotic

tracking of constant reference can be achieved by the control

law,

u = −Kx + Ḡr, (2)

where K is chosen so that (A − BK) is Hurwitz, r be 0,0.5,0 the

step signal and Ḡ be the constant that can be computed as,

Ḡ = −
[
C (A − BK)−1 B

]−1
. (3)

This result is well known in the literature (see Franklin et al.,

1994; Chen et al., 2003). However, controller (2) may not per-

form well in the presence of disturbance d. Therefore, this prob-

lem can be formulated in the SMC frame-work that completely

rejects the disturbance. SMC based output tracking controller is

usually designed for the stabilization of the error states. There-

fore, it is necessary to transform the system in terms error vari-

ables that represent error between system states and desired

states generated by exosystem. Recently in (Patil et al., 2018),

a method for the non-causal output tracking of constant as well

as time-varying reference via reduced order sliding mode con-

trol with an application to the inverted pendulum system (ECP,
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2004) has been proposed. However, in (Patil et al., 2018), the

reduced order controller was designed for the stabilization of

the error between the system trajectory and desired state tra-

jectory. Also, the reduced order design ensures the asymptotic

stability of the error locally in the predefined domain.

This motivates us to design a SMC controller for output

tracking of constant reference signal that is simple, robust against

the matched disturbance and does not require to transform the

system in error coordinates.

3. Main results

Let there exist a linear transformation Z = T x that trans-

forms the system (1) into the regular form due to Lukyanov and

Utkin (1981),

Ż = AregZ + Breg(u + d),

y = CZ.
(4)

where

Areg =

 A11 A12

A21 A22

 ; Z =

 Z1

Z2


Breg =

 B1

B2

 =

 0(n−1)×1

1


C =

[
C1 C2

]
.

Therefore, a system (4) can be partitioned as,

Ż1 = A11Z1 + A12Z2 (5a)

Ż2 = A21Z1 + A22Z2 + (u + d) (5b)

y = C1Z1 + C2Z2 (5c)

where Z1 ∈ Rn−1 and Z2 ∈ R. As the system is represented

in regular form, problem of output tracking can be solved by

introducing a novel sliding surface.

3.1. Sliding surface

An ideal sliding mode is said to take place on a manifold

S = {Z ∈ Rn |σ(Z) = 0} (6)

if the trajectory Z(t) reaches the manifold σ(t) = 0 in finite time

tr ∈ R+ and remained thereon for all t ≥ tr. Also, during sliding

mode ‖Z‖ → 0 as t → ∞. However, this implies, ‖y‖ → 0

as t → ∞. Therefore, in order to achieve output tracking, the

novel sliding surface is introduced in the following theorem.

Remark 1. In sliding mode frame-work, often for the output

tracking, the system in regular form such as one in (5) is re-

quired to be transformed into error variables that essentially are

error between system and desired state trajectory and; then the

sliding surface is designed for the robust asymptotically stable

motion of the error variables, for instance see work by Patil and

Bandyopadhyay (2013b). However, in this article, proposed de-

sign of the sliding surface and the control does not require ref-

erence trajectory

Theorem 1 (Novel sliding surface). Suppose that r is a con-

stant tracking signal. Let trajectory Z(t) of the system (4) be

restricted on the switching surface,

σ := F>Z −Gr =: F1Z1 + Z2 −Gr = 0. (7)

then output y tracks the reference input r asymptotically if

G = −
[
(C1 −C2F1)A−1

cl A12 −C2

]−1
(8)

and F1 is chosen such that Acl := (A11 − A12F1) is Hurwitz.

Proof. During sliding motion, σ = 0. So from (7),

Z2 = −F1Z1 + Gr (9)

Substitute in (5a),

Ż1 = (A11 − A12F1)Z1 + A12Gr

= AclZ1 + A12Gr

⇒ Z1(t) = exp(Aclt)Z1(0) +

t∫
0

exp(Acl(t − τ))A12Gr dτ

= exp(Aclt)Z1(0) + A−1
cl (−I + exp(Aclt))A12Gr

As Acl is stable by design, therefore

Z1(∞) = −A−1
cl A12Gr (10)
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Also, from (9)

Z2(∞) = −F1Z1(∞) + Gr

= (F1A−1
cl A12 + 1)Gr (11)

Thus

y(∞) = C1Z1(∞) + C2Z2(∞)

= −C1A−1
cl A12Gr + C2F1A−1

cl A12Gr + C2Gr

=
(
(−C1 + C2F1)A−1

cl A12 + C2

)
Gr (12)

Clearly, If we choose

G = −
(
(C1 −C2F1)A−1

cl A12 −C2

)−1

this gives y(∞) = r. Hence proved

3.2. Sliding mode control

It is well known that sliding mode control (SMC) is two-

step design procedure, first step is to design a sliding surface

and second step is controller design that initiates the sliding

mode in finite time. Therefore, it is necessary to design a con-

trol that enforces the sliding motion along the surface (7).

3.2.1. First order SMC

For a system (4), typically a first order sliding mode can be

given by,

u = −(F>Breg)−1
(
F>AregZ + uFSMC

)
, (13)

where uFSMC is the first order SMC, which is defined as

uFSMC = Msign(σ), (14)

In first order SMC, it is assumed that disturbance is bounded.

To show the finite time reaching of the trajectory on the sliding

surface, consider the Lyapunov function V = 1
2σ

2. So the time

derivative of the Lyapunov function along the trajectory of (4)

is given by,

V̇ = σσ̇

= σ(F>ż)

= σ(F>(Aregz + Breg(u + d))

= σ(−Msign(σ) + F>Bregd)

≤ −|σ|
(
M − F>Bregd sign(σ)

)
= −(2V)

1
2

(
M − F>Bregd sign(σ)

)
Let the disturbance bound be |d(t)| < δ. So if we choose the

parameter M > max |F>Bregδ|, then

V̇ ≤ −ηV
1
2 (15)

where, η = 2(M −max |F>Bregδ|).

Therefore from (15), it is clear that using the controller (13)

state trajectory reaches the sliding surface in finite time.

3.2.2. Super-twisting control

The major problem with the control (13) is chattering that

results from the discontinuous term in the control. To avoid

chattering problem, one can design super-twisting control as

suggested by Levant (1993, 2010). Super-twisting control is a

continuous control that leads to the second order sliding motion

on the chosen sliding surface in finite time and also adjust the

chattering phenomenon in the real applications.

Typically, super-twisting control for the system (4) is given

by,

u = −(F>Breg)−1
(
F>AregZ − uSTC

)
, (16)

where uSTC is given by,

uSTC = −k1|σ|
1
2 sign(σ) + ν

ν̇ = −k2sign(σ).
(17)

Note that, it is assumed that time derivative of the disturbance

is also bounded. Let the bound on rate of change of disturbance

be |ḋ(t)| < ∆.

To show the finite time reaching at the sliding surface, dif-

ferentiate the sliding surface (7) w.r.t. to time and substitute the
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control (16),

σ̇ = F>Ż

= F>(AregZ + Breg(u + d))

= uSTC + F>Bregd(t) (18)

Substitute (17) in (18), we get,

σ̇ = −k1|σ|
1
2 sign(σ) + ν̄

˙̄ν = −k2sign(σ) + F>Bregḋ(t)
(19)

where ν̄ = ν + F>Bregd(t).

The finite time stability of super-twisting algorithm (STA)

as represented in (19) is well studied in the literature for in-

stance, see stability proof of STA using Lyapunov function in

(Moreno and Osorio, 2012) and via geometric approach in Be-

hera et al. (2017). In (Davila et al., 2005) finite time stability

has been proved geometrically and also suggested the choice

of parameters as k1 = 1.5
√

∆1 and k2 = 1.1∆1, where ∆1 =

max |F>Bregḋ(t)|.

4. Application to inverted pendulum system

In this section, we discuss the controller design for the ECP

Model 505 inverted pendulum system to show the effectiveness

of the proposed method. ECP Model 505 inverted pendulum

system is different from the cart mass pendulum system. The

representative picture of ECP Model 505 inverted pendulum

setup (ECP, 2004) is shown in the Fig.1.

The setup consists of a pendulum rod which supports the

sliding balance rod. The sliding rod is driven via a belt and

pulley which in turn is driven by a drive shaft connected to a

dc servo motor below the pendulum rod. In this setup balance

and control of the pendulum rod position can be achieved by

steering horizontal sliding rod in the presence of gravity. So in

this model tracking of pendulum rod angle is possible, which is

a unique feature of this model. The inverted pendulum model

is an unstable and non-minimum phase system.

In this application, an objective is to track the pendulum

angle to the reference signal in the presence of disturbance. To

Figure 1: ECP Model 505 Inverted Pendulum.

design a controller, we need linearized model of the inverted

pendulum system.

4.1. Inverted pendulum model

Nonlinear dynamics of the inverted pendulum system is given

by,

m1 ẍ + m1loθ̈ − m1xθ̇2 − m1gsinθ = F(t)

m1lo ẍ + Joθ̈ + 2m1xẋθ̇ − (m1l0 + m2lc)gsinθ − m1gxcosθ = 0

Linearize the system about x = 0 and θ = 0, we get,

m1 ẍ + m1loθ̈ − m1gθ = F(t)

m1lo ẍ + Joθ̈ − (m1l0 + m2lc)gθ − m1gx = 0
(20)

Define, the output y := θ, input u = F(t) and the state variables,

X :=
[
θ θ̇ x ẋ

]>
Therefore, the system (20) can be represented in state space

as,

Ẋ = AX + Bu

y = CX
(21)

5



Table 1: ECP 505 Model parameters.

Symbol Values

m1 0.213 Kg

m2 1.7850 Kg

lc -0.0295 m

lo 0.330 m

g 9.81 m/s2

Jo 0.0595 Kg-m2

where,

A =



0 1 0 0
m2lcg

J∗ 0 m1g
J∗ 0

0 0 0 1
(J∗−m2lolc)g

J∗ 0 −
m1log

J∗ 0


, B =



0

−
l0
J∗

0
Jo

m1 J∗


C =

[
1 0 0 0

]
and J∗ = Jo − m1l2o.

For the experiment we have considered donut weight on the

both side of sliding road and also two balance weight below the

pendulum road. After substituting parameter values from Table

1, we get

A =



0 1 0 0

−14.1916 0 57.4827 0

0 0 0 1

14.4932 0 −18.9693 0


, B =



0

−9.0783

0

7.6907


C =

[
1 0 0 0

]
.

4.2. Controller Design

In order to design a sliding mode control, first we transform

the system (21) into regular form using transformation,

Z :=

 Z1

Z2

 := T X, with T =



1 0 0 0

0 1 0 1.1805

0 0 1 0

0 0 0 0.1300



and

Z1 :=


z1

z2

z2

 , Z2 := z4

The transformed system in regular form is obtained as,

Ż = AregZ + Bregu,

y = CZ

where

Areg =

 A11 A12

A21 A22

 , Breg =

 B1

B2

 , C =

[
C1 C2

]
.

and

A11 =


0 1 0

2.9181 0 35.0889

0 0 0

 , A12 =


−9.0783

0

7.6900


A21 =

[
1.8847 0 −2.4667

]
, A22 = 0

B1 = 03×1, B2 = 1, C1 =

[
1 0 0

]
, and C2 = 0.

4.2.1. Sliding surface design

For the sliding surface σ = F1Z1 + Z2 − Gr, the reduced

order system dynamics during sliding motion is given by,

Ż1 = (A11 − A12F1) Z1 + A12Gr. (22)

The design requirement for sliding motion (22) is that the over-

shoot is less than 10% and settling time is less than 2 second.

These specifications can be satisfied by the surface parameter

F1 =

[
0.9997 0.3481 3.2895

]
Scalar gain G can be computed from the (8), after calculation

we obtained it as G = 0.7262.

4.2.2. Super-twisting control and first order SMC

The first order controller (13) or super-twisting (16) can be

used to reach the sliding surface in finite time. To demonstrate

the robustness property, we introduce disturbance d = sin t.

Clearly, δ = max |d| = 1, so |F>Bregδ| = 1. Therefore, we
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chose M = 3, which is greater than |F>Bregδ|. Thus, first or-

der sliding mode controller (13) for the system in transformed

coordinate is given by,

u = −2.9005z1 − 0.9997z2 − 9.7477z3

− 34.3718z4 − 3 sign(σ) (23)

Note that, ḋ = cos t, so |F>Bregḋ| = 1. Therefore, we chose k1 =

3.97 and k2 = 7.70. Thus, super-twisting (16) that enforces

second order sliding motion on the designed surface in finite

time is given by

u = −2.9005z1 − 0.9997z2 − 9.7477z3 − 34.3718z4

− 3.97|σ|
1
2 sign(σ) +

t∫
0

7.7 sign(σ) (24)

5. Simulation and experiments results

The performance of the proposed method is tested on ECP

Model 505 inverted pendulum setup with the disturbance of the

form d(t) = sin t, in the simulation and experiment both. The

controller is implemented through MATLAB Simulink RTWT

(real time windows target) with sampling time 0.001sec. The

control objective was to track the pendulum angle to the desired

constant value in the presence of the disturbance.

The obtained results in simulation and experiment both are

quite satisfactory in the presence of disturbance. We have im-

plemented both first order SMC and SOSM controller on the

ECP inverted pendulum setup in simulation and experiment.

The results are almost matching to the desired performance

specifications of overshoot less than 10% and settling-time less

than 2 seconds.

In the experiment, initially we have arranged manually slid-

ing rod such that the inverted pendulum is stable at an unstable

equilibrium point. From this initial condition, we have given the

set point of 10 degree, after ten second pendulum was brought

back to the original position, after twenty second negative 10

degree set point was given. The tracking performance of the

pendulum angle θ in simulation and experiment using first or-

der SMC is shown in the Fig. 2(a) and Fig. 2(b). The controller

perfectly tracks the output in the presence of disturbance in sim-

ulation, while in experiment nearly 8% steady state error is ob-

served. Due to the discontinuous nature of control in first order

SMC, sliding rod which is connected with dc servo motor ex-

hibits vibration which affects the pendulum angle. As we know

that chattering is a practical phenomenon, which is observed in

the zoom view of the Fig. 2(b). The required control effort to

maintain the desired performance in simulation and experiment

is shown in Fig. 2(c) and (d) respectively. Finite time reaching

to the sliding surface is depicted in Fig. 2(e) and (f).

As compare to the first order SMC, STC generates continu-

ous nature of control and obtains the desired performance with-

out chattering. The performance of the pendulum angle in sim-

ulation and experiment using STC is depicted in Fig. 3(a) and

(b) respectively. In the zoom view of the pendulum angle, it is

evident that the chattering is not exhibited with STC. STC per-

fectly tracks the output in the presence of disturbance in simu-

lation. However, in the experiment, steady state error observed

is less than 2%, which can be seen in the inset zoom window

in Fig. 3(b). Note that, in simulation such error has not been

observed as a constant G as in (8) is computed for the identified

model of the system. However, due to mismatch in the model

and plant, there always exists small amount of steady state error

in the practical situation even for the appropriate control efforts.

The time evolution of STC input is shown in Fig. 3(c)

and (d) respectively for simulation and experiment. Finite time

reaching to the sliding surface is depicted in Fig. 3(e) and

(f). As mentioned earlier that STC is continuous in nature,

which minimize the chattering effect on the pendulum position.

Hence, overall performance using the proposed control tech-

nique is quite satisfactory, which can be observed in the results.

6. Conclusion

In this paper, output tracking of constant reference input for

non-minimum phase system using second order sliding mode

approach is proposed. To achieve tracking a new sliding surface

is proposed that and to ensure sliding motion super-twisting

control (STC) is used, which also adjusts the chattering. The

7



proposed method is validated in simulation and experimentally

both on ECP Model 505 inverted pendulum system, which is

unstable, and non-minimum phase system. The obtained results

are more promising using proposed control technique.
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Figure 2: Simulation and Experimental Results: ECP Model 505 Inverted Pendulum with First Order Sliding Mode Control
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Figure 3: Simulation and Experimental Results: ECP Model 505 Inverted Pendulum with Second Order Sliding Mode Control
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