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BRANCHING RULES AND COMMUTING PROBABILITIES FOR
TRIANGULAR AND UNITRIANGULAR MATRICES

DILPREET KAUR, UDAY BHASKAR SHARMA, AND ANUPAM SINGH

ABSTRACT. This paper concerns the enumeration of simultaneous conjugacy classes
of k-tuples of commuting matrices in the upper triangular group GT,(F,) and uni-
triangular group UT:,(F,) over the finite field F, of odd characteristic. This is done
for n = 2,3,4 and m = 3,4, 5, by computing the branching rules. Further, using the
branching matrix thus computed, we explicitly get the commuting probabilities cpy for

k < 5 in each case.

1. INTRODUCTION

Simultaneous conjugacy of commuting k-tuples in a group is understood by computing
its branching matrix. In [Sh1] and [SS]|, the branching table/matrix of finite general
linear, unitary and symplectic groups of small rank is computed. In this paper, we
continue the work for certain solvable groups, namely, upper triangular matrices. Since,
this work is continuation of that in [SS], we refer a reader to the same for definition
of branching and other related notation. We work with the groups of upper-triangular
invertible matrices, GT,,(F,), and the groups of upper unitriangular matrices UT,(F),
over a finite field F,, of odd characteristic. We compute the branching matrix for GT5(F)
(Theorem 2.1), GT3(F,) (Theorem 3.1), GT(F,) (Theorem 4.1), UT3(F,) (Theorem 5.1),
UTy(F,) (Theorem 6.1) and UT5(F,) (Theorem 7.1).

Further, for a group G, the relation of branching matrix Bg to commuting probabil-
ities cpi(G) was explored in [SS, Theorem 1.1]. This relation is further explored in the
survey article [SS2|, where commuting probabilities epi(G) up to k < 5 is computed for
G = GLy(Fy), GL3(F,), Us(Fy) and Us(F,). It was also proved that cpy(GL2(Fy)) =
cpi(U2(Fy)) for all k even though the branching matrices of the two groups are not same
(see Proposition 3.3 [SS2]). In [GR] (see Theorem 12) bounds for commuting probability
cp2, when G is a solvable group or p-group, is computed. Using the branching matrix we
compute the commuting probabilities cpg, up to k < 5, for each of the groups GT),(F,)
and UT, (F,) for which we have branching matrix (see Section 8).
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For this work, we need conjugacy class types or z-classes (as defined in [SS]| and also
dealt in [Bh]). This is defined as follows: two matrices are said to be of the same conjugacy
class type/z-class, if the centralizers of two elements are conjugate. However, a further
weaker version is enough for our purpose here. We say that two matrices are of same
type if their centralizers are isomorphic. This helps us reduce the size of computation
(and size of branching matrix) and causes no loss of generality. Throughout, we assume
q is odd. We hope our computation throws some light on the subject of commuting

probability and will help us understand the groups better.

Acknowledgments. The authors would like to thank Amritanshu Prasad, IMSc Chen-

nai, for his interest in this work.

2. BRANCHING RULES FOR GT5(F,)

There are four conjugacy class types in GLy(F,) given by the following partitions (as
in [Sh1]) (1,1)2, (2)1, (1)1(1)1, and (1)2. We use this to get the same for GT»(F,). Since
we are looking at GT5(F,), the last one, (1) doesn’t exist in GT»(F). In this paper, we
shall not use the partition based nomenclature for the conjugacy class types. Instead we

use alphanumeric nomenclature as follows (similar to the pattern in [SS]).

Canonical Form | No. of Classes Centralizer Name of Class Type

(52)

e -1 GT>(F C

a€Fy 1 2(Fq)

(8(11)7 q_l {(:E():El ’xOGF} Rl

a€Fy.

(68): | (= 1)@= [{(™ ) 20,20 € F5) R,
a,beFy, a#b 0 ’

Theorem 2.1. The branching rules are summarized in the table below given by the

branching matrix:
qg—1 0 0
Beryr,) = q—1 q(qg —1) 0
(@=Dlg-2) 0  (¢-1)°
We mention the branching rules below.

Proposition 2.2. For an upper triangular matriz of type C, the branching rules are as
mentioned in the table above.

Proof. The result follows, as this type is central. (]

Proposition 2.3. For matrices of any of the two regular types:

o A matriz of type Ry has q(q — 1) branches of type Ry, and
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o A matriz of type Ry has (¢ — 1)? branches of type Rs.

Proof. The centralizer of a matrix of any of the above mentioned regular types is com-

mutative, hence each element of the centralizer is a branch. O

Proof of Theorem 2.1. The branching rules stated in the above propositions, are sum-

marised in the the branching matrix, as mentioned in the statement of the thoerem. [

3. BRANCHING IN GT3(q)

Now, we compute the branching table for GT3(F,). The table for the conjugacy classes

and their types are as follows:

Class Representative Number of Classes | Centralizer size | Name of Type
als, a #0 qg—1 (¢ —1)°¢° C
al a
( aa>’< afll)’ 2(¢ - 1) (¢ —1)%¢ A
a#0
("al).ar0 ¢—1 (¢ - 1)%° A
b< ab)j( b“>’ 3la—1)(a—2) (¢—1)%q By
( aa),();éa;éb;éo
al
( a;)ﬂ#o qg—1 (¢ —1)¢? Ry
al a 1
a ) b 9
< bb> < “> 3q—1)(q—2) (¢ —1)%q Ry
(ey)or
ab
( ) (¢ —1)(g—2)(qg—3) (¢ —1)° Ry
axb#c+#a

The branching rules are described by the branching matrix as follows.

Theorem 3.1. The branching matriz for the group GT3(F,) with types written in the

order {C, Ay, Ay, B1, R1, Ry, R3} is Bary(r,)

g—1 0 0 0 0 0 0

2(g—1) q(g—1) 0 0 0 0 0

qg—1 0 q(g—1) 0 0 0 0

— 3(g—1)(¢—2) 0 0 (q—1)2 0 0 0

q—1 q(g—1) ?—1 0 (@e-Dg*> 0 0

3(¢-1)(g—2)  q(g—1)(g—2) q(q—1)(g—2)  (¢—1)? 0 (¢-1)3%¢ ©
(g—1)(g—2)(q—3) 0 0 (¢-1)%(g=2) 0 0 (q—1)®

Proposition 3.2. For an upper triangular matriz of type C, the branches are as in the

second column of the table in the the opening paragraph of this section.
Proof. The result follows, since the matrices of type C are central. O

Proposition 3.3. An upper triangular matriz of type Ay has q(q — 1) branches of type

A1, q(q — 1) branches of type Ry, and q(q — 1)(q — 2) branches of type Rs.
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Proof. Let A = a , a matrix of type A;. The centralizer of A is: Zgp,r,)(A4) =
a
To T1 T2 To T1 T2
g 0,20 Z0 . Let X = o , be an invertible member of
20 20
ay a1 a9 ap aj al
Zaryw,)(A). Let B = ao , and B’ = ao = XBX~!'. Thus
Co Co

equating X B = B’X leads us to the following equations:

(3.1) a, = a

(3.2) Toas + Tocy = Toag + 200h

Case: ag = cg. Here, equation 3.2 becomes zgas = zpa,. When a9 = 0, then, we have B
) q 2 ) )

ap a1
reduced to ag , With Zaryw,) (A, B) = Zar,w,)(A). Thus (A, B) is of type
ao
A1, and there are ¢(¢ — 1) such branches.
ag ai 1
When as # 0, choose zp so that ag = 1. Then B is reduced to ag ,
ao
Trg T1 X2
and Zgryw,)(4, B) = xo . This subgroup is commutative. Thus (A, B)
Zo
is of type Rj, and there are g(¢ — 1) such branches. There are no further cases to
see here. Case: a9 # co. In Equation 3.2, choose z2 so that afy = 0. Thus, B is
apg aig rog I1
reduced to ag , and Zgpy(r,) (A, B) = . This subgroup is
€o
commutative. Thus (A, B) is of type Rs, and there are q> (¢g—1) = q3 — q such branches.
These are all the cases here. Thus, we have a total of ¢> + ¢° — ¢> = ¢> branches of
type R. ([

Proposition 3.4. An upper triangular matriz of type As has q(q — 1) branches of type

As, and ¢* — 1 branches of type Ry, and q(q — 1)(q — 2) branches of type Rs.
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Proof. Given A = a , the canonical form of a matrix of type As. The cen-
a
rg I1 X2 rg X1 X2
tralizer of A, Zgp,r,)(A) is yo y1 | |zo,vo#0p. Let X = Yo Y1 | €
o o
ay a1 a2 ap aj dl
Zaryw,)(A). Let B = bo b |, and B = bo Uy | = XBX~!. Thus
ag ag

equating X B = B’X gives us the following equations:

(3.3) zoa1 +x1by = w100 + Yoa)
(3.4) yob1 +y1a0 = xoby + y1bo
(3.5) roas +x1b1 = z0ah + y1a]
Using these we reduce B to the mentioned branches. O

Proposition 3.5. An upper triangular matriz of type By has (¢ — 1) branches of type
By, and (q — 1)? branches of type Ra, and (¢ — 1)?(q — 2) branches of type Rs.

Proof. One of the canonical forms of an upper triangular matrix of type By is A =

I
<a 2 b) , where a # b € Fj. Hence the centralizer of A is

ZGTg(Fq)(A) = { (X ZO) ‘ X e GTQ(Fq),ZQ =+ 0} .

Thus the branches of A are of the form <C d)’ where d # 0, and C' is a conjugacy

class of GT»(F,). Hence, the result.

Proposition 3.6. For matrices of the Regular types:
o A matriz of type Ry has (¢ — 1)q? branches of type R;.
e For type Ry, there are (¢ — 1)2q branches of type Rs.
e For type R3, there are (¢ — 1)3 branches of type R3

Proof. The result follows, as the centralizers of matrices of any of the Regular types are

commutative. O

Proof of Theorem 8.1. From the data in Propositions 3.2 to 3.6, the branching rules are

summarized to the branching table/matrix described in the statement of the theorem. O
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4. BRANCHING FOR GTy(q)

In this section, we discuss the simultaneous conjugacy classes of tuples of commuting
matrices of GT4(F;). The conjugacy classes of GT4(F,) is described in Appendix A.
The branching rules are as follows (types written in the order listed in last column of
Appendix A):

Theorem 4.1. The branching matriz for GTy(F,) is of size 28 (22 types of GT4(F)
and 6 new types), which we write as Bay,r,) = (A | B | C) (split in three parts along the

columns for convenience of writing) described in Table 1, 2 and 3.

For the convenience, the branching of non-regular types are in part A, those of regular
types in part B, and those of the new types in part C. In each of the sub-tables, the
regular branches are in blue, and the new types in red. The 0, s denotes the zero matrix
of size r x s. Rest of the section is devoted to proof of this.



(8g—8).
(¢—2)
(49—4).
(¢—2)
(64—6).
(¢—2)
(6g—6).
(¢—2).
(¢—3)

q—1

(4¢™4).
(¢—2)
(3¢—3).
(¢—2)
(6g—6).
(¢—2).
(¢—3)

4"y

[eNeBeNoR =N}

TABLE 1. The matrix A

Al All A2 A3 A4 A5 As A7 Ag Ag Bl
0 0 0 0 0 0 0 0 0 0 0
*—q 0 0 0 0 0 0 0 0 0 0
0 *—q 0 0 0 0 0 0 0 0 0
0 0 —q 0 0 0 0 0 0 0 0
0 0 0 > —q 0 0 0 0 0 0 0
0 0 0 0 > —q 0 0 0 0 0 0
0 ®—q ®—q ®—q 0 ®—¢*  q(g—1)? 0 0 0 0
0 0 0 0 0 0 ®—q 0 0 0 0
> —q 0 ¢ —q 0 0 0 0 *—q? 0 0 0
>—q 0 0 2¢%—2q 0 0 0 0 ¢ —q* 0 0
0 0 0 >—q 0 0 0 0 0 @ —q? 0
0 0 0 0 0 0 0 0 0 0 (g—1)2
0 0 0 0 0 0 0 0 0 0 0
2(¢°—q). 2(¢®-q). (i°—q).
(@-2) @2 (-2 0 0 0 0 0 0 0 0
0 0 (@ -a).  2a*-q). 0 0 0 0 0 0 0
—q).  (°—9) ((3—2)) ((3_2))
— . — . — . — . 2
(((Iq*g) ((qug) ((qug) ((qug) 0 0 0 0 0 0 2a=1)
263 —84g2
0 0 0 0 0 0 0 0 0 0 quq:]4+
2 2 2 3_ 2 3_ 2 3_ 2 3 q4—q3—
q"—q 0 7" —q q°—1 q°—q 0 q°—q 7" —q q°—q 2
q"+q
(2¢-2).  (2¢-2).  (3¢-3). 24°-4¢>~ o 0o @@= (P-d. 0
(¢—2) (¢—2) (g—2) 2g+4 (g—2) (¢—2)
(@®=q). (°—a). (P—q). (®~a). (°—¢°). (®—¢°). (®—a*). 0 0 (g—1)2
(¢—2) (¢—2) (g—2) (g—2) (¢—2) (g—2) (¢—2)
*—6a°+ ¢*—64°+ ¢*—6¢°+ ¢*—64°+ o o 0 o 0 0 2¢°—8q¢°+
11¢2—6q 11¢°—6q 11¢>°—6q 11¢>—6q 10g—4
q4—6q3
0 0 0 0 0 0 0 0 0 0
+4
®—q 0 0 0 q(q—1)2 0 0 0 0 0 0
0 2¢%>—2q q—1 0 0 0 0 0 0 0 0
0 0 >—q 2¢—2 0 0 0 0 0 0 0
0 0 0 q—1 0 0 *—q? 0 0 0 0
0 0 0 0 ®—q 0 0 0 0 0 0
0 q3+q272q (1271 0 0 q47(12 (137(12 0 0 0 0

[¥)
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q(g—1)?

0

(=) OOOOOOOOOOOEJ

qs_qz_
q+1

0
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©c cococoocococococooW

(=)

0
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(=)
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TABLE 2. The matrix B

R1 R2 R3 R4 R5
0175
¢ — ¢ 0 0 0 0
B= 0 =203+ ¢ 0 0 0
0 0 = 2¢° + ¢* 0 0
0 0 0 ¢ =3¢ +3¢> — ¢ 0
0 0 0 0 (q—1)4
O x5

The first column of A corresponds to the central type C and the entries in the column
are number of classes of each type in GT4(F;) which is the column two of table in
Appendix A. For all the regular types Rj, Ro, R3, R4 and Rs, the only branch is that
type itself, and the the number of branches is the size of its centralizer which is again
listed in Appendix A. This fully describes the matrix B. Thus, it only remain to explain
the matrix A and C.

4.1. Branching rules for type A. Let us deal with type A classes as in Section A.

TABLE 3. The matrix C

tNTy tNT, tNTs tNTy tNTs NR,
O17x6
q:s_qz 0 q3—q2 q4—2q3+q2 q4—q3—q2+q 0
0 =3¢ +2¢° ¢* —3¢° + 24 0 0 0
¢t =3¢ +24° 0 0 0 0 0
C= 0 0 0 0 0 0
0 0 0 0 0 0
¢ —q 0 0 0 0 0
0 ¢ - 0 0 0 0
0 0 ¢ —q? 0 0 0
0 0 0 ¢ -4 0 0
0 0 0 0 ¢ —q 0
0 q4 - (12 (13 —q (14 - (13 - q2 +q 0 qs - (14




Proposition 4.2. The branching rules of a matriz of type Ay are:

Branch | No. Of Branches || Branch No. of Branches
Ay a(g—1) Ry (¢ —1)q
Az alg—1) Ry 2q(q —1)(q — 2)
Ag qlg—1) R3 q(q—1)(¢—2)
By | 2q(q—1)(¢—2) | Rs |alg—1)(q—2)(q—3)
Bs | ala—1)(g—2) | tNT qlg —1).

Here, a new type appears, called tNT, whose centralizer is {<

Proof. A matrix of type Ay has either of the canonical forms

We may consider any one of them. WLOG, we take A =

apg a1 a2 asg
. . ag
izer Zgr,(r,)(A) is |
ch (1
do
ag ay aby ah
B = @0 , XBX~! where
CO Cl
do
B’'X leads us to the following:
aa
Z0 <1 cho C1
wo do
o ¢ 20 2
Let C = [ 1,andZ: 0
0 wo

o X1
o

x3
20 Z1> | T020 # 0}'
20

a a
a a
, Oor
a a
a a
a
a
. The central-
a
a
ap a; a2 as
ago
ag, co,dg #0 ». Let B = R
0 €1
do
To X1 T2 T3
o .
X = Equating XB =
20 <1
Wo

The second equation leads us to various

conjugacy classes of GT5(F,). Hence, we take C' to be some conjugacy class representative
in GT3(F,), and Z € Zgr,r,)(C). This leads us to the following equation:

(4.1)

When ay is an eigenvalue of C":

Zo (ag a3> + (:1:2 :1:3) (C —aply) = (a’2 aé) Z

When (ag, a3) = (0,0): Equation 4.1 becomes <x2 xg) (C —aplz) = (00).

9



ap aig
When C = agls, Equation 4.1 is void, and we have B reduced to a0
ag
agp
and Zgr,r,) (A, B) = Zan,v,)(A). Thus (A, B) is of type A1, and there are g(q — 1)

such branches.

1 1
When C = @0 ), Equation 4.1 becomes (3:2 3:3) . (O O) = (00). Thus z9 = 0.
ao
ayg a1 To 1 x3
ao Zo

We have B reduced to ;and Zgr,r,) (A, B) =

ao 20 21

ag 20

This centralizer is not isomorphic to the centralizers of te known types. Thus (A, B) is
of a new type, which we will call ¢NT; and there are g(q — 1) such branches.

When C = @0 (ap # bp), Equation 4.1 becomes (:132 :133). =
bo (bo — ao)
ap aig
(0 0). Thus z3 = 0. We have B reduced to a0 , and Zgr,(p,) (4, B) =
ao
bo
Trg I1 X2
o . Thus (A, B) is of type Bs, and there are ¢(¢ — 1)(¢ — 2) such
20
2
branches.
When C = <b0 > (ap # bp), Equation 4.1 becomes (xg wg) . <(b0 ) > =
ao
ap aig
(0 0). Thus zo = 0. We have B reduced to a0 . , and Zgryr,) (4, B) =
0
ao
Trog I1 I3
0 . Thus (A, B) is of type Bs, and there are ¢(q¢ — 1)(¢ — 2) such
20
2
branches.

When (ag,as) # (0,0):

20z
When C' = agls, Equation 4.1 becomes: (ag a3> = <a’2 aé) <x0 xo).

zo
10



We have from this:

20 4
4.2 ay = —a
(4.2) 2 722

21 z2
4.3 - = 2
(4.3) as 20a2+w0a3

When ag # 0, choose g such that a, = 1. In the equation below, choose z; so that a§ = 0.

agp ai 1 rg 1 T2 I3
So, B reduces to @0 , and Zgryr,)(A4,B) = 0
ao Zo
agp 22
This (A, B) is of type A7, and there are ¢(q — 1) such branches.
apg ai 1
When ag = 0, ag # 0, choose 22 such that a = 1. Thus B is reduced to @0
ag
ao

To T1 T2 T3

o

and Zgr,(r,) (A4, B) = . This (A, B) is of type Ag, and there are

zZ0 <1
xo
q(q — 1) such branches.

1
When C = (ao >, here Z = <$0 :El). Equation 4.1 becomes
ao o

T2 T3 0 1 /! / i_g ;_é
<a2 a3)+<5 970) 0 0 :<a2 a?’) 2 |

o

We have:
1 20
ay = G9—
zo
1) 21 20 4
a3+ — = —ag+ —as.
zo 20 zo

Choose 3 such that a4 = 0. As (ag,a3) # (0,0), and a3 = 0, we have ag # 0. Choose
ap ai 1

ao

zp such that af, = 1. So, B is reduced to , and Zgr,w,)(A4, B) =

ao
aop
To T1 T2 T3
o

. This (A, B) is of type Ry, and there are ¢(q¢ — 1) such branches.
Trog X2

11



When C = <a0 b ), where ag # bg. Here Z = 0 ) Here, Equation 4.1
0 22

becomes:
0 / / 2
T T3 — X
(2 =), . (ah at) | )
We have:
a = a2
2 220
€3 20 4
—(bg — = —as.
as + a:o( 0 — ao) 2
As by —ap # 0, choose x3 so that a§ = 0. So we are left with az # 0. Choose
apgp ai 1
zp such that a, = 1. So B is reduced to @0 , and Zgr,r,) (A, B) =
ao
bo
rg I1 T2
o0 . Thus, (A, B) is of type Rs, and there are q(q — 1)(q — 2) such
Zo
22
branches.

b
When C = < 0 ), where ag # by. Here Z = <ZO ) Here, Equation 4.1
ago 22

(ﬁ_i ﬁ—j) (bo_ao 0>=<a’2 aé) <;_g Z_2>

becomes:

zo
We have:
) ;<0
az + —(bg —ag) = ay—
xo xo
20 4
a3 = —CL3.
Zo

As by — a9 # 0, choose z2 so that a, = 0. So we are left with ag # 0. Choose

apg ai 1
zy such that a§ = 1. So B is reduced to @0 b , and Zgr,r,) (A, B) =
0
ao
o T1 T3
o0 . Thus, (A, B) is of type Rs, and there are q(q — 1)(q¢ — 2) such
20
o
branches.

12



Now, we come to the case of ag not being an eigenvalue of C'. In Equation 4.1, the
matrix (C'—agls) is invertible. So, we can choose x3, x3 such that both as = a3 = 0. Thus,
on replacing as and ag with 0 each in Equation 4.1, we get <x2 x3> (C—aply) = (0 0).
So 9 = w3 = 0. Thus, we have:

agp ai
When C = byls, by # ag, B is reduced to @0 by , and Zgr,w,)(A, B) =
bo
Trog I

0 (A, B) is of the type Bs, and there are q(¢ — 1)(¢ — 2) such

Z0 <1

2

branches.
ap aig
bO 1 . ag
When C = < b ) , by # ag, B isreduced to b 1| and Zgr,w,) (4, B) =
0 0
bo
Trog I1

o (A, B) is of the type Rs, and there are ¢(¢ — 1)(¢ — 2) such

20 21

20

branches.
apgp ai
bo . ap
When C = ( . ), by # ag # c¢g # by, B is reduced to b , and
0 0
€0
Trog I1
T

Zaryv,) (A, B) = . (A, B) is of the type R4, and there are g(q —

20
22
1)(¢ — 2)(q — 3) such branches.
We are left with no other cases.

Proposition 4.3. The branching rules of a matriz of type A} are:
13



Branch | No. of Branches || Branch No. of Branches
Ay q(g —1) Ry 2q(q —1)(q — 2)
As alg—1) R3 alg—1)(q—2)

By | 29(q—1)(¢—2) | Rs |alg—1)(¢—2)(g—3)
Bs | qla—1)(¢—2) | NR q(a—1)(¢+2)
tNT, 2q(qg—1)

Two new types NRy and tNT5 appear here. The centralizers of these new types are

0 z2 T3

x
{(zob x3/12) 1Y € My(F,), 20 # 0}’ and {< 2o Y1 y2> | zoyo # 0}, respectively.

Yo

a
1
Proof. A matrix of type A} has the canonical form: A = “ . The cen-
a
a
ap as asg agp az as
bp b b bp b1 b
tralizer Zgp,p,)(A), of A is 0T Let B = LG B
a bo bo
Co €0
ao ay al o To T3
b b/ /
B = 0 "1 "2 — XBX~! and where X = Yo 91 921 Denote the
bo Yo
Co <0
submatrix | “° **) of B by C, and the submatrix (aco w3> by Z. Then equating

Co 20
XB = B'X leads us to ZC = C'Z. Thus, we can take C to be a canonical form in
GTy(Fy), and Z € Zgp,(r,)(C). Thus we have b} = b1, and the following equaitons:

(4.4) zoag + x2by = T2a0 + Yoay

(4.5) Yoba + yaco = yabo + 20b)

When C has by as an eigenvalue:
When (az, b2) = (0,0):

When C' = byls, Equation 4.4 and 4.5 become void, and B becomes, B =

and Zgr,w,)(A, B) = Zar,¥,)(4). (A, B) is of type A, and there are g(g — 1) such

branches.
14



by 1
When C = ( 0 b ) Here too, Equations 4.4 and 4.5 are void. So, B reduces to
0

by 1 Zo T2 I3
bo b1 Yo Y1 Y2 . .
by ;and Zgr, (A, B) = o . This (A, B) is of type
bo Zo
As, and there are ¢(¢ — 1) such branches.
When C = bo , bp # c¢o. Here Equation 4.4 stays void, but 4.5 becomes
€o
bo
by b1
yoco = yobp, thus yo = 0. So, B reduces to by , and Zgryr,) (A, B) =
€o
i) i)
s n . (A, B) is of type Bs, and there are ¢(¢— 1)(¢—2) such branches.
Yo
20

When C = <a0 b ) , bo # ag. Here Equation 4.4 becomes x9bg = x2ag, hence xzo9 = 0,
0

Co

by b
and Equation 4.5 stays void. So, B reduces to 0 bl , and Zgr,(r,) (A, B) =

0

bo
o
Yo Y1 Y2 . 2 _ 3 2
(A, B) is of type Bs, and there are ¢“(¢ — 1) = ¢° — ¢° such
Yo
20
branches.

When (CLQ,bg) 75 (0,0)2
When C = bylo, Equations 4.4 and 4.5 become

/
Loaz2 = Yohg

Yoba = zobh

When ay # 0, choose yo such that afy, = 1. When by # 0, choose zp such that b, = 1.

bo 1 Yo Ty X3
bp b1 1
So, B is reduced to 0 , and Zor, ) (A, B) = Yo Y1 Y2
bo Yo
bo Yo

15



This centralizer is not of any known type in GT4(F,), and it is clearly a commutative

one. We call this new type NR;. There are q(q — 1) such branches.

bo 1
. . . . by by
When by = 0, then Equation 4.5 is void, and B is reduced to b , and
0
bo
Yo T2 T3
_ Yo Y1 Y2 . . .
Zaryr,) (A, B) = . This centralizer too is not of any known type
Yo
20

in GTy(F,), and definitely not of Ry, as this one is 6-dimensional. We call this new type
tNT,. There are ¢? such branches.
When ap = 0, and by # 0, choose zp such that 0, = 1, and B is reduced to

bO o Ty X3
1
% Zl ; and Zor,r,) (A, B) = vo b . We have another ¢*
0 Yo
bo Yo

branches of this new type tNT5.

bo T
Equation 4.5 becomes yoby = xb).

bp 1
When C = ( 0 . Here Z = (ZEO x3>. Equation 4.4 becomes xpas = ypah, and

When as # 0, choose yo such that af = 1. Now, on substituting as by a5, = 1 in the

bo 1 1
) , . by b1 by .
equation, we get yo = xo, and thus by = by. B is reduced to b , with
0
bo
Yo T2 T3
_ Yo Y1 Y2 . 9
Zary(v,)(A, B) = . (A, B) is of type N Ry, and there are ¢°(q—1)
Yo
Yo

such branches.
When ag = 0, we look at b}, # 0, Choose zg such that b, = 1. Then B is reduced to

bo 1 Yo T2 I3
by b
0 bl , with Zgp,(r,)(4, B) = Yo iy . (A, B) is of type Ry,
0 Yo
bg Yo

and there are another ¢(q¢ — 1) such branches.

16



b
When C = ( 0 ) ,bo # co, then Z = (a:o ) Equation 4.4 becomes xgay =
€0 20

yoah, and Equation 4.5 becomes yoba + y2co = yabo + zobhy. As by # cp, choose ya such
that b, = 0. So we have only one case here ay # 0. Thus, choose x( such that af = 1.

bo 1 Yo T2
bo b
Thus B is reduced to 0 ; and Zgr,r,) (A4, B) = s u
bo Yo
€o 20

(A, B) is of type Ry, and there are g(q — 1)(¢ — 2) such branches.
When C = ((10 ! > ,a0 # by, then Z = <$0 > Equation 4.4 becomes zgas +
0 20

xaby = yoah + x2ap, and Equation 4.5 becomes yoby = zpbh. As by # g, choose xo such
that a = 0. So we have only one case here by # 0. Thus, choose zy such that by = 1.
agp Zo
bo b1 1 Yo Y1 Y2
b ’ and ZGT4(FQ)(A7 B) =
0 Yo

bo Yo
(A, B) is of type Rs, and there are q(q — 1)(¢ — 2) such branches.

Now, the second main case of by not being an eigenvalue of C, i.e., by # ag and by # ¢g.

Thus B is reduced to

Here in Equation 4.4, choose x2 so that a}, = 0, and in Equation 4.5 choose y2 so that
by, = 0.

ao
bp b
When C = agls, where ag # by, B is reduced to 0 b; ;and Zgr, v, (A, B) =
ao
i) T3
s . (A, B) is of type Bs, and there are ¢(¢—1)(g—2) such branches.
Yo
20
ag 1
a 1 . b() b1
When C = , where ag # by, B is reduced to , and
ag bO
ao
Zo z3
Yo U1 .
Zaryv,) (A, B) = (A, B) is of type Rs, and there are g(q —
Yo
g

1)(g — 2) such branches.

17



ao

When C = <a0 ) , where ag, cg # by, and ag # cg, B is reduced to bo Zl ,
Co 0
o
o
and Zgr,(r,) (4, B) = g h . (A, B) is of type R, and there are q(q —
Yo

20
1)(¢ — 2)(¢q — 3) such branches.
With this there are no other cases left for us to analyse.
Adding up the branches of type NRi, we have a total of 2¢(q — 1) + ¢*(¢ — 1) =

q(q — 1)(¢q + 2) branches.
O

Proposition 4.4. The branching rules of a matriz of type Ao are given below:

Branch | No. of Branches || Branch No. of Branches
Ay (g —1) Ry 3(¢*> — q)(qg - 2)
As (g —1) Ry (@® —a)(g—2)

Az qlg—1) Ry | ale—1)(g—2)(¢—3)
By | (¢®—a)g—2) | tNT: qg—1

By | (—a)a—2) | tNT; q(q —1)

Bs (*—q9(g-2) | NR ¢ —1.

Ry ql¢ —1)

To T1 T2 T3
A further new type t N'T3 appears here, whose centralizer is {< vouL y2> | zo,yo # 0}.

o

a 1
a
Proof. Matrices of this type have two non-similar canonical forms: , and
a
a
a a 1
a 1 . . . . a
. Proving this for anyone of them is enough. We consider A =
a a
a a
apg a1 a2 as ap a1 a2 as
b b1 b b b1 b
The centralizer Zgr, (r,)(A) of Ais: 0 T2 .Let B = LR
ao ao
€0 €0

18



ap ay abh ah To x1 Tz X3

by b, U
0 1 2 7 be a Conjugate of B by X = Yo Y1 Y2
ag o

and B’ = . Denote

€o 20

Co 20
Thus, we may take C' to be a canonical form from GT3(F,), and Z € Zgp,(r,)(C). With
these, we have the following equations:

bo b
C = ( 0 ") and 7 = o yZ). Equating XB = B’X, we have first ZC = C'Z.

(4.6) zo. (a1 ag) + (ml xg) (C—aply) = (a’l ag) A
(4.7) Yob1 + y1a0 = xoby + y1bo
(4.8) zoag +x1by = woay +y1a)

We have two main cases, under each of which there are subcases:
When qq is an eigenvalue of C' When C = agls:, Equation 4.6 becomes:

(4.9) <:1:0a1 :L"oag) = <y0a’1 yoay + zoag)

Equation 4.7 becomes yoby = zob).
When a; = b; = 0: From Equation 4.9 we have zgasz = zpaj, and from Equation 4.8

ah = ay
We have two subcases:
ag a9
When a3 = 0: B is reduced to @0 a0 ;and Zap, vy (A, B) = Zar,v,) (A).
ag
(A, B) is of type Ay, and there are g(¢ — 1) such branches.
ao a9 1
When a3 # 0, choose zp so that a4 = 1. B is reduced to @0 , with
ao
ag

o T1 X2 X3

Yo Y1 Y2

Zaryv,) (A, B) = .

. Now, this centralizer is not isomorphic to any

o
known centralizer of a matrix in GT4(Fy), and neither it is isomorphic to those of the
three new types we encountered in the previous propositions. We have a new type tNT3,
and there are g(q — 1) such branches.
When a; = 0, and b; # 0. In Equation 4.7 choose yo such that by = 1. Then

Equation 4.8 becomes zgaz + x1 = zpal. Choose 1 such that a}, = 0.
19



ao

1
Here, when a3 = 0, B is reduced to @0 , with ZGT4(Fq)(A, B) =
ao
ao
i) T2 X3
To Y1 Y2 .
. (A, B) is of type tNT5, and there are ¢ — 1 such branches.
Zo
20
ag 1
1
When ag # 0, choose zy such that af = 1. Thus B is reduced to a0 ,
ao
ao
Zo T2 T3
. i o Y1 Y2 .
with Zor,w,)(A, B) = (A, B) is of type NRy, and there are
o
Zo

q — 1 such branches.
When a1 # 0, in Equation 4.9, choose yo such that af = 1. Thus, on replacing a;
with @] =1 in Equation 4.9, we get yo = zo. In the same equation, choose y2 such that

/
a3 — 0
From Equation 4.7, we get b = b;. Equation 4.8 becomes zgas + x1b1 = zah +
ag 1
ap b
y1. Choose y; such that af, = 0. Here, B is reduced to 0" , with
ao
ao

To T1 T2 T3

To b1y

Zaryv,) (A, B) = . (A, B) is of type A7, and there are ¢(¢ — 1)

Zo
20
such branches.

1
When C = a0 ): Equation 4.6 becomes
ag

(4.10) (moal x0a3> + (0 :1:1) = (yoa’l yoa} +yoag> )

Choose x; such that a4 = 0. Hence, on replacing ag by a4 = 0 in the above equation, we
have z1 = ajya.

Equation 4.7 becomes zob| = yobs.
20



a a

1
When a; = by = 0, from Equation 4.8 a), = as, B is reduced to a0 ,
ag
agp
) o I3
: Yo Y1 Y2 .
with Zgr,w,) (A, B) = . (A, B) is of type As. There are q(q— 1)
o
Yo

such branches.
When a; = 0, and b; # 0, we choose yo in Equation 4.7 so that ) = 1. So, Equation 4.8

becomes zpaz = xoah, since 1 = yoa; = 0. Hence a), = as. So B is reduced to
ao a2 Zo T2 I3
a 1 1 : To Y1 Y2
, with Zgr, v, (A, B) = oy . So, we have another
ag 4 )
ao Zo

q(q — 1) branches of type NR; here.
When a1 # 0, in Equation 4.6, choose yo so that a] = 1. So, x1 = y2, and on replacing
a} with a; in the same equation, we have yy = x, and hence from Equation 4.7, v} = b;.

With these, Equation 4.8 becomes xgag + x1b1 = z9ab +y1. Choose y; so that a, = 0.

ap 1 rog 1 T2 I3
ap b rg bixp @
Thus B is reduced to 0 , with Zgr,r,) (A, B) = 0 T
ap Zo
ago Zo

By a routine check, one can see that this subgroup is commutative. Thus (A, B) is of

type Ry, and there are g(q — 1) such branches.

When C = (ao b ) , by # ag: Here Z = (yo
0

) . Equation 4.6 becomes
20

(4.11) (a:oal a:oag) + <0 (bo — ao)ﬂfs) = (yoall ZOag)

And, Equation 4.7 becomes yob; = zob].
Choose z3 such that af = 0.

When a; = by = 0, from Equation 4.8, we have a), = ag, and B is reduced to
agp as To T1 T2
@0 , with Zgr,x,)(A, B) = Yoo 4 . This (A, B) is of
ao o
bo 20

type By, and there are g(q — 1)(¢ — 2) such branches.
When a; = 0, and by # 0. In Equation 4.7, choose yg so that b} = 1. And, Equation 4.8

becomes zpag + x1 = xpah. We choose x1 so that af, = 0. Hence, B is reduced to
21



a i) T

1
ap . with ZGT4(Fq)(A7B) _ o N

ap o

. By a routine check,

bo 20
one can see that this subgroup is commutative. Thus (A, B) is of type Ra, and there are
q(q — 1)(¢ — 2) such branches.
When a; # 0, in Equation 4.6, choose yy so that a] = 1. Hence, on replacing a; by
aj = 1 on both sides of Equation 4.11, we get zy = yo. Hence, Equation 4.7 becomes
zoby = xob), thus leaving use with b} = b;. Equation 4.8 becomes zgag+x1b1 = y1 +x0as.

ag 1
, . ap by .
Thus, choose y; such that a; = 0. Hence B is reduced to , with
ao
bo

Trog I1 X9
o bz

Zaryv,) (A, B) = 0 T . By a routine check, one can see that this
o

20
subgroup is commutative. Thus (A, B) is of type Rg, and there are ¢(q¢ — 1)(q — 2) such
branches.

b
When C = ( 0 ) ,ag 7 bo: Here too Z = (yo ) In this case, Equation 4.6 is
ao

20

reduced to (:poal ZL'(]CL3> + ((bo —ap)ry 0> = <y0a’1 zoaj ). Choose z; so that a] = 0.
Equation 4.7 becomes yobi + y1a0 = yibo + zobj. As ag # bg, choose y; such that

by = 0. With these, Equation 4.8 becomes xgas = zgab, thus leaving us with a}, = as.
Now, we are left to deal with as.

ao az o T2
B . bo . _ Yo
When az = 0, B is reduced to , with Zgr, (v,) (A, B) =
ag i)
ao
Yo
Ty To X
This subgroup is isomorphic to the subgroup 0 2 , which is the cen-
T
2

tralizer of a matrix of type Bs. Hence, we have ¢(q — 1)(¢ — 2) branches of type Bs.

22
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ap as 1

When a3 # 0, choose zp so that aj = 1. Hence B is reduced to bo a ,
ao
x Ty T3
with Zgr,r,) (A, B) = o - . By a routine check, one can see that this
T

subgroup is commutative. Thus (A, B) is of type Rg, and there are ¢(q¢ — 1)(q¢ — 2) such
branches. With this we have looked at all the cases, when ag is an eigenvalue of C.

When ag is not an eigenvalue oc C': When ag is not an eigenvalue of C, C' — agly =

by — b
< 0~ a0 2 ), with by — ag # 0, and ¢y — ag # 0. Hence, in equation 4.6, we can
Co — ao
choose (ml x3) such that af = 0, and a4 = 0. In Equation 4.7 choose y; so that b} = 0.
Hence Equation 4.8 becomes zgag = zoah. Therefore afy = as.
On replacing a1 and a3 by 0 in Equation 4.6, we get 1 = 3 = 0, and on replacing by
by 0 in Eqaution 4.7, we get y; = 0. Now, we can look at the various cases of C.

a a9
b
When C' = byls, by # ap: B is reduced to 0 and Zgr,r,)(A,B) =
ao
bo
i) i)
o 218 Thus (A, B) is of type Bs, and there are ¢(q¢ — 1)(¢ — 2) such
o
20
branches.
ag a
bO 1 . b()
When C = b ,bo # ag: Bisreduced to and Zgr,v,) (4, B) =
0 aop
bo
i) i)
Yo 214 Thus (A, B) is of type R3, and there are ¢(q — 1)(¢ — 2) such
o
Yo
branches.
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ag a

When C = <b0 . > ybo # co,a0 ¢ {bo,co}: B is reduced to bo "
0 0 .
xo T2
and Zgr, v, (A4, B) = Ho - . Thus (A, B) is of type R4, and there are
20

q(q —1)(¢ — 2)(q — 3) such branches.
Adding up the branches of type NRy, we have a total of ¢ — 1 +¢q(qg —1) = ¢*> — 1
branches of type Rj. O

Proposition 4.5. For a matriz of type As, the branching rules are in the table below:

Branch | No. of Branches || Branch No. of Branches
Az q(qg—1) Ry ¢ =1
As (g — 1) Ry 2(¢* —1)(q - 2)
Ag 2¢(q — 1) Ry (@® —a)(g—2)
Ag q(q —1) Ry | (¢ —a)(a—2)(a—3)
By | 2(¢*—q)g—1) | tNT; 2q —1)
Bs | (@®—q)g—1) | tNT, q—1

To T1 T2 T3
A new type tNTy appears here, whose centralizer is {( s %ﬁ) | 2o # O}.

o

a 1
Proof. A matrix of type Az has the canonical form A = “ . Then we have
a
a
tz) _>a0 #0,C € Th(Fy) tz)
ao aj L ao a
b = (b ba) € Myxo(F
ZGTy(Fy)(A) = c d|| ( ; 2) 1x2(F) Let B = c 41,
ag = < 1) € Max:1(Fy) ao
%
ap 'b’ d} zo 'Y w1
and B’ = C’ 7’ = XBA™!, where X = 7 W |. XB= B'X leads to
ag Zo

firstly, ZC' = C'Z, hence we shall take C to be a canonical conjugacy class representative
24



in GT»(F,), and Z € Zgr,r,)(C). Then we have the following set of equations:

(4.12) 20! 0+ (C—aply) = 5.2
(4.13) Z2.d + (al— O)B = z0d’
(4.14) roa1 + y1di + yodo = woall + b'lwl + blzwg

When qg is an eigenvalue of C:
When ? = 7 = 6>:
Here, Equation 4.12 becomes t?(C’ —aply) = tﬁ, Equation 4.13 becomes (agly —
C’)ﬁ = 6), and Equation 4.14 becomes zoa; = za). Hence we have o} = a;.
ag
agp

When C = qgls: Equations 4.12 and 4.13 are void. Hence B is reduced to
ao

and Zgr,r,) (A, B) = Zgr,¥,)(4). (A, B) is of type Az, and there are g(q¢ — 1) such
branches.

When C = 0

: Here Equation 4.12 becomes: <0 yl) = <O O), and Equa-
ao

tion 4.13 becomes <_Z)U2> = (8) Thus y; = 0, and we = 0. B is reduced to

ag a2 Zo Y2 X1
a 1 Zo 21 W
0 , and Zgr,r,) (4, B) = 0 st (A, B) is of type
agp 20
ao Zo

As, and there are ¢(¢ — 1) such branches.

When C = a0 ,ag # co: Here Equation 4.12 becomes: (0 ya(co — a0)> =

€o

(0 0), and Equation 4.13 becomes ( ) = (0) . Thus yo = 0, and wo = 0. B
ap — C())U)Q 0

o a2 To N 1
is reduced to a0 , and Zgr,w,) (A, B) = =0 wrpt (A, B)
co 22
ao Lo

is of type By, and there are ¢lq — 1)(q — 2) such branches.

When C = o ,ag # bg: Here Equation 4.12 becomes: <(b0 — ap)y1 O) =
ao
b —
(0 0), and Equation 4.13 becomes <( 0 an)w1> = (8) Thus y; = 0, and w; = 0.
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agp a2 Zo Y2 1

bo 20

B is reduced to , and ZGT4(FQ)(A= B) =

agp Z2 W2
ago Zo
(A, B) too is of type By, and there are q(q — 1)(¢ — 2) such branches.
7 =5
When (b, d)# (0, 0).
When C = agly: Equation 4.12 becomes:

(4.15) <xobl wobg) = (Z()bll Zlb/l +22b2>,

and Equation 4.13 becomes:

(4.16) zody + z1da _ $0d:1 .
22d2 I'de

When b; = 0 and by # 0. In Equation 4.15 choose z so that b, = 1. Hence, on
replacing be by b, = 1 in Equation 4.15, we get o = z9. Hence in Equation 4.16,
zody, = xode. Thus dy = db,.

Here, if do = 0, in Equation 4.16, we have zod} = zod;. When d; = 0; Equa-
tion 4.14 becomes zga; = xoa) + wa. Choose wy so that a) = 0. Hence B is reduced

ag 1 To Y1 Y2 T1
to @0 ; and Zgr,(r,) (A, B) = SR . (A, B) is of type
agp Zo
agp Zo

tNT3, and there are ¢ — 1 such branches.
When d; # 0, choose zy so that dj = 1. Then Equation 4.14 becomes xoa; + y; =
a 1
a 1
zoajwy. Choose wy such that o) = 0. With these, B is reduced to: 0 ,
ao
agp
o Y1 Y2 1
Trog <21 Wi
To Y1
T
so far. Thus we have a new type, tNTy. There are ¢ — 1 such branches.
When ds # 0, in Equation 4.16, choose z;1 so that dj = 0. Equation 4.14 becomes zga;+
ao 1

and Zgr,(r,) (4, B) = .Now, this is a centralizer we have not seen

a
yods = xoa) + wy. Choose wy such that af = 0. So, B is reduced to 0 v d
0 2
ao
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To Y1 Y2 T
20 w1

xo doyo
Zo

and Zgr,r,) (A, B) = (A, B) is of type Ag, and there are

(¢ — 1)? such branches.
When by = by = dy = 0. Here di # 0. Choose zy so that dj = 1. Then, in
Equation 4.14, we have zpa; + y1 = zoa). Choose y; so that aj = 0. Thus B is reduced

aop Lo Y2 1
a 1 To 21 W
to: 0 , and Zgr,r,) (A4, B) = L Y (A, B) is of type
ao Z2 W2
aop o

tNT5. There are ¢ — 1 such branches.
When by = be = 0, and d2 # 0. In Equation 4.16, choose zy such that dj = 1,
and in the same equation, choose z; so that dj = 0. With these, Equation 4.14 becomes

ao
zoai +y2 = xoa). Choose yo such that a) = 0. Thus B is reduced to: a0 uE
ao
ao
Lo Y1 1
20 w1 . .

and Zgr,(r,) (4, B) = . This too is of type Ag. There are g — 1
Lo w2
Zo

such branches.

When b; # 0. In Equation 4.15, choose zy so that b} = 1, and choose z; so that b, = 0.
On replacing by with b] = 1, and by with b}, = 0 in Equation 4.15, we get zp = o, and
z1 = 0. Putting these in equation 4.16 leaves us with d} = dy and zedy = zod}.

With these, Equation 4.14 is reduced to zpa; + di1y1 = xoa} + wy. Choose wy so that
a) =0.

ap 1 ro Y1 Y2
aop dy T

and Z A, B) =
a0 and Zer, (v, (4, B) u

When dy = 0, B is reduced to

ao
This too is of type Ag. There are q(q — 1) such branches.
When dy # 0, in Equation 4.16, choose z9 so that d;, = 1. With these Equation 4.14

becomes zoay + y1dy + y2 = xoa) + wi. Choose w; such that a} = 0. Thus B is reduced

27

]
dyyr
w2
Zo



ag 1 To Y1 Y2 T1

d d

to a0 ", and Zarywv,) (A, B) = o Y2 E B L s s of
ag 1 7 i) w2
ao o

type Ag. There are q(q — 1) such branches.

So, with these, we are done with all the cases, when C = agls.

1
When C = (ao ): Here Z = (ZO Zl). Equation 4.12 becomes:
ag 20

(xobl 1‘0[)2) + (0 y1> = <Zob/1 Zlbll +20b/2)

Choose y; such that b, = 0. On substituting by with b5 = 0 in the above equation, we
have y; = z1b].

Similarly, Equation 4.13 becomes

zod1 + z1dy n —w2 ) _ wobll
Z0d2 0 :L'(]b/2 ’

Choose wy such that di = 0. On substituting d; with dj = 0 in the above equation, we
have wy = doz1.

When b; # 0, choose zy so that by = 1. Then, on substituting b; with 8] = 1
in Equation 4.12, we get zp = o, and thus d; = dy. With these, Equation 4.14 be-
comes xoaj + yads = xpa) + wy. Choose wy such that a) = 0. Thus, B is reduced to

ag 1 To 21 Y2 T1
1 d
@0 , and Zgr,r,)(A, B) = w022 U Ty (A, B) s of
ag ds o daz
agp Zo

type Ry, and there are g(q — 1) such branches.
When b; = 0, and da # 0 y; = 0. In Equation 4.13, choose zy so that dj = 1. With
these, Equation 4.14 becomes zga; + y2 = xoa). Choose y2 so that af = 0. Thus, B

ao o I

. ag 1 To 21 Wi
is reduced to 0 , and Zar,r,) (A, B) = 0 . By a

ao ! Ty 21

agp Zo

routine check, one can see that this is commutative. Thus (A, B) is of type Ry, and there

are ¢ — 1 such branches.

When C = (ao b ) ,bo # ag: Here Z = (ZO ) Equation 4.12 becomes :
0

z2

(:cobl a:obg) - (0 (bo — ao)y2) = (ZObll Zzbé)
28



As by —ap # 0, choose ya such that b, = 0. Hence, on replacing by by b, = 0 in the above
equation, we get yo = 0.

Similarly Equation 4.13 becomes:

<Zod1 z2d2) + ((ao _Obo)w2> = <;E0d/1 ﬂfodé)

Choose ws so that dj = 0. So, if we replace dy by dj = 0 in the above equation, we have

Wy = 0.
When by = 0 and dy # 0, choose zg so that dj = 1. With these, Equation 4.14 becomes
aop
1
zoa1 + y1 = zoa}. Choose y; so that a} = 0. B is thus reduced to 0 ) ,
0
ag
) T
Zo w1 . .
and Zar,w,)(A, B) = . By a routine check, we can see that this
22
Zo

centralizer is commutative. Thus (A, B) is of type R, and there are (¢ — 1)(¢ — 2) such
branches.

When b; # 0. in Equation 4.12 for this C, choose zy so that b} = 1. Thus on
substituting b; with b} = 1 in the same, we get zp = xo. Hence, from Equation 4.13
for this case, we have dj = di. With these Equation 4.14 becomes xpa1 + diyn =

ag 1
/ / . ao dy
xoaj + wi. Choose wy so that aj = 0. Hence B is reduced to b and
0
ap
o U T
x d
Zary v, (A, B) = 0 11 Easy to see that this centralizer too is
22
xo

commutative. Thus (4, B) is of type Ra, and there are ¢(q — 1)(¢ — 2) such branches.

When C = (bo > ,bo # ag: Here Z = (ZO ) Equation 4.12 becomes :
ao

22

(xobl 1‘01)2) + ((bo — ao)y1 0) = (Zobll Zzbé)

As by — ag # 0, choose y; such that b} = 0. Hence, on replacing by by b} = 0 in the above

equation, we get y; = 0.
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Similarly Equation 4.13 becomes <z0d1 z2d2> + 0 = (mod’l :Eod’2> .

Choose w; so that dj = 0. So, if we replace d; by d} = 0 in the above equation, we have

(ag — bO)wl)

w1 = 0.
When by = 0 and ds # 0, choose 23 so that dj, = 1. With these, Equation 4.14 becomes
ao
/ / : bo
xoai + y2 = xoaj. Choose yz so that a} = 0. B is thus reduced to uE
ao
ao

Zo z1

and Zgr,w,)(4, B) = =0 . By a routine check, we can see that this
Trog W2
Ty

centralizer is commutative. This (A4, B) is of type Rg, and there are (¢ — 1)(q — 2) such
branches.

When bs # 0, in Equation 4.12 for this C, choose zo so that b, = 1. Thus on
substituting by with b, = 1 in the same, we get zo = xo. Hence, from Equation 4.13
for this case, we have d) = dy. With these Equation 4.14 becomes zpa; + doyo =

a 1
/ / . ag d1
roai + wy. Choose wo so that a} = 0. Hence B is reduced to
1 1 bo
ao
o Y2 I
z
and Zgr,r,) (A4, B) = 0 o doys Easy to see that this centralizer is
Zo

commutative. This (A, B) too is of type R, and there are ¢(q — 1)(¢ — 2) such branches.
With these, we have covered all the subcases under the case of ag being an eigenvalue
of C.
When ag is not an eigenvalue of C: In this case C' — agly is invertible. Hence, in
Equation 4.12, choose y1,y2 so that b = b, = 0. Similarly, in Equation 4.13, choose
wi, wy so that d) = d) = 0.
So, Equation 4.14 becomes zga; = zoa}, thus af = a;.
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a aj

When C = byls, by # ag: B is reduced to bo ) , and ZGT4(Fq)(A,B) =
0
ao
i) T1
oA . This (A, B) is of type Bs. There are q(q—1)(g—2) such branches.
22
o
ao ai
b(] 1 . . bO 1
When C = b ,bo # ag:In this case, B is reduced to b , and
0 0
ao
i) I
Zar,w,) (A, B) = 0 A . This one is a commutative centralizer. This
20
o
(A, B) is of type Rs3, and there are g(q¢ — 1)(¢ — 2) such branches.
When C = bo ,bo,co # ag, and by # co:In this case, B is reduced to
€o
ao al Zo I
b
0 , and Zgr,r,)(A, B) = 0 This (A, B) is of
Co 22
ao o

type R, and there are ¢(¢ — 1)(¢ — 2)(¢ — 3) such branches.

So, those are all the cases available.

Adding up all the branches of type Ag, we have a total of ¢ —1+¢q(qg—1)+ (¢ —1)? =
2¢q(q — 1) branches. O

Proposition 4.6. A matriz of type A4 has:

Branch | No. of Branches || Branch | No. of Branches
Ay (g —1) tNTy q(q —1)?
Ry ¢ —q° tNTs q(q — 1)
Ry | ¢*(¢—1(qg—2)

ap c1
ag

ag a1 by b1
A new type tNTy appears with centralizer {( ao b0> | ag # 0}.
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Proof. The canonical form of a matrix of this type is A = 1 Then
a
a
ap aig b(] b1 ap ai bo b1
agp bo ag bo
Zaryv,)(A) = | ag,co #0 ). Let B = , and
co C1 ¢
Co €o
ap a1 by b To 1 Yo Y1
ag ( o Yo
B = Y1 = XBX!, where X = XB = B'X
¢ € 20 <1
Co 20
gives us the following:
(4.17) zobo +yoco = z0bp + Yoao
(4.18) xoby + x1by + yoc1 + y1co = yi1ag + yoar + 21b6 + Zobll

When ag = ¢p: From Equation 4.17, we have zoby = zobj,.
When by = 0: Equation 4.18 becomes xob1 + yoc1 = zob] + yoai. Here we first
ap aig

look at what happens when a; = ¢, and by = 0. Here B reduces to a0 ,

agp ai

ao
Zaryv) (A B) = Zgryv,)(A). (A, B) is of type Ay, and there are g(¢—1) such branches.
When a1 = ¢1, and by # 0. We can choose x such that b} = 1. Thus B is reduced to

apg aj 1 o T1 Yo Y1
ao Lo 0 .
, and Zgr,(r,) (A, B) = Y . We see a centralizer,
q
ap a1 Lo 21
ao o

not isomorphic to the ones seen so far. Thus, we have a new type tNT5. (A, B) is of
type tNT5, and there are g(q — 1) such branches.
When a; # ¢1, in Equation 4.18, we can choose g, so that b} = 0. Thus, B is reduced

ap a1 To 1 Y1
ap Zo .
to , and Zgr, v, (A, B) = (A, B) is of type
ap €1 20 21
ao 20

tNTy, and there are q(q — 1)? such branches.
When by # 0: In Equation 4.17, choose xy such that b, = 1. Then, on replacing
bo and b)) by 1 in the same equation, we have xy = zp. Hence, Equation 4.18 becomes

zoby + 1 + yoc1 = x| + 21 +yoar. Hence, choose z; so that b} = 0. Then, B is reduced
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ap a1 1 To w1 Y1

1
to a0 , and Zaryr,) (A, B) = o o (A, B) is of
ap c1 Lo yo(er—ar)
ag Zo

type Ry, and there are ¢?(q — 1) such branches.

When ay # ¢o: In Equation 4.17, choose yo so that b = 0. With this, Equation 4.18

becomes b1 + y1co = 20b} + y1a09. Choose y; such that b} = 0. Thus, B is reduced to
ap a1 o T1

ao o

, and Zgr,r,) (A, B) =
co € 20 21

. (A, B) is of type Rs,

Co 20
and there are ¢?(q — 1)(¢ — 2) = ¢* — ¢* such branches. Thus, there are no more cases
left to deal with.
O

Proposition 4.7. An upper triangular matriz of type As has ¢*(q — 1) branches of type
As, ¢*(q — 1)(q — 2) branches of type Rz, and ¢*(q*> — 1) branches of type NRy.

a 1
1
Proof. A matrix of type As has the canonical form: A = “ . Thus its
a
a
ag as as ap as as
bp b1 b bp by b
centralizer Zgr,(r,)(A) is: o . Let B = o ; and
4 bo bo
ag ag
agp ay al xo T2 T3
by by b
B = o "1 "2l XBX !, where X = Yo 1 Y2 . Thus, from XB =
bo Yo
ag Zo

B’X, we have af = a3, bj = by, and the following equations:

(4.19) Toas + Tobg = yoaé + x2aq

(4.20) yobz + agys = woby + y2bo

Case ag = by. Equations 4.19 and 4.20 become xgas = yopah, and yoba = b, respec-
tively.
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a as
b
If as = by = 0, the above equations are void, and we have B reduced to @0
ao
ao
and Zgr,v,) (A, B) = Zaryw,)(A). Thus (A, B) is a branch of type As, and there are
¢*(q — 1) such branches.
If ag # 0, then choose x( so that a), = 1. Substituting as with @), = 1 in the equation

Toaz = Yoah, we get xy = Yo, thus leaving us with b, = by. Hence B is reduced to

agp 1 a3 Zo T2 I3
by b
@b o2 , and Zgr,r,) (A, B) = v YL Thus (A, B) is a
agp Zo
agp Zo

branch of type N Ry, and there are ¢*(q — 1) such branches.
If as = 0 and by # 0, then we choose yg such that b, = 1. Thus B is reduced to

agp as ey T2 3
ap by 1 x
0 , and Zgr, ) (A, B) = 0 ¥ 921 L This branch too is
ago Zo
aop o

of type NRy, and there are ¢?(q — 1) such branches.
If ag # bp. Then, in Equation 4.19, choose x5 such that af, = 0. Similarly in Equa-

ag as
bp b
tion 4.20, choose y2 such that b, = 0. Thus B boils down to 0 bl , and
0
ao
i) I3
Yo U1 . .
Zaryv,) (A, B) = . This (A, B) is of type Rs, and there are
Yo
Zo

q2%(q — 1)(q — 2) such branches.
Adding up the branches of type N Ry, we have a total of ¢*(¢—1)+¢*(¢—1) = ¢*(¢>—1)
branches of type NR;.

Proposition 4.8. For a matriz of type Ag, the branchings are:

Branch | No. of Branches || Branch | No. of Branches
Ag (g —1) Ry | ¢*(a—1)(g—2)
As (g —1)° tNT, ¢*(g —1)

Ry ¢*(¢ - 1) NR, ¢*(g—1).
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1
Proof. A matrix of type Ag has the canonical form “ . The centralizer
a
a
D dy d
subgroup Zgr,(r,)(4) is ¢ | C € GT>(Fy) ¢, where D = 0 ") and W =
¢ C do ds
wo Wi
w2 W3 .
D "D zZ W
Let B = ¢ ,and B = ¢ = XBX™!, where X = . So
C C’ Z

XB = B'X leads to ZC = C'Z. Hence, we can take C to be a representative of a
conjugacy class in GT2(Fy), and Z = Zgp,r,)(C). We have the following equation

(4.21) ZD+WC =CW +D'Z

So the cases to deal with here are the three conjugacy class types in GT5(F).

To 1

Case C = (“0 alo ): here Z = ( , and Equation 4.21 becomes:

o

Todo + x1dy  xod1 + x1d3 + wo _ wo + wodlo ws + $1d6 + xody
zods rods + wo :Eodé l‘ldé + zods

Choose wsy so that dj, = 0. Thus, on replacing dy by 0, we get we = z1dz, and hence
!

= ds.
3 3

ag 1
dy d
We can choose wg such that dj = 0. Thus B is reduced to @ @ 13 , and
ag
agp

Trog I1 wo w1

o xldg wo—i-l’ldg

Zaryv,) (A, B) = . This (A, B) is of type Ry, and there

Zo 1
Zo
are ¢>(q — 1) such branches.

Case C = (ao bo) ,ag 7 bo: here Z = <x0
3

>, and Equation 4.21 becomes:

xody + apwy  xod1 + wibg [ aowo + $0d6 wiag + x3dy
x3dy + agwe  x3ds + bows bows + xodo  bows + x3d3 '
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We have dfj = dyp and d = d3. As ag # by, choose wy such that d;, = 0, and

ag do
, : bo ds
wy so that d] = 0. Thus B is reduced to , and Zgr,r,)(A,B) =
ao
do
o Wo
3 w3 . . )
. This (A, B) is of type Rs, and there are ¢*(¢ — 1)(¢ — 2) such
o
T3
branches.

Case C = agly: Here Equation 4.21 becomes: ZD = D'Z, where Z € T»(F,). With

To x
Z = < 0 1>, we see that:
Z2

(4.22)

xody + x1ds  x0dy + 21d3 _ ajodlo x1d6 + wgdll
xgdg Jjgdg Jjodé xldé + l’gdé ’

We see that zgd, = x3ds. We have two main cases here:
Case dy = 0. In this case, from Equation 4.22 we have dj, = dy, and dj = d3, and we
have xgd; + (dg — do)wl = xgd/l.
I, dyl
When dy = ds, we have xgd; = z4d;. Now, if d; = 0. we have B = @02 OI2>’
apl2
and Zgr,(v,) (A, B) = Zar,w,)(A). Thus, (A, B) is of type Ag, and there are q(q — 1)

such branches.

ag do 1
If d; # 0, choose x( so that dj = 1. Thus B is reduced to a0 ds , and
ao
ao

To X1 w1 w2
Ty w2 w3
Zaryr,) (A, B) =
rg I

o

(A, B) is therefore of type tNT}, and there are ¢?(q — 1) such branches.
When dy # ds, in the (1,2)th entry of Equation 4.22, we choose z; so that dj = 0. Thus

agp do Zo wy w2

. a d T3 Wy W

B is reduced to 0 3 , and ZGT4(F )(AaB) = ’ ? ’
agp ¢ Zo

agp x3
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This is isomorphic to the centralizer of a matrix of type As. Thus (A4, B) is a branch of
type As, and there are ¢?(q — 1) such branches.

Case dy # 0. First, we choose xy such that d, = 1. On replacing dy with d}, =1 in
Equation 4.22, and equating, we get x¢p = x3.

In the same equation, we can choose z1 such that df; = 0. On replacing dy with dj, =0
and equating, we get 1 = 0. Thus, dy = d3. Lastly, we have zod; = zod}, hence dj = d;.

a dl
Thus B is reduced to o 1 ds ,and Zgr, v, (A, B) = { <w012 " ) | W € Mz(Fq)} :
ap 4 $0]Q
ao
(A, B) is a branch of type N Ry, and there are ¢?(q — 1) such branches.
There are no other cases. O

Proposition 4.9. The branching rules of remaining A types are as follows.

(1) For a matrix of type A7, there are ¢*(q—1) branches of type Az, ¢*>(q—1) branches
of type Ry, and ¢*(q — 1)(q — 2) branches of type Ro.

(2) The type Ag has ¢*(q — 1) branches of type Ag, ¢ — q branches of type R1, and
¢*(q — 1)(q — 2) branches of type Ry.

(3) The type Ag has ¢*(q — 1) branches of type Ag, (¢* — q)(q*> — 1) branches of type

Ry.
a 1
Proof. (1) A matrix of type A7 has two non-similar canonical forms, “ clz ,
a
a
and “ .1l As their centralizer subgroups in Ty(F,) are conjugate in
a
a
GL4(F,), we may prove the branching for any one. Let A = “ "
a

ap ai az ag

ap ai

Then Zgr,(r,)(A) = | ao,do # 0

ao
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ay a1 G2 a3 ap ay abh af

!/

ayg a ag @
Let B = oA ,and B = oM = XBX~!, where
ao ao
do dO
To X1 T2 T3
Trog I1 / / / 3
X = . From XB = B'X we have a] = a1, a3 = ag, and this
o
20
equation:
(4.23) Toas + x3dy = Zoalg + 300

If ap = do, then Equation 4.23 becomes zgas = 2025.

apg a1 a

. . . ap a1 _

Here, if ag = 0, then B is reduced to , and Zgp,(r,) (A, B) =
ao

ao
Zaryr,)(A). Thus (A, B) is of type A7, and there are ¢*(q — 1) such branches,.
apg aip a 1
If ag # 0, then choose z so that a5 = 1. Thus, B is reduced to @ @
ago
ao
Trg X1 T2 X3

To 1

and Zgr,(r,) (A, B) = . This (A, B) is of type Ry, and

Zo
Zo
there are ¢?(q — 1) such branches.
When ay # do, then, in Equation 4.23, choose x3 so that af = 0. Thus B

ap a1 a2 To T1 X2
. ap ai o X1
is reduced to ; and Zgr,(r,) (A, B) =
ao o
do 20

This too is commutative (by a routine check). (A, B) is of type R, and there are
q*(q — 1)(¢ — 2) such branches. There are no other cases left to analyze, so these

are all the branches.
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(2) Matrices of type Ag have either of the two non-similar canonical forms:

(4.24)
(4.25)
(4.26)

a
a 1
a
and . 1l As their centralizers are conjugate in GL4(F), it is enough
a
a
. a 1
to prove for any one of the canonical forms. Let A = . Then the
a
a
ap ai b as
. . ag al
centralizer of A is Zgp,r,)(A) = P . let B € Zgp,r,)(A)
ao
ap a1 b as ap ay b df
/
a a a a
be the matrix 0 Y, and let B = 0 } = XBX 1
d c d ¢
ao ao

o T1 Y T2

o T

where X = . Now XB = XB'X leads us to a} = a1, and the

g
following equations:

xob+yd = zb +yag
ze+way = xoc +wd
zoas +yc = wb + xoadl

When ay = d: Here, Equations 4.24 and 4.25 become xob = zV/, and zc = xoc
respectively.
When b = ¢ = 0, Equation 4.26 becomes zgag = zah, hence ay = ag. B is

agp ai a9
reduced to a0 “ , and Zor, v, (A, B) = Zaryw,)(A). (A, B) is of
ao
ap

type Ag, and there are ¢?(q — 1) such branches.
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When b # 0, choose z such that o = 1. Then, on substituting b with & = 1

in Equation 4.24, we get z = xy. Thus, we have ¢ = ¢. And, in Equa-
apg ai 1
: , . ao ay
tion 4.26, choose w so that ay = 0. Thus B is reduced to ,
ao
ao

o T1 Y X2
i) I

o cy

o

and Zgr,v,)(A,B) = . (A, B) is of type Ry, and there

are ¢>(q — 1) such branches.
When b = 0 and ¢ # 0, in Equation 4.25, choose xy such that ¢ = 1. Then
Equation 4.26 becomes xzgag +y = xpah. Thus, choose y so that a), = 0. Hence B

ap a1 o T1 Z2

. ao a1 Lo T
is reduced to ,and Zgr,(v,) (A, B) =

ag 1 To w

ao Zo

(A, B) is of type Ry, and there are g(¢ — 1) such branches.

There are no further cases for us to look at here. We now look at the case of
ag # d.
When ay # d: In Equation 4.24, choose y such that ¥ = 0, and in Equa-
tion 4.25, choose w such that ¢ = 0. Then Equation 4.26 becomes zgas =

apg ai a9
, implying ah = as. B red oM and Z A,B) =
apay, implying ay = as. B reduces to p , and Zgp,r,) (A, B) =
ao
To I1 L2
Lo 4l . . . . .
. This too is a commutative centralizer. (A, B) is of type
z
Lo

Ry, and there are ¢?(q¢ — 1)(¢ — 2) such branches. Now, there are no more
cases to look at. Adding up all the branches of type R;, we have a total of
¢*(q — 1)+ q(qg — 1) = ¢* — ¢ branches of type R;.
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(3) A matrix of type Ag has the following canonical form: A = “ s Then
a
a
apg ay b az ap ar b a2
ap c agp c
we have Z, A) = . Let B = ,
ary(F,)(A) @ b—ec a b—ec

agp ago

ap ay V' as ro 1Y T2

/

and B’ = @0 ,C .| = XBX™! where X = 0 v
ap b —c Ty Y—w

ap o

with zg # 0. So, XB = B'X leaves us with a} = a;, b’ = b, and ¢ = ¢, and the

following equation:

(4.27) xoas + (r1 — w2)c = xoah + (a1 — b)w

When a; = b and ¢ = 0 Here Equation 4.27 ends up as a5, = ag. B is thus
ap ai ayp a2

ao

reduced to , and Zar,w,) (A, B) = Zgr,v,)(A). Thus (A, B)

ap ai
ag
is of type Ag, and there are ¢(q — 1) such branches.
When a; # b: Here, in Equation 4.27, we choose w such that a}, = 0. B is thus re-

ag ai b o 1 Y Z2
ao c 70 (z1y) .
duced to , with ZGT4(FQ)(A7 B) = al(;f—y)
ag b—c To Y- g ¢
agp Zo

(A, B) is therefore of type Ry, and there are ¢(q — 1)? such branches.
When a; = b, and ¢ # 0: In Equation 4.27, choose 1 or y such that a}, = 0.

ap a1 a1 o T1 T1 T2
. ao & ly) w
Thus, B is reduced to - So Zgr,(v,) (A, B) =
ayg ai —c¢ o T1 —wW
ao o

This (4, B) too is of type Ry, and there are q(q — 1)? such branches.
With this, we have no other cases to look at. Thus, we have ¢> branches of
type Ag, and q(q — 1)% + ¢%(¢ — 1)? = (¢*> — q)(¢* — 1) branches of type Rj.

0
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4.2. Branching rules for type B. Matrices of types B1, B2, B3, B4, B5 are in block
C

form of the kind 4 = | ' e ) where C; € GT,,,(F,), and Cy € GT,,,(F,), where

X

my +mg = 4. Thus, Zgp,r,)(A) = {( !

X )} where Xi € Zgr,, (C1) and X, €
2

D,

26T, (C2). Thus, the branches of A are of the form , where Dy is a branch of

2
C1, and Ds is a branch of Cs. With this argument, we can prove the following proposition.

Proposition 4.10. The branching rules are as follows:
(1) For a matriz of type By, there are:
Branch | No. of Branches || Branch | No. of Branches
By (¢ —1)? R3 (¢ —1)
Bs 2(¢ — 1) Ry | 2(¢—1)(q—2)
Bs | 2(¢—1)*¢—2) | Bs | (¢—1)*g—2)7?
(2) For a matriz of type Bs, there are:
Branch | No. of Branches || Branch No. of Branches

Bg (q - 1)2 R2 (q - 1)2
B (g —1)? Ry (g—1)%(q—2)
By (g —1)? Rs | (¢—1)*(¢—2)(¢—3)

By (¢—1)%*q~-2)
(3) For a matrix of type Bs, there are q(q—1)? branches of type B3, q(q—1)? branches
of type Ra, and q(q — 1)%(q — 2) branches of type Ry.
(4) For a matriz of type By, there are, q(q — 1)? branches of type By, (¢> —1)(¢ — 1)
branches of type Ry, and q(q — 1)*(q — 2) branches of type Ry.
(5) For a matrix of type Bs, there are q(q—1)? branches of type Bs, q(q—1)? branches
of type R3, and q(q — 1)%(q — 2) branches of type Ry.

Finally,

Proposition 4.11. For a matriz of type Bg, there are, (¢ — 1)® branches of type Bg,
(¢ — 1)3 branches of type Ry, and (¢ — 1)3(q — 2) branches of type Rs.

a
Proof. A matrix of type Bg has the canonical form: A = ( “ > Here, Zgr,(r,)(A) =
(&

C
{( “ ) | C € GT2(Fy), co,do # 0}. Enumerating the conjugacy classes of GT5(Fy)
gives us %he branches mentioned. O

4.3. Branching Rules of the New Types. While determining the branching rules

of the existing types of conjugacy classes of GT4(F,), we came across six new types of
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simultaneous conjugacy classes of pairs of commuting matrices. We called them tNT7,
tNT,, tNT;, tNT,tNT5, and NRy. In this subsection, we shall focus on the branching

rules of these new types.

Proposition 4.12. A commuting tuple of type t NTy has q*(q—1) branches of type t NTY,
q*(q — 1) branches of type Ry, and ¢*(q — 1)(q — 2) branches of type Rs.

Proof. For a commuting pair (A, B) of matrices of type t NT1, the centralizer is Zgr, () (A, B) =

ay a1 as ay a1 as ap a af
ago ago ago
| ag,co #0 p. Let C = ,and C' = | =
ch C1 ch C1 Cp €
€0 €o €0
o I1 z3
_ Zo .
XCX 'ty X = . XC =(C'X leads us to a] = a1, ¢} = ¢1, and just
20 21
20
one equation:
/
(4.28) xoas + x3by = zpaz + w3a0.

When ag = ¢y: Here Equation 4.28 becomes xgas = zoag.
So, we have two cases over here: ag = 0, and ag # 0.
ap ai

ao

When a3 = 0, C'is reduced to , with Zar, v ) (A, B,C) = Zgr,v,) (4, B).

apg C1
ao
(A, B,C) is of type tNTy, and there are ¢%(¢ — 1) such branches.
apg ai 1
When ag # 0, we choose zg such that a = 1. Here, C is reduced to a0 ,
ap €
ao

Tog 1 T3

with Zgr,r,) (A4, B,C) = This (A, B,C) is of type R;, and

rog <1
o
there are ¢?(q — 1) such branches.

So now, with ag = ¢g, we have no other cases left to analyse. We move on to the case

of ag # ¢p.
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When ay # ¢p: Here, in Equation 4.28, we can choose 3 so that a = 0. So C'is reduced

ap aig rog I1
to a0 , with Zgp, ) (A, B,C) = o . This (A, B, C)
ch 20 21
Co 20
is of type R3, and there are ¢?(q — 1)(¢ — 2) such branches.
So, with this, we have no other cases to look at. O

Proposition 4.13. The new type tNTy has ¢*(q—1) branches of type tNTy, ¢*(q—1)(q—
2) branches of type Ry, and ¢*(q*> — 1) branches of type NR;.

Proof. For a commuting pair (A, B) of type t NT5, the centralizer is

ap by by ao bo b1
ba b bo, b ba b
ZGT4(F )(A, B) _ agp 2 3 ’ ag, Vo, 01 CLetC = agp 2 3
! agp ba,b3,co € Fy agp
Co €o
ag by b ) Yo Y1
/ /
and C' = EURCICH g XCX~! for some X = w0z s So, equating
ag Zo
&) 20

XC = C'X leads us to by = by, by = ba, and the following equations:

(4.29) zob1 +yico = z0b] +y1a0
(4.30) zobs +ysco = zobh + ysao

We have two main cases: ag = ¢y, and ag # ¢o:
When ag = ¢yp: Here, Equation 4.29 becomes zgb; = zb}, and Equation 4.30 becomes

l’obg = Zobé.
ag b()
When b, = b3 = 0, C is reduced to ao b2 , with Zgp, (A4, B,C) =
ao
ao

Zaryv,) (A, B). Thus (A, B,C) is of type tNT3, and there are q*(q — 1) such branches.
When b; # 0. In Equation 4.29, choose zy such that b} = 1. Then, on replacing by

and 0] by 1 in the same equation, we get zy = x¢. Hence, Equation 4.30 becomes xobs =
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ap b(] 1

by b
zobl, hence by = bs. C is reduced to a2 , with Zgr,w,)(A, B,C) =
agp
agp
Zo Yo Y1
Toov2 s . (A,B,C) is of type NR;. There are ¢®(¢ — 1) such branches.
xo
xo
When b = 0, and b3 # 0. In Equation 4.30, choose zp so that b5 = 1. Thus
agp bo Zo Yo W1
by 1
C' is reduced to @ 2 , with Zgr,r,)(A, B,C) = To Y2 U3
ag ¢ Zo
ag Zo

(A, B,C) is of type NR;. There are ¢?(q — 1) such branches. We have exhausted all the
cases under ag = ¢g.

When ayp # c¢p: Here, in Equation 4.29, choose y; so that b} = 0, and in Equa-

ag bo
tion 4.30, choose y3 so that b = 0. C is thus reduced to @0 22 , with
0 .
Zo Yo
Zary ) (A, B,C) = 0 zz . This (A, B,C) is of type Rg, and there are
20

q*(q — 1)(g — 2) such branches.
This leaves us with no further cases to analyse. Adding up the branches of type N R,
we have a total of ¢2(¢ — 1) + ¢*(¢ — 1) = ¢*(¢®> — 1) branches of type NR;. O

Proposition 4.14. A commuting pair of type tNT3 has ¢*(q— 1) branches of type tNT3,
q*(q—1) branches of type Ry, ¢*(q—1)(q—2) branches of type Ry, and q(¢* —1) branches
of type NR;.

Proof. Let (A, B) be a pair of commuting matrices of type ¢t NT3. Their common central-

iZer iS ZGT4(Fq)(A7 B) g {(D E > ‘ -D c TQ(FQ)7E S MQ(FQ)} Let C e <D E )7

D1z aols
D' FE
where D = ap ai and £ = bp by . Let C' = — XC’X‘l, where X —
bO b2 b3 (1012
Z Y
€ Zar, (A B), where Z = (0 ") € GTy(F,), and Y = [ V).
LE()IQ 20 v U3
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So XC = C'X leaves us with the following ZD = D'Z. Thus D can be taken to be a
representative of a conjugacy class in GT3(F,), and Z € Zgr,w,)(D). We are therefore
left with the following equation:

ZE + agY = DY + xoE'

Exapanding this, we have:

4 xobo + x1by  x0b1 + 2103 —aiy2 —a1ys ~ [zoby  woby
(4.31) + = ¢ !
20Dz 20b3 (a0 = bo)yz (a0 — bo)ys zoby  xoby
When D = aglso: Here Equation 4.31 becomes:
Tobg + T1ba  xgb1 + 11b2 4 - l’oblo :E(]bll
Zob2 Zobg l‘ob/z :L'(]bé
ag bo bl
When by = b3z = 0, we have by = by, and b} = by. Thus, C is reduced to a0
ao
ao
and Zgr,r,)(A, B,C) = Zgr,¥,)(A,B). (A,B,C) is of type tNT3, and there are
q?*(q — 1) such branches.

When by # 0, choose zp such that o, = 1. Thus, on replacing by by b, = 1 in
Equation 4.31, we get zp = x¢. Hence by = bs. With these, Eqaution 4.31 becomes

xoby + 1 x0b1 + 2102 4= 3301)6 xob/l
1 by -

Choose 27 so that b = 0. On replacing by by bj, = 0 in the above equation, we have

ao b1
. ;. . ag 1 b3 . o
xz1 = 0. Thus 0] = b;. So C' is reduced to a with Zgr,r,) (4, B,C) =
agp
Zo Yo U1
Toov2 s . (A, B,C) is of type N Ry, and there are ¢?(q— 1) such branches.
xo
Zo

When by = 0 and b3 # 0. Choose zp so that by = 1. Equation 4.31 becomes

Tobo xob1 + 11 4= ajob6 xob/l
0 1 0 1
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ap bo

Hence, b, = by, and choose 1 so that ¥} = 0. C is reduced to @0 a0 1 ,
ao
zo Yo Y1
with Zgr,r,) (A, B,C) = 0 ii & . This (A, B,C) too is of type NRy,
0

and there are ¢(q — 1) such branches.
With this, we have no other cases to analyse when D = agls.

1
When D = (ao ): Here Z = (a:o a:1>. Equation 4.31 becomes:
ag Zo

zobo + x1by  xoby + x1b3 n —Y2 —Y3 _ 3301)6 xobll
xobg xobg 0 0 Jjobé xobg
We have from this by, = by, b5 = b3, and we can choose y so that b, = 0 and y3

ag 1

ao b2 bg

such that b = 0. Hence C is reduced to , with Zgp,p,) (A, B,C) =

ao
ag
o T1 T2 x3
xg boxy bsx
0 T2 T . This (A, B,C) is of type Ry, and there are ¢?(q — 1) such
Zo
Zo
branches.

When C = @0 ), co # ag: Here Z = <x0 > Equation 4.31 becomes:
Co 20

l‘obo l‘obl + _ l‘ob6 :L'(]bll
Z()b2 Zobg (CL()—C())yQ (CLQ—CQ)yg xobé Jjoblg

We have b, = by and b] = b;. Choose y2 and y3 such that b4 = b5 = 0. C' is reduced to
ag bo b1 o Yo Y1

€o 20
, and

ao Lo

. Here (A, B, C) is of type Ry, and there

ao xo
are qz(q — 1)(g — 2) such branches.
With this, we have no other cases to deal with.
Adding up the branches of type N Ry, we have a total of ¢(¢—1) —|—q2(q_ 1) = q(q2 —-1)

branches of this type.
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Proposition 4.15. For a pair of commuting matrices of type tNTy, there are ¢*(q — 1)
branches of type tNTy, ¢*(q — 1)? branches of type Ry, and q(q*> — 1)(q — 1) branches of
type N R;.

Proof. The centralizer of a commuting pair (A, B) of this type is

ap ai Bl

Zaryr,) (A, B) = {( “ a1> |ag #0,B € Mz(F(J)} -

ao
This was seen, and proved in [Shl, , Lemma 5.14] as the new type NTj. O

Proposition 4.16. For a commuting pair of type tNTs, there are ¢*>(q — 1) branches of
type tNTs, and q(q®> — 1)(q — 1) branches of type R;.

Proof. The centralizer of a commuting pair (A, B) of type tNT5 is:

ag ai b(] b1

ag bo
Zary¥v,) (A, B) = | ag # 0
ayg C1
ag
ag a; by by ap a1 by b
b b
Let C = a0 o1, and ¢’ = a0 Ol = XCX!, for some X =
ayg C apg C1
ap ap

To T1 Yo Y1

o A S0 XC = C'X leads us to b, = bo, and the equation:
o <1
xo
(4.32) xoby + x1by 4+ yoc1 = xobll + 2109 + yoas.

We have two main cases: a1 = ¢ and a1 # ¢;.

When a1 = ¢1: Equation 4.32 becomes zgb; + x1by = xob| + z1bp.

ap ay b1

When by = 0, we have b} = b;. Cisreduced to @0 , with Zgr,®,) (A4, B,C) =
ag ai
ago

Zaryv,) (A, B). (A, B,C) is thus of type tNT5, and there are ¢*(q — 1) such branches.
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apg ai bo
ao bo

, with
ap aq

When by # 0, choose z; such that b} = 0. C' is reduced to
ao

o 1 Yo Y1
o Yo

ZGT4(Fq)(A7B7C) = To T

(A,B,C) is of type Ry, and there are

o
q(q — 1)? such branches.
So, we have no other cases to look at for a; = ¢;.

ag ai bo
b
a; # ¢1: In Equation 4.32, choose yg so that ] = 0. Thus, C is reduced to @0 0
ap C1
ao
Ty T1 7170&1_;?1)
z bo(z1—21)
with Zgr,r,)(4, B,C) = 0 c1—a1 . Here (A, B,C) is of type
i) Z1
T

Ry, and there are ¢%(q — 1)? such branches.
With this, we have no other case to look at. So, adding up the branches of type R, we
have a total of g(¢ — 1) + ¢%(¢ — 1)®> = q(¢®> — 1)(¢ — 1) branches of type R.
U

Proposition 4.17. For a commuting pair of type NRy, there are ¢*(q — 1) branches of
type NR;.

Proof. The centralizer of a commuting pair (A, B) of type NR; is

Zar,w,) (A, B) = { <“°I2 b ) lag #0,D € M2(Fq)} .

aolé

The result follows, as this is a commutative subgroup. O

5. BRANCHING IN UT3(q)

For the unitriangular group UT5(F,), the conjugacy classes are as follows:
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Canonical Form | No. of Classes Centralizer Name of Type
10a
010 ),
<00 1 q UT3(Fy) C
acF,
G :
001/’ (g—1) {( ﬁ0x1>]w0,x1€Fq} Ry
a€Fy. 1
T00
<01a) s 1 x
001 (g—1) {( 1xo>|:L'1,:L'QEFq} Ry
a€Fy. 1
<é(fg) 1(20 T
001/’ (q—1)2 {( 1 %x()) |$0,$1€Fq} Ry
a,beF,. 1

We see that there are two types here: central C' and regular R. Note that the centralizers
of both regulars Ry and Rs are isomorphic (not conjugate). For the type C, the centralizer
is full group UT3(F,), thus all types appear in the first column. For the regular type, it
has ¢? branches of the same R type, as the centralizer is commutative, of size ¢2, hence
the number of branches is ¢2.

Theorem 5.1. The branching matriz (with the order of type C, R1):

q 0
BUT:*)(Fq) - <q2 -1 q2> '

We prove the branching rules below.

Proposition 5.2. An upper unitriangular matriz of type C has q branches of type C,
and q*> — 1 branches of the type R.

Proof. The result follows as matrices of this type are central. (]
Proposition 5.3. A matriz of of any of the R types has q* branches of the same R type.

Proof. A matrix of any of the R types is a Regular type, hence its centralizer in UT3(Fy)
is commutative, of size ¢2, hence the number of branches is ¢2. O

6. BRANCHING IN UT}y(q)

We shift our focus to commuting tuples of matrices in UTy(F). The conjugacy classes

according to the types of this group are listed in Appendix B.
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Theorem 6.1. The branching rules for the upper unitriangular group is given by the
following matriz (with order C, Ay, As, A3, Ry, R2):

q 0 0 0 0 0
2(q — 1) ¢ 0 0 0 0

(g—1)2 0 ¢ 0 0 0

Buneg = g2 ) 0 0 @ 0 0
qlg—1) a*—1) -1 q—1) ¢* 0

(@—=1(q—-1) ¢*q—-1) q(¢®—1) 0 0 ¢

The first column corresponds to type C, thus all types of UT,(F,) appears. The last
two columns are the regular types. There are no new types here. The proof for other
columns is listed below in propositions.

Proposition 6.2. An upper unitriangular matriz of type Ay has ¢> branches of type A1,
and q(q> — 1) branches of type Ry, and q*(q — 1) branches of type Ry.

1
1
Proof. Let A = ) , a matrix of type A;. The centralizer Zyr,(A) of A
1
1 xr1 Z2 1 1 X2
1 1
is: Yoo | i, yi, 20 € Fg p. Let X = Yoo 0 , be an element of
1 =z 1 2z
1 1
1 b1 by 1 by bl
1 1 / /
Zyur,(A). Let B = @ a , and B’ = O U pe the conjugate of
1 do 1 df
1 1

B by X, ie., B = XBX~!. Thus equating XB = B’X leads us to b}, = by, cj = co,
¢} = ¢1, and the following equations:

xoco + b1 = yobyy + b}
zocr + by = yr1bjy + bl

We use these to simplify B to the branches mentioned in the statement of the proposition.
O

Proposition 6.3. An upper unitriangular matriz of type Ao has ¢> branches of type As,

and ¢*(q — 1) branches of type Ry, and q(q*> — 1) branches of Rs.
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1 b
Proof. Given A = ) , where a,b € Fy. the canonical form of a matrix of
1
1 Trog I To
. . 1w wn b
type Aa. The centralizer of A, Zyr,(A) is 1 X | A= 2,2,yi,20 € Fy
o
1
1 o X1 T2 1 bO bl b2
1 1
Let X = Yo Ut be an element of Zyt,(A). Let B = @ a ,
1 /\l’o 1 )\bo
1 1
1 by b b
1 / /
and B’ = clo /\C;/ be the conjugate of B by X. Thus equating XB = B'X
0
1

gives us the following equations:

bo = b,
co = ¢
xoco + b1 = yobyy + b}
Aboyo + 1 = Az + ¢}
xoc1 + Abox1 + by = y1b)y + Abjzobh

Using these we reduce B to the mentioned branches. O

Proposition 6.4. An upper triangular matriz of type Az has ¢> branches of type As,
and q(q* — 1) branches of type R;.

Proof. One of the canonical forms of an upper triangular matrix of type As is A =

1 a 1 zg 1 29
1 1
, where a € Fy. Here Zyp,,)(A) = ) | 3,20 € Fy,
20
1 1
1 To T1 X2 1 bO bl b2
1 1
Let X = , be an element of Zyr, (A). Let B = , and
1 20 1 do
1 1
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1 by by b
1
B' = L be the conjugate of B by X, i.e., B’ = XBX~!. Thus equating
0
1
XB = B'X leads us to the by = by, b} = b1, dy = do, and the following equation:

r1dg + by = Zobll + b,2

We use these to simplify B to the branches mentioned in the statement of the proposition.
O

Proposition 6.5. A matriz of the Ry type has ¢* branches of type R1 and A matriz of
the Ry type has ¢> branches of type Ro.

Proof. The type R; and Ry are Regular types, hence the centralizer of matrices of such
a type is a commutative. O

Proof of Theorem 6.1. From the data in Propositions 6.2 to 6.5, we summarize the branch-

ing rules for UTy, as in the table described in the theorem. O

Here are some isomorphisms between centralizers of matrices of the same z-class for

some z-classes in UTy(F).

1 a
e ‘ . . . 1
Proposition 6.6. The centralizer of conjugacy classes with representative 1
1
1
1 a N . .
and 1 , for a € Fy are isomorphic.
1
1 a
. . . . 1 .
Proof. The centralizer of conjugacy class with representative ) is
1
1 rg I1 I2
I vy wn
| Ty Yi S Fq
1
1
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a
The centralizer of conjugacy class with representative . is
1
1 r1 T2
I v wn
| @i, Yi, 20 € Fy
1 20
1

\
The following map gives isomorphism between these two centralizers.

1 Ty T2 1 —z0 y1—20Y0 @2 — T120
1
oo y| o, 1 Yo T
1 20 1
1 1

Proposition 6.7. The centralizers of all conjugacy classes of type Az are isomorphic.

Proof. There are six conjugacy classes of type As. In the following table, we give the

centralizer of these conjugacy classes. We also set a notation for these conjugcay classes

which will be used later in this proof.

Class Representative Centralizer in UTy(F) Name of Conjugacy class
la I xo 1 X2
< 111>,a€Ff1 {< 120>\wi,zoqu} As,
Tz
B aeF; b | x 20 € Fy A
1 lf ) q 1 ZO is Y15 20 32
1 (11 1z byl rz
< 111)>,a,b€FZ . | i, 91,20 € Fy Az,
l
Class Representative Centralizer in UTy(F) Name of Conjugacy class
1a T x0 x1 be
< 11b>7a7b€FZ ! 1ax0>|xi>z0€Fq} A34
1 2
1 a I :(:10 r1 X2
< 11b>’a’b€F; { 1 by |xi,y1€Fq} A35
1 a
1
lab 1 0 1 :;f
( 11i{>,a,b,c€FZ 1 ez gy | zi,y1 € Fy Asz,
1

(1) The following map gives isomorphism between centralizers of representative of

conjugacy classes Az, and As,.

11‘0
1

1

x2
Y1
20

1

I 20

1
s

T2 — Y1xo

1
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(2) The following map gives isomorphism between centralizers of representative of

conjugacy classes Az, and As,.

1 rg X1 X2 1 Trg I1 l’Q-(W)/\
1
— 1 )\1‘0
1 2z 1 20
1 1

(3) The following map gives isomorphism between centralizers of representative of

conjugacy classes Az, and As,.

1 xg T2 1 zg Azg xzo+ (W) A
1 Y1 . 1 U1
) 1 20
1 1

(4) The following map gives isomorphism between centralizers of representative of

conjugacy classes Az, and As,.

1 o i) 1 xo + /\Zo /\y1 X9 + >\y1Z0
1 0 BN 1 (1
1 2z 1 20
1 1

(5) The following map gives isomorphism between centralizers of representative of

conjugacy classes Az, and As,.

1 = T 1 20+ A2z Aizo+ Aoy1 w2 + Aayr20 + <%> A1
1
L2 N 1 1
1 =z 1 20
1 1
U

7. BRANCHING RULES FOR UT5(Fy)

In this section, we will discuss the simultaneous conjugacy classes of tuples of com-

muting matrices of UT5(F,). The types are listed in Section B. The branching matrix is

as follows:

Theorem 7.1. The branching rule of UT5(Fy) has 3 new types. The branching matriz

Byryw,) s in table 4 which is a 20 x 20 matriz.

Once again it’s easy to see the branches for central and regular types.
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9¢

TABLE 4. Branching matrix of UT5(Fy)

C A1 Ao As Ay As B1 Bs B3 By Bs Bsg D1 Do R1 R2 R3 UNTy UNT> UNT3

q 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 O 0 0
2(g—1) q> 0 0 0 0 0 0 0 0 0 0 0 0 00 0 O 0 0

—q q(g®-1) q* 0 0 0 3¢%2—3q 0 0 0 0 0 0 0 000 O 0 0
2¢%—2q 0 0 q> 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 0
2q22—2q 2¢%(q—1) 0 q(g®—1) q* 0 0 P—q 0 0 0 0 0 0 0 0 0 O 0 0
(¢*=1). 2

(24-1) 0 0 0 q 0 0 0 0 0 0 0 0 00 0 0 0 0
(g—1)2 0 0 0 0 0 q? 0 0 0 0 0 0 0 0 0 0 O 0 0
2¢%2—2q 0 0 0 0 0 0 q? 0 0 0 0 0 0 0 0 0 O 0 0
2(¢—1)%2  ¢%(¢—1) 0 % (q—1) 0 0 0 0 @ 0 0 0 0 0 000 O 0 0
(2¢%+4).  q(g-1) 2 3

0 0 0 2q(q—1 0 - 0 0 0 2q(q—1 0 00 0 0 0 0
(=12  (@®+¢>—1) a(g—1) °—q q a(g—1)
q(g—1)2 0 0 3 (q—1) 0 0 0 0 0 0 q> 0 0 0 000 O 0 0
3
2q(qg—1)2 0 0 0 0 21 -1 ¢—¢ 0 0 ((‘f]fql))' el 0 0 00 0 0 0 0
(g—1)3 0 0 0 0 0 0 0 0 0 0 0 q> 0 000 O 0 0
(éq_%%‘ 0 0 0 0 0 0 0 0 0 0 0 0 @ 00 0 O 0 0
: —1). : (*—q).  ¢*(g—1). - 5
2(g—1)%2  2¢3—2¢%> 2¢*—2¢> a(a 0 0 2¢°—4q+2 0 0 0 0 50 0 0 ¢—¢* 0
(a=1) N A e T2 (2 49-1) (g2+q-1) 7 N
_1\2 2_ _1\2 —1). .

_p2 4(e-1D)*. 2 2 A= a gy g2(o—1) @17 (g 0 42 0 0 0 0 0 & 0 o —a? gh—g3 gt—g2
q(g—1) (q+1) q(g*—-1) (-1 1 (¢—1) ¢*(¢—1) (a+2) (@—q) q*—q q *—q* ¢*—q¢° ¢*—q
(*-1). o 2 2 2 3.2 q(g=1). (¢—1)2%. 2 3 4_. 3 2/2 2/ 2 2/ 2 4 4_ 3 43 4_ 3

-1 0 -1 3(g2—1 -1 3(g—1 0 —¢ -1 -1 -1) 0 0 —¢® ¢*—¢® ¢*—¢
(-12 9@V (=17 @) 2y g2yghry T @) = ¢*(¢"=1) ¢°(¢°=1) ¢°(¢°—1) " ¢°=q" ¢"=¢" ¢"—q

0 0 0 @*(qg—1) 0 q(g—1)?  (q—1)2 q(g71)2 0 0 0 0 0 0 00 0 ¢ 0 0

0 0 0 0 0 0 2q(g—1)  ¢>—¢? 0 0 0 0 0 0 000 O 7 0

0 0 0 0 0 0 (g—1)3 0 0 0 0 0 q(g—1)? 0 00 0 0 0 7




7.1. Branching of type A.

Proposition 7.2. An upper unitriangular matriz of type A1 has the following branches:

Branch No. of Branches | Branch No. of Branches
Ay q° By qlg-1)(¢*+¢*-1)
Ag 9(¢* = 1) R 2¢*(q — 1)

Ay 2¢*(g — 1) Ry (g —1)*(¢ +1)
Bs ¢*(g—1) Rj ¢*(¢ — 1)?

Proof. For a matrix of type Ap, there are two canonical forms: I5+ aF14, and I5 + aFos,
where a # 0. We will take our matrix A of type Aq, to be the canonical form I5 + aF14,
1 aq b1 b2 a9

1 Cl1 C2 dl

a # 0. So the centralizer of A is Zyryw,)(4) = 1 ¢33 do . Let B =
1
1 Vs
1CL1 bl b2 a9 1a’1 b1 b/2 a’2 11‘1 Y1 Yz X2
1 ¢ e d 1 d d& d 1 21 29 wy
1 ¢35 dy|,B = 1 ¢ dy|,and X = 1 23 wy|,Dbe
1 1 1
1 1 1
such that XB = B’X. From XB = B'X, we get that a| = a;. Let C denote the middle
1 C1 Co
3 X 3 unitriangular block 1 ¢3 | in the matrix B, and let Z denote the middle
1
1 z1 2
block, 1 23|, from X. Likewise, we have C’. We see that from XB = B'X, we
1

have ZC = C'Z. Thus we take C to be a conjugacy class representative from UT5(F,),
and Z to be its centralizer element in UT3(F,). Now, with this, we have the following
set of equations:

(7.1) <961 Y1 y2) C+ (a1 by bz) = (a1 v b/2> Z + (xl Y1 yz)
d1 w1 w1 dll

(7.2) Z dg + | w2 = C w2 + dé
0 0 0 0

(7.3) r1dy +y1de + a2 = ajwy + bjws + d

We look at two main cases, a; = 0, and a; # 0.
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Case a; = 0: Here Equation 7.3 is reduced to x1d; + y1de + ag = bjws + afy. Here we
look at subcases:
When (b1,b2) = (di1,d2) = (0,0): Thus Equations 7.1 and 7.2 become:

(wl Y1 yz)C = (xl Y1 yz)

w1 w1
w2 = C w2
0 0
and ah = as.
1 a9
1
When C = I3: Equations 7.1 and 7.2 are void, and B is reduced to 1
1
1

Thus Zygyr,) (A, B) = Zynyr,)(A). So (A, B) is a branch of type Aj, and there are ¢
branches.
When C = (1 1 ;), ¢ # 0: Equation 7.2 remains void, but from Equation 7.1,

we get cxy + ya = yo, which leaves us with 1 = 0, as ¢ # 0. Thus the branch is
(

1 as 1 Y1 Y2 X2
1 c I z1 2 w
B = 1 , and Zyyr,) (A, B) = 1 23 wo , which is the
1 1
1 1

\ J
centralizer of one of the canonical forms of type As. So (A, B) is a branch of type As,
and there are g(q — 1) such branches.
lc 1 211 z2

When C = < 11>, ¢ # 0: Here we have Z = < ) ) From Equations 7.1
and 7.2, we have cx1 + y1 = y1 and wy + cwe = w1, thus we have x1 = wy = 0. So we

1 az 1 Y1 Y2 2
1 ¢ 1 Z1 22 W1
have B = 1 , and Zyqyr,) (A, B) = 1 , and by
1 1
1 1

a routine check, we see that ZUTS(F(I)(A, B) is commutative, of size ¢°. (A, B) is of the
regular type Rj, and there are (¢ — 1)g branches of this type.

22

1
When C = (1 1 i;), ¢ # 0: We have Z = ( 1213>. In this case Equation 7.2

becomes void, and from Equation 7.1, we have cy; 4+ y2 = s, thus leading to y; = 0.
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1 a 1 x Y2 T2
1 1 zZ9 W1
Hence, B = 1 ¢ . We have Zyr, (A4, B) = 1 23 wo ,
1 1
1 1

which is the centralizer of a unitriangular matrix of type A4. So (A, B) is a branch of
type Ay, and there are g(q¢ — 1) branches.

When C = <1011 CQ>, c1,c0 # 0: We have Z = (1211 >\Zz21), where A = ¢3/cq.
From Equation 7.1, Welhave c1x1 + y1 = y1, which leaves us Wi‘ljh z1 = 0, and then we

have coy1 + yo = yo, which leaves us with y; = 0. Then, from Equation 7.2, we have

1 as
1 Cc1
w1 + cqpwy = wi, leaving us with with wo = 0. So, we have B = 1 ¢ ,
1
1
1 Y2 T2
1 Z1 Z9 w1
and Zymy(r,) (A, B) = 1 Az . This is of size ¢°, and by a routine

1

1
check, it can be seen that Zyryw,)(4, B) is commutative. Thus (A, B) is of the regular

type Ry, and there are q(q — 1)? branches.
When ((b1,b2), (d1,d2)) # ((0,0),(0,0)): We shall start with C' = Is.
When C = I3: Here Z is any aribtrary matrix in UT3(F,), and Equations 7.1 and

7.2 become:

1 Z1 29

(0 b &) = (00 )|o 1 =

0 0 1
1 21 29 dy :
0 z3 d2 = d/2
0 0 1 0 0

From the above equation, we have b} = by, and by = b, + by 23, and we have d; + z1dy =

", and djy = ds.
Firstly, if both b; # 0 and da # 0. Then we can choose a z3 such that b, = 0, and
similarly we can choose z; such that dj = 0. Hence, with this Equation 7.3 is reduced to

y1da + ag = bywy + a,. We may choose a ws such that d), = 0. Thus, we have reduced B
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\
This is the centralizer of a matrix of type A4. Thus, we have (¢ — 1)

type.

1

d2 ) and ZUTs(Fq)(AaB) =

1

1:E1

Y1

Y2
)

1

Z2
w1
Ay1

1

| A =dy/by

7

2 branches of this

When b; # 0 and dy = 0, we again pick a z3 such that b, = 0, and Equation 7.3 is

reduced to x1d; 4+ az = bywy + ab. Again, choose wy so that ab, = 0. Thus B is reduced

1

by

dy

1

’ and ZUTs(Fq)(AaB) =

\

11‘1
1

Y1
21
1

Y2
22

T2
w1
/\1’1

1

| A=dy/by ¢,

which is isomorphic (conjugation by the matrix that swaps the 4th and 5th rows and

columns) to centralizer of a matrix of type Bs. Thus there are g(¢ — 1) branches of this

type.

When b; = 0, we have b/29 = by. We consider dy # 0, and choose a suitable z; so

that dj = 0. Equation 7.3 is reduced to y;ds + a2 = ay. Thus, we choose an apporpriate

1

y1 so that a, = 0. B is thus reduced to

forms of type Ay. There are g(q — 1) such branches.

Y2
22
1 z3
1

T2
w1
w2

1

| A =di /b

by

d2 ) and ZUTs(Fq)(A7B) =

, which is the centralizer of one of the canonical

When by # 0, do = 0, we have dj = dy. We first take d; = 0. Then Equation 7.3

1

by

az

is reduced to a, = ag. We thus have B reduced to 1 , and thus

1

Zyryry) (A B) = Zyryw,)(A). Hence, (A, B) is a branch of type A;, and there are

q(q — 1) branches.
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When b; = 0, with do = 0, and d; # 0. Equation 7.3 is reduced to z1d; + ag = d.

1 by
1 dq
With a suitable z1, we can get rid of d;. Hence B is reduced to 1 ,
1
1
(1 Y1 Y2 T2
1 z1 29 w
and Zygyr,) (A4, B) = 1 23 wo . Thus (A, B) is of type Ay, and there
1
1

are q(q — 1) such branches.

When C = (1 1 ;) Equation 7.1 is reduced to (0 by b2+ c:nl) = (0 by bz + b’2)
Thus, we have b} = by, and we can choose 1 such that b, = 0. Now, here, on replacing
b, and b by 0 in the above equation, we get that z1 = %123. From Equation 7.2, we have
dy = dy, and d} = dy + z1da. Equation 7.3 becomes %z;;dl + y1da + az = waby + db.

We now look at the case when by # 0, and d, # 0. We choose z; so that d} = 0,

1 by
1 c
and ws such that af, = 0. Hence, we reduce B to 1 ds |, and we have
1
1
1 Az3 y1 y2 a2
1 29 wWq
Zyryry) (A, B) = 1 23 up | |A= b?l,,u = g—f , which is isomorphic to
1
1

the centralizer of some canonical matrix of type By. There are (¢ — 1) such branches.
When by # 0, and d2 = 0, then d} = dy. Equation 7.3 becomes b?lz;),dl +ag = waby +d.
1 b1

Choose a suitable wg, to make ab = 0. Then B is reduced to
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and Zyry(r,) = 1 z3 pzs| | A= b?l,u = d—cl . If we write z3 in terms

of 21, then Zyq g,y will be this: L Avy opry | [A=g,p=73p. Ifwe
1

1
conjugate this centralizer by the matrix I + §£Fjys5, we get the centralizer of a canonical
unitriangular matrix of type Bs. Thus (A, B) is a branch of type Bs, and there are
q(q — 1)? such branches.

Now, when b, = 0, and (dy,dz2) # (0,0). We have x; = %123 = 0,a nd Equation 7.3
becomes y1dy + ag = a). First, when dy # 0, then we choose z; so that dj = 0, and

1
1 c
choose y; so that a, = 0. So, B is reduced to 1 ds |, and Zyryw,) =
1
1
( (1 Y2 T2
1 Z9 Wi
1 23 ws , which is commutative of size ¢%, (A, B) is of regular type Ry,
1
1

and there are g(¢ — 1) such branches.
When b; = dy = 0, di # 0. We have d} = d;, and Equation 7.3 reduces to a}, = as.

1 as 1 as
1 c dp 1 c
Thus, B is reduced to 1 , and Zyryp,) = 1 , and
1 1
1 1

1 Y1 Y2 T2
1 21 22 W1
ZUTS(Fq)(A, B) = 1 23 wy , which is the centralizer of a matrix of type

1
As. Thus (A, B) is of type As, and there are ¢(q — 1)? such branches.
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1 VAR )
When C = (1 i 1) , ¢# 0: Here Z = 1 , and Equation 7.1 becomes:
1

< cx1 + by bg) = < b/l b/2>
Using a nice 1, we can make b} = 0, and by, = be. So, if we replace by by b} = 0 in the

above equation, we have x1 = 0. Next, Equation 7.2 becomes:

di + z1ds cwy + dll
& = 4
0 0

As ¢ # 0, we choose a wg so that dj = 0. We have d, = dy. With these, Equation 7.3
becomes

(7.4) yidy + ag = a
1 bo
1 ¢
When ds # 0, choose y; such that a;, = 0. B is reduced to 1 ds |, and
1
1
1 Y2 T2
1 21 20 wy
Zyryr,) (A, B) = 1 Az | A= %2 . Thus (A, B) is of regular type Ra,
1
1

7

and there are ¢(q — 1)? branches of this type.
When dy = 0, then we are left with by # 0. Hence Equation 7.3 is reduced to af = as.

1 by a2 1 Y1 Y2 w2
1 ¢ 1 z1 2z w
Hence B is reduced to 1 ;and Zypyr,) (A4, B) = 1
1 1
1 1

7

which is the centralizer of a matrix of type R;. (A, B) is a branch of type Rj, and there
are (q — 1)2¢ such branches.
1 V)
When C = (1 1 f)’ ¢ # 0: Here Z = 1 2z3|. With these, Equation 7.1
1
becomes:

(b bran)=( % th+bim)
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So, we have b} = b;, and we can choose y; so that b, = 0. Thus, on equating the above
equation, with by replaced by 0, we get that y; = %123; and from Equation 7.2, we have
dy = dy, and d), = dg, and thus Equation 7.3 boils down to x1d; + b?lzg.dl = bywy + db,.
We first look at the case, when b; # 0. Then choose ws so that a), = 0. So B reduces to

1 by I 1 Mz3 w2 T2
1 dl 1 z9 w1 b
A==1 Ao=
1 ¢ dy],and ZUT5(Fq)(A, B) = 1 23 Aozg + puxy | | i
1 1 "
1 1

This is isomorphic to a centralizer of canonical form of type A4. So (A, B) is a branch of
type A4, and there are ¢?(q — 1)? such branches.
When b; = 0. Then we have y; = 0. Hence Equation 7.3 becomes z1d; + as = ab.

1
1 dy
When d; # 0, choose x; so that a), = 0. B is reduced to 1 ¢ dy|, and
1
1
1 Y2 T2
1 Z9 Wi
ZUT5(Fq)(A, B) = 1 23 ws , which is the centralizer of a matrix of type
1
1

\ J
Ry. Thus (A, B) is of type Ry, and thus there are g(¢ — 1)? branches of this type.
When d; = 0, and dy # 0. Equation 7.3 ends up becoming al, = ag, and B is reduced

1 az 1 = Y2 T2
1 1 22 Wi
to 1 ¢ dy |, hence Zypyr,) (A, B) = 1 23 wo . Thus (A4, B)
1 1
1 1
is a branch of type A4, and there are g(¢ — 1)? such branches.
> 1 21 zZ9
When C = ( 1 c12>, ¢ # 0: Here Z = 1 MXpz1 |, where \y = 2—? Thus,
1

from Equation 7.1, we have: ( cix1 +b1 conn +b2) = ( by Aozb) —|—b’2). So, we
choose x; so that by = 0. Similarly, we choose y; such that b, = 0. Thus, on re-
placing by, and by by 0 in the above equation, we get that 1y = 0, and y; = 0.
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dy + z1ds dll + crwe

Equation 7.2 becomes ds = d) . Thus d), = da, and we can
0 0
choose wy so that di = 0. So we are left with dy # 0. With z; = y; = by = 0,
1 a9
1 C1
Equation 7.3 becomes a), = ag. Hence B is reduced to 1 ¢ do|, with
1
1
(1 Y2 @2
1 Z1 z9 w1
Zuryry) (A, B) = L Xzt Mz | [do=2M= Ccl—f , which is a central-
1
1

(
izer of type Ry. (A, B) is a branch of type Ry, and there are ¢(q — 1) branches of this

type.
Case a1 # 0: We look at the various types of C as our subcases.
When C = I3: Here Equation 7.1 becomes:

(a1 by b2> = (a1 by +aiz1 b+ bz + z2a1> )

Using a suitable z1, we can make b} = 0, and using a suitable z2, we can make b, = 0.

Thus, on replacing by and b/, by 0 in the above equation, we have z; = z3 = 0. Hence with

dy d}
this, Equation 7.2 becomes | dy | = al’2 . Equation 7.3 is reduced to as+x1di +y1ds =
0 0
1 aj
1 dq
a%+ajwy. So we choose wy such that a, = 0. Thus B is reduced to 1 ds |,
1
1
I = y1 v x2
1 AT1 + iy
and Zyyw,) = 1 23 wa | A= %, w= Zl—f , which is the central-
1
1

izer of type By. (A, B) is thus a branch of type By, and there are ¢%(q— 1) such branches.
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When C = <1 1 ;) ,c¢ # 0: Equation 7.1 becomes:

<CL1 b1 by + cxl) = <CL1 a1z + bll a1z + b/123 + b/2) .

Choose z; and 2z such that b} = b, = 0. Again, like in the previous case on replacing by
and by by 0 in the above equation, we have z; = 04 and 2z = éajl. From Equation 7.2,

we get dj = dy amd djy = dy. Equation 7.3 is reduced to z1d; + y1de + aa = wiag +

1 aq
1 & d1
ah. We choose wy such that af), = 0. Thus B is reduced to 1 ds |, and
1
1
Lz oy oy Z2
1 A1x1 At + py
ZUT5(Fq)(A7 B) = 1 z3 w2 ‘ )\1 = é,)\g = Z—i,u = Z—f . This
1
1 Vs
is of type By. Hence (A, B) is a branch of type By, and there are (¢—1)2?¢? such branches.
1 21 2
When C = <1 i 1) ,c£0: Z = 1 . Equation 7.1 becomes
1

<a1 cy1 + by bg) = <CL1 a1z1 + b/l a1zo + b/2)

Choose z; such that b} — 0, and choose z2 such that b, = 0. So, on substituting by
and by, with 0 in the above, we have z; = ﬁyl, and z9 = 0. Thus Equation 7.2 is

di + y1da cws + dj
reduced to da = d . We have di, = dy. Choose wy so that dj = 0.
0 0
Equation 7.3 is reduced to y1da +ag = ajw; +af. Choose wy such that af, = 0. Thus B is
1 a L ;1 1 y2 m
1 ¢ L Zn Ly,
reduced to 1 dy |, with Zypyr,) (A, B) = 1 g—fyl ,
1 1
1 1

which is a centralizer of a matrix of type Rs. So (A, B) is a branch of type R3, and there

are (g — 1)2¢ branches of this type.
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1 V)
When C = (1 1 (l:> ,c# 0: Here Z = 1 23 |. Equation 7.1 becomes
1

(al by ba + Cyz) = (a1 by ayze+ bz + b’2) .

We have b, = b;. we can choose y2 such that b, = 0. Thus, on replacing by by 0 in
b 25, And Equation 7.2 ends up giving us

the above equation, we have yp = 2o + 2

" = di, and d, = dy. Thus Equation 7.3 stays as it is. Since a; # 0, we choose

1 aj bl
1 dy
wy so that ay, = 0. B is therefore reduced to 1 ¢ do|. Zyryw,)(A B) =
1
1
([1 a1y Doyt bz T2
1 Z2 %331 + Z—fyl — %w2
1 z3 wWo , which is that of type By. (A, B)
1
\ 1
is of type By, and the number of branches is ¢>(q — 1)2.
1e 1 Al zZ9
When C = ( 1 012> ,c1,c2 # 0: Here Z = 1 i—izl . Equation 7.1 becomes:
1

(a1 by +cixp by + Cle) = (al a1z1 + b/l a122 + bllz—le + bé) .

Choose z; such that b = 0, and choose 2z such that by = 0. On replacing by and by
by 0 in the above equation, we see that z; = %xl, and zo = z—iyl. From Equation 7.2,
we have dj + g—iznldg = cqwy + dj, and d;, = ds. So we choose wy such that dj = 0.
Equation 7.3 becomes: yids + as = wia; + a}. Choose w; such that af, = 0. Thus B

1L a Loz oy oy 2
1o 1 Sz 2y Ly
is reduced to 1 ¢y do |, and Zypr,) = 1 &g Z—?gjl ’
1 1
1 1

which is the centralizer of a matrix of type Rs. Thus (A, B) is branch of type R3, and
there are g(¢ — 1)3 such branches. Hence, adding up the branches of each type, we get

the numbers as mentioned in the statement of this proposition. O

Proposition 7.3. An upper unitriangular matriz of type Ay has q* branches of type As,

2¢%(q? — 1) branches of regular type Ry, and q(q*> — 1)? branches of reqular type Ro.
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1 a
Proof. Let A = 1 ,a # 0 a matrix of type Ay. The centralizer Zyr, (A)
1
1
1 T1 T2 X3 1 T1 T2 X3
I yo 1w I yo 1w
of Ais 1 20 21| |.@iyvi,zi €Fyp.Let X = 1 2z 2z | bean
1 1
1 1
1 a1 G a3 1 A
1 by by be 1 b/O /1 /2
element of Zypyw,)(A). Let B = 1 ¢ ¢ |,and B = 1 ¢
1 1
1 1

be a conjugate of B by X. Thus equating X B = B'X gives us a} = a1, by, = by, ¢, = co,
¢} = ¢1, and the following equations:

z1co + ag = a12p + a
zicl +ag = a1z + aj
Yoco + by = b} + bj20
yoc1 + ba = by + b(z

We consider two cases when (aq,bg, co,c1) = 0 and when (ay, by, ¢, c1) # O.

Case: (a1,bo,co,c1) = 0. In this case, we get ag = )y, az = a4, by = b} and by = bj,.
Therefore Zyryw,) (A, B) = Zyryw,)(A). So (A, B) is a branch of type Ag, and there are
¢* branches.

Case: (ai,bg,co,c1) # 0. First we consider that ¢; # 0. We choose x1 and yg in such
a way that we get ag = bg = 0. Now if (a1,bp) = (0,0), then by simple calculations, we
get Zyry(r,) (A, B) is a commutative group of size q%. Thus (A, B) is of regular type Ry,
and there are ¢3(q — 1) branches of this type. If we consider that case when at least one
of a; and by is non-zero, then we can choose zy suitably so that we get one of as or by
equal to zero. By routine check, we get that ZUTs(Fq)(A7B) is a commutative group of
size ¢°. Thus (A, B) is of regular type Ry, and there are (¢> — ¢?)(q®> — 1) branches of this
type.

Now we consider that ¢; = 0 and ¢y # 0. We choose z; and yg in such a way that we
get az = by = 0. Now if (ay,bg) = 0, then by simple calculations, we get Zyrr,) (4, B) is
a commutative group of size ¢®. Thus (A, B) is of regular type Ry, and there are ¢%(q— 1)

branches of this type. If we consider that case when at least one of a; and by is non-zero,
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then we can choose z; suitably so that we get one of ag or by equal to zero. By routine
check, we get that Zyryr,)(A, B) is a commutative group of size ¢°. Thus (A, B) is of
regular type Rg, and there are (¢% — q)(¢? — 1) branches of this type.

Next we consider when ¢; = ¢g = 0 and bg # 0. We choose zp and z; in such a way that
we get by = by = 0. Now by simple calculations, we get ZUTS(F(I)(A, B) is a commutative
group of size ¢5. Thus (A, B) is of regular type Ry, and there are ¢®(q — 1) branches of
this type.

Finaly we consider when ¢; = ¢y = bg0 and a; # 0. We choose zy and z; in such a
way that we get az = ag = 0. Now by simple calculations, we get Zyz(r,)(4, B) is a
commutative group of size ¢°. Thus (A, B) is of regular type Ry, and there are ¢?(q — 1)
branches of this type.

Therefore a matrix of type Ay has ¢* branches of type Az, 2¢?(¢®> — 1) branches of
regular type Ry, and ¢(q? — 1)? braches of regular type Rs.

O
Proposition 7.4. An upper unitriangular matriz of type As has
Branch | No. of Branches || Branch | No. of Branches
As 7 R |q(@+q—1)(q—1)
Ay q9(¢* — 1) Ry q(¢®> = 1)(¢ - 1)
B ¢*(q—1) Ry ¢*(q—1)°
Bs ¢*(q — 1) UNT ¢*(g —1).
1 2o o1 Azo 3
It has a new type branch, named UN'Ty, with common centralizer { ( ! P v ) }
1 2
1 a
1
Proof. Let A = 1 ,a # 0 a matrix of type As. The centralizer Zy7,(A)
1
1
11‘0 r1 T2 X3 11‘0 r1 T2 I3
L v v1 vy L v vi v
of Ais 1 |, xi,yi,wo € Fg p . Let X = 1 be
1 2z 1wy
\ 1 ) 1
1 ap a1 a2 as 1 af a) a, af
1 by b1 b 1 by b b
an element of Zy7, g,y (A). Let B = 1 ,and B’ = 1
1 dy 1 d,
1 1
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be a conjugate of B by X. Thus equating XB = B'X gives us af, = ag, by, = by, b} = b1,
dy = dp, and the following equations:

a1 + xoby = aopyo + a’l
ag + xoby = apyr + CL/Q

a3 + wobo + xody = agys + (1/220 + ag
by + y1dy = zoby + by

We consider two cases when (ag, by, b1, dy) = 0 and when (ag, by, b1,dp) # 0.

Case: (ag,bo,b1,dyp) = 0. In this case, we get a} = a1, ab = ag, by, = by, and
as + xoby = agzo + dj.

If (ag,b2) = 0, then we get b3 = bs. Therefore Zyp,(r,)(A, B) = Zyryw,)(A4). So
(A, B) is a branch of type A3, and there are ¢? branches. Now we consider that as # 0.
In this case, we can choose wq in such a way that we get ag = 0. By routine check, we get
Zyry(r,) (A, B) is a group of order q" and (A, B) is the type B3, and there are ¢%(¢ — 1)
branches.

If we consider as = 0 and by # 0, choose x( in such a way that we get ag = 0. By
routine check, we get Zyrr,) (A, B) is a group of order q" and (A, B) is a branch of type
Ay, and there are ¢(q — 1) branches.

Case: (ag, bg,b1,dp) # 0. First we consider that ag # 0. In this case, we can choose
90, y1 and yo in such a way that we get a1 = a2 = ag = 0 and by + %xo = zob1 + b).
Now if b = 0, then we get by = by. By routine check, we get Zyr ) (4, B) is a group
of order ¢® and (A, B) is a branch of type Bs, and there are ¢®(q — 1) branches. On the
other hand if by # 0, then we choose zy in such a way that we get by = 0 By routine
check, we get ZUT5(Fq)(A, B) is a commutative group of order ¢* and (A, B) is a branch
of regular type Rs3, and there are ¢?(q — 1)? branches.

Now we consider that ag = 0 and by # 0. In this case, we can choose x( in such a
way that we get a; = 0 and this implies g = 0. Thus we get by = bf, and the following
asz + xody = aszg + ag
bs 4+ doyr = zob1 + b/2
by = bl. By routine check, we get ZUT5(Fq)(A, B) is a group of order ¢” and (A, B) is a

equalities: Now if (dp,ag,b1) = 0, then we get ag = af and

branch of type A4, and there are ¢(¢ — 1) branches. If dy # 0, then we choose x5 and
y1 in such a way that we get ag = by = 0. By routine check, we get ZUTs(Fq)(A7B) is a
commutative group of order ¢° and (A, B) is a branch of regular type R, and there are
q*(q — 1)? branches.

If dg = 0 and ay # 0, then we choose wg in such a way that we get a3 = 0 and
this implies wp = 0. Thus we get by = b. By routine check, we get Zyp (g, (4, B) is a
commutative group of order ¢ and (A, B) is a branch of regular type R, and there are

q?*(q — 1)? branches.
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If dy = ag = 0 and b; # 0, then we get ag = a§ and we choose wy in such a way that
we get by = 0. By routine check, we get Zyr, (Fq)(A, B) is a commutative group of order
q® and (A, B) is a branch of regular type Ry, and there are (¢ — 1)? branches.

Now we consider that ag = bg = 0 and by # 0. In this case, we can choose zy and zg in
such a way that we get as = by = 0. In addition to this, if dy = 0, then we get a3 = aj.
By routine check, we get Zy7y(r,)(A, B) is a commutative group of order ¢® and (A, B)
is a branch of regular type Rs3, and there are ¢?(q — 1) branches. Now if we consider
dp # 0, then we can choose xy in such a way that we get as = 0. By routine check, we
get Zyry(r,) (A, B) is a commutative group of order ¢ and (A, B) is a branch of regular
type Ry, and there are q(q — 1) branches.

Finally we consider the case when ag = by = by = 0 and dy # 0, then we get as =
ah,a; = a) and we can choose y; and x5 in such a way that we get ag = by = 0.
By routine check, we get Zyryr,)(A, B) is a group of order ¢®, and Zyryr,) (A, B) =

1 x0 ©1 A\z0 23
{ ( ' v ) } As we have not seen this centralizer before, and This (A, B) is a

1 2o
1

branch of new type, which we call UNT; and there are ¢*(¢ — 1) branches. O

Proposition 7.5. An upper unitriangular matriz of type Ay has q* branches of type Ay,
@*(q* — 1) branches of reqular type Ry, and q*(q — 1) breaches of reqular type Rs.

1
1 a
Proof. Let A = 1 ,a # 0 a matrix of type A4. The centralizer Zyr, (A)
1
1
1 1 T2 X3 1 1 To X3
I v v v I v v v
of Ais 1 | ,zi,yi,wo € Fg p. Let X = 1 be
1 wo 1 wo
1 1
1 a; ay ag 1 ay ady af
1 by by b 1 by by b
an element of Zy7y (p,)(A). Let B = 1 ,and B’ = 1
1 dy 1 d,
1 1

be a conjugate of B by X. Thus equating X B = B'X gives us a1 = a} a,2 = daj, by = by,
b1 =V}, dy = dj, and the following equations:

as + xody = aywy + a4

b + doy1 = wob| + b}
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We consider two cases when (a2, b1, dy) = 0 and when (ag, b1, dy) # 0.

Case: (ag,bi,dp) = 0. In this case, we get ag = a4 and by = bj. Therefore
Zursry) (A B) = Zyryr,)(A). So (A, B) is a branch of type A4, and there are g
branches.

Case: (ag,b1,dp) # 0. First we consider that dy # 0. Now we can choose x2 and y;
in such a way that we get as = bs = 0. By routine check, we get ZUTs(Fq)(AaB) is a
commutative group of size ¢°. Thus (A, B) is of regular type R, and there are ¢*(q — 1)
branches of this type.

Now we consider that dg = 0 and as # 0. In this case, we can choose wq in such a way
that we get as = 0. By routine check, we get ZUTs(Fq)(A7B) is a commutative group of
size ¢5. Thus (A, B) is of regular type Ry, and there are ¢*(¢ — 1) branches of this type.

Finaly we consider when dy = a2 = 0 and b; # 0., now we can choose wqg in such a
way that we get by = 0. Again, we get Zyry(r,) (4, B) is commutative group of size 8.
Thus (A, B) is of regular type Ry, and there are ¢3(¢ — 1) branches of this type.

Therefore we get that a matrix of type A4 has ¢* branches of type A4, ¢3(¢*> — 1)
braches of regular type Ry, and ¢*(q — 1) braches of regular type Rs. O

Proposition 7.6. An upper unitriangular matriz of type As has:

Branch Type | No. of Branches || Branch Type | No. of Branches
As ¢ Ry *(g—1)
By 2q(q — 1) Ry a(g = 1)(¢* - 1)
Bg P(g>—1) UNT qlg —1)2.

It has the new branch UNTY already seen in previous case.

Proof. There are several canonical forms for a matrix in UT5(F,), of type As. We prove

1 a
1
this proposition for the canonical form A = 1 , where a # 0. We have:
1
1
1 a9 a1 as asg
1
ZU5(Fq)(A) = 1 by b . We can rewrite this centralizer subgroup as
1 Co
{ 1
1 ag t? C e UTy(F,) 1 ag t? 1 af t?
1 e (b13b2 ‘;)3) . Let B = 1 ,and B = 1
C C c’
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1z 'Y
be a conjugate in UTy of B. B’ = XBX ™!, where X = 1 . So, equating

Z
XB = B'X gives us a{, = ag, ZC = C'Z. So, we may take C to be the representative of

a conjugacy class in UT3(F), and we have the equation:
%
GO+ =W 2 +7

We rewrite this equation slightly to get:

(75) (0w ws) (C—T)+ (b b bs) = () B, )2
The cases:
1 zZ0 <1
When C = I3. Here Equation 7.5 becomes: <b1 by bg) = (b’l by bg) 1 2,
1
which gives us b] = by, and the following equation:
(7.6) by = b/g + zoby
(7.7) bs = bé + z1b1 + Zzblz

We have two subcases here: When b; = 0 and when by # 0.
When b; = 0 Equation 7.6 becomes b, = be, and Equation 7.7 becomes b3 = bg ~+ 29bs.
1 ag bg
1
When by = 0, we have b5 = b3. So B is reduced to 1 , and

1
Zysv,) (A, B) = Zy,r,)(A). Thus (A, B) is of type A5, and there are ¢? such branches.
When by # 0, in Equation 7.6, choose 2z so that b5 = 0. So, We have B reduced to

1 ag ba Iz y1 Y2 ys3
1 1
1 , and Zyyw,)(A, B) = 1 2 = . (A, B) is of type
1 1
1 1

7

B, and there are (g — 1) such branches.
When b; # 0: In Equation 7.6, choose zy such that b, = 0, and in Equation 7.6,
1 ag b1
1
choose z; such that b5 = 0. So B is reduced to 1 , and Zy, p,) (A4, B) =
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1 20 1 y2 ys
1
1 . (A, B) is a branch of type Bg, and there are g(q — 1) such
1 Z9
\ 1))
branches.

When C = (1 1 ;) ,c # 0: From Equation 7.5, we have b} = bj, and the following

following equations:

(7.8) by = b/2 + zob1
(7.9) Vo +cyr = b+ 21b] + 29b).

As ¢ # 0, choose y; so that b5 = 0.

Case: b1 =0
1 ag
1
We have by, = by. When by = 0, B is reduced to 1 c|,and Zyyw, (A, B) =
1
1
Iz Y2 Y3
1
1 20 = . (A, B) is of type By, and there are ¢(¢ — 1) such branches.
1 2
{ 1
1 a9 as
1
When by # 0, we have B reduced to 1 c|, and Zy,p,)(A,B) =
1
1
Iz %222 Y2 Y3
1
1 2z = . This centralizer is isomorphic to that of a new type, UNT1,
1 Z2
1

\ J
which we had come across earlier. There are g(q — 1)? such branches.
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1a0 al

1
When b; # 0. We can choose zj so that b, = 0. Here B is reduced to 1 c
1
1
( (1 = Doy us
1
and Zy,(p,) (A, B) = 1 z1 . Hence (A, B) is of type Bg, and there
1 zZ9
1
are q(q — 1)? such branches.
1 zZ0 %1
When C = (1 i 1) ,c# 0: Here Z = 1 . With this, Equation 7.5 becomes:

1

(b1 by + ciyq bg) = (b’l zob) + b 21t —|—bg). Now, as ¢ # 0, choose y; so that
by = 0.

1 ap bg
1
When b; = 0, we have b5 = bs3. Thus, B is reduced to 1 ¢ , and
1
1
I o Y2 Y3
1
ZU5(Fq)(A,B) = 1 2z =1 . By a routine check, we can see that this
1
1

centralizer is commutative, and of size ¢°. (A, B) is of type Ra, and there are ¢?(q — 1)

such branches.
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1a0 al

When by # 0, choose z1 such that 0, = 0. Thus, B is reduced to 1 ¢ ,

To LR Y2 Y3

. This centralizer is of size ¢*, and is

and ZU5(Fq)(A7B) = 1 20

commutative. Thus (4, B) is of type R3, and there are (¢ — 1)2¢ such branches.
1 Z1

WhenC:(11f>,C750: Here Z = 1 2z
1

Here Equation 7.5 becomes:

(b bo bstem) = (¥ 0y b+ mb +2bh).
We have b = by and b, = by, and choose y2 so that by = 0. Thus B is reduced

1 ag b1 0bo 1z 0 %21 + %22 Y3
1 1
to 1 , and Zy ) (A, B) = 1 21 | ¢. This
1 & 1 Z9
1 1
too is of type Bg, and there are ¢®(¢ — 1) such branches.
1 20 21
And now we have the last case: When C' = (1 1 z1i> ,c,d # 0: Here Z = 1 Az

1

where A = %l. Equation 7.5 becomes: <b1 bo +cy1 by + dyg) = <b’1 bl + zob) b + 210) + )\zobé).
We have b} = by, and choose y; so that b5 = 0, and y2 so that b = 0. Hence B is reduce

1 a b1 1 i) b?lZ(] %Zl Y3
1 1
to 1 ¢ , and Zyyp,) (A, B) = 1 20 21 . This cen-
1 d 1 )\Z()
1 1

tralizer is 4 dimensional, and commutative. Thus (A, B) is of type R3, and there are
(g — 1)2¢? such branches.

With this, we have no other cases to analyse. So from the calculations, we have:

e ¢? branches of type As.
e q(g— 1)+ q(q—1) =2q(q — 1) branches of type By.

e glg—1)+q(lg—1)2+¢*(q— 1) = ¢* — ¢* branches of type Bg.
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2(q — 1) branches of type Rs.
qlg — 124+ ¢*>(q¢ — 1)? = q(¢ — 1)(¢> — 1) branches of type R3, and
qlg —1)? branches of the new type UNTj.

7.2. Branching of type B. Now we look at the B types and decide its branching.

Proposition 7.7. An upper unitriangular matriz of type By has the following branches:

Branch | No. of Branches || Branch | No. of Branches
B ¢ Ry | (¢—1)*(*+q+1)
As 3¢* — 3¢ UNT, (q—1)2
Ry 2¢° —4q + 2 UNT, 2¢° — 2¢q
Ry |q(g—1)>*+2) | UNT3 (¢ —1)°
By ¢*(g—1)

We have seen UNTY earlier. There are two more new types here UNTy with centralizer

lzi y1 y2 @2

1z y1 y2 2 1 Mz1 z2 w

1 21 22 w1

1 Am and UNTs with centralizer 1 Doz %yl
1 :(:11 1 xll
1 a
1 b
Proof. A matrix of type By has the canonical form: 1 . We may take
1
1
t_> —
1 b a2 t b = (CLl bl bg)
a=b=1. Then Zyp,m,(A) = c d||Ceunymw,), (d1> . Let
= d2
al
_)
1 'h as 1 'Y 1 tl? a’
B = c 4|, x= 7Z W\, and B’ = o 7| = XBX~'. Then
1 1

XB = B'X leads to firstly ZC = C'Z, so we might as well take C' to be a conjugacy
class representative in UT3(F,), and Z, a centralizer matrix of C. We also get in 'y,

and d, aj = a1, and the following equations:

(7.10) <a1 b1 bz) + <961 Y1 yz) ¢ = (aﬁ by bé) Z+ (961 Y1 yz)
d1 w1 dll w1

(7.11) Z\do | + | we = d/2 +C | wo
ai I ai T

(7.12) as + x1dy +y1ds + yod1 = CL/Q + ajwy + bllwg + b'2x1
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We look at two main cases: a; = 0, and a; # 0.
Case a1 = 0: First we look at by = by = di = do = 0. Here Equation 7.10 re-
duces to (:nl Y1 yg) C = (3:1 Y1 yg), Equation 7.11 reduces to C (w1 W2 3:1> =

wy  Wa a:1>, and from Equation 7.12, we have af, = as.

When C' = I3, Equations 7.10 and 7.11 are void, and we have B = 1 ,

1
with Zyryw,) (4, B) = Zyryw,)(A). Thus (A, B) is of type Bi, and there are g such
branches.

When C = (1 1 ;) ,c¢ # 0, we have from Equation 7.10: c¢z; = 0. Hence 1 =

1 as
1 c
0. With this Equation 7.11 becomes void. So, we have B = 1 , and
1
1
1 Y1 Y2 T2
1 z1 z9 wq
Zyryr,) (A, B) = 1 z3 wo , which is the centralizer of a canonical form
1
1
of type As. (A, B) is a branch of type As, and there are ¢(¢ — 1) such branches.
1 21 2
When C = <1 1 1) ,c # 0, we have Z = 1 . From equation 7.10, with
1

this C, we get: (xl Y1 + cxy y2> = <x1 Y1 y2>, which leaves us with ;1 = 0.

w1 w1 + cws
Equation 7.11 becomes: [ wy | = Wy , thus we have ws = 0. So we have
(
1 Y1 y2 X2
1 Z1 k2 Wi
B = I5 + cEay + agEhs, with Zyryw, (A, B) = 1 , which is the

1
centralizer of a matrix of type R;. Thus (A, B) is of type R, and there are ¢(¢ — 1) such

branches.
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1 Z92
When C = (1 1 i:) ,c#0,7Z = 1 23 |. Equation 7.10 becomes: (xl Y1 cyp + yg) =
1
wy
(3:1 Y1 yg), which leaves us with y; = 0. Equation 7.11 becomes | wy +cx1 | =
T
w1
wy |, which leads to 1 = 0. So B = I5 + aaE15 + cF34, with Zyp ) (A, B) =
I
( (1 Y2 T2
1 Z9 Wi
1 23 ws , which is the centralizer of a matrix of type R;. (A, B) is a
1
1
branch of type R, and there are g(q — 1) such branches.

1 ¢ I 21 2
When C = 1 d]|,c1,e9 # 0, Z = 1 %zl . Equation 7.10 becomes
1 1

(3:1 cx1+y1 din —I—yg) = <:171 Y2 yg), which leaves us with 1 = y; = 0. Equa-

w1 + cws w1
tion 7.11 becomes Wo = | wo |, which leaves us with wy = 0. Hence B =
1 Y2 T2
1 21 2z w
I5 +azBy5 + cEaz +dEsy, and Zygyr,) (A, B) = 1 %21 , which is the
1
\ L))

centralizer of a matrix of type Ry. (A, B) is a branch of type R, and there are g(q — 1)2
branches.

When ((b1,b2), (d1,d2)) # ( ):

We start with C' = I3: Thus Equation 7.10 becomes (0 by bg) = (0 by bizs+ b’2)
We have b} = by, and thus by = b}, + byz3. First, when by # 0, we choose z3 so that
%, = 0. Thus, on replacing by by b, = 0 in the equation above, we have z3 = 0. So

0,0

di + z1dy d/l
Equation 7.11 boils down to ds = | dy |. So we have d) = dy. So, again,
0 0

over here, when dy # 0, choose z; such that dj = 0. With these, Equation 7.12 be-
comes y1dy + ag = ab + weby. So, choose wy such that af, = 0. So, B is reduced to
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Is + b1 E13 + do Ess, and ZUT5(Fq)(A= B) =

1

T

Y1

1

d
Y
z1
1

. This central-

7
izer is isomorphic to that of the new type UNT) (as seen in Proposition 7.4), via the

isomorphism that maps generators to generators, and extended product-wise.
When b; # 0, and da = 0, we have d} = dy, and Equation 7.12 becomes z1d;+ =

ah + byws. So, we choose wg such that a), = 0. So B is reduced to

and Zyry(w,) (A, B) =

1

1
1

1
zZ1
1

Y2
)

1

T2

wq

dy

b L1
Tl

1

b1
dy

. Thus (A, B) is of a new type, which

\ J
we call UNTs, and there are q(q — 1) such branches.
When b; = 0, b, = by. First, when dy # 0, we choose z; so that dj = 0, and hence
Equation 7.12 becomes ag+y1dy = abz+baxz1. As dy # 0, choose y; so that a, = 0. Hence
(

1 bg 1 I Z—le Y2 T2

1 1 Z9 Wi

B is reduced to dy |, and Zygyr,) (A, B) = 1 23 we
1 I =

1 1

\
This too is of type UNTy, and there are ¢(¢ — 1) such branches.
When dy = 0, we have d] = d;. So Equation 7.12 looks like: ag + z1dy = ab + x1bs.

When by = dyi # 0, we have a), = ag, and B is reduced to

1

bg a9
by
1 , and
1
1

Zursvy) (A B) = Zyryr,)(A). Thus (A, B) is of type By, and there are g(¢ — 1) such

branches.
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1 do
When by # dy, choose an x1 such that al, = 0. So, B is boiled down to 1 ,
1

1
( Y1 Y2 x2
1 21 2z wy

and Zyryr,) (4, B) = 1 23 wo , which is the centralizer of a matrix of

1

1

type Az, and there are (¢ — 1) such branches.
When C = (1 1 ;) , ¢ # 0: Equation 7.10 becomes: (0 b by + C:L'1> = (0 by bz + b’2)
We have 0] = by, and as ¢ # 0, we can choose 1 so that b}, = 0. So, on replacing by by

0 in the above equation, we have 1 = %123.

dy + dozy dj + bizs
Then from Equation 7.11, we have da = df . First, when b; # 0,
0 0
we choose a z3 so that dj = 0. With these, Equation 7.12 becomes: as+y1ds = ab+biws.
1 b1

1 c
As by # 0, choose wy so that a}, = 0. So B is reduced to 1 ds |. When

1

1

1 L2y oy 2

1 Z21 Z9 wq

d2 # 0 Zyryw,) (A, B) = 1 £z By

1 %221

1 /

centralizer of any matrix in UT5(F,), hence (A, B) is of a new type UNTj3, and there

1 Y1 Y2 T2

1 Z1 k2 wq
are (¢ — 1)3 such branches. When dy = 0, Zursp,) (A, B) = 1

. This isn’t isomorphic to the

Hence (A, B) is of type Ry, and there are (¢ — 1)? such branches.
When b; = 0, we have z1 = %Zg =0, we have d} = dy + z1d2. When dy # 0, choose

z1 such that dj = 0. Equation 7.12 becomes as + y1da = a),. Choose y; so that afy = 0.
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1 1 Y2 T2

1 c 1 Zy Wi

So, B is reduced to 1 dy |, and Zygy(x,) (4, B) = 1 23 ws
1 1

1 1

(A, B) is of type Ry, and there are (¢ — 1)? such branches.
When b; = 0, and dy = 0. Then d] = dj, which is # 0 Then from Equation 7.12,

1 as
1 C d1
we simply have afy = a2, and B is reduced to 1 - Zyryr,)(A,B) =
1
1
1 Y1 y2 X2
1 Z1 29 Wi
1 23 wo . (A, B) is of type Ag, and there are ¢(q — 1) such branches.
1
1 Vs
1 Z1 29
When C (1 1 1) ,c#£ 0 Z = 1 . Equation 7.10 becomes (0 b1 +cx1 b-— 2) =
1

(0 b} b’2> We get that b, = by. We choose z1 so that ) = 0. Thus, on replacing
b1 by 0, and equating the above equation, we have ;1 = 0. Equation 7.11 becomes
di + z1dy cwy + d/l

da = df . Again, over here, we choose ws such that dj = 0. Now, on
0 0
substituting by with 0, we have wy = d—clzl. So, Equation 7.12 becomes ag + y1da = d.
1 bo
1 ¢
When dy # 0, choose y; such that af, =. So B is reduced to 1 ds |, and
1
1
1 Y2 2
1 21 29 wi
Zyryr,) (A, B) = 1 d??zl . (A, B) is therefore of type Ry, and there
1
1

are q(q — 1)? such branches.
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When dy = 0, and by # 0. Then Equation 7.12 becomes ay = ag. So, B is reduced to

1 by a2 1 Y1 Y2 2
1 ¢ 1 21 29 wy
1 - Zuryry) (A, B) = 1 . So (A, B) is of type
1 1
1 1
Ry, and there are ¢(q — 1)? branches of this type.
1 z9
When C <1 1 f) ,c£0: Z = 1 z3|. Equation 7.10 becomes (O by b2+ cyl) =
1
(O by bz + bé) } = by;. Choose y; such that b, = 0. So, on substituting by with
di + dozy dll
0, we have y; = %23. Equation 7.11 becomes da = | d) + cx1 |. Choose z1
0 0

such that d, = 0. So d} = d;. Hence, on replacing ds by 0, we get 7 = 0. Hence,
Equation 7.12 becomes as = a), + bywy. When by # 0, choose wsy such that a;, = 0. Thus,

1 b1 1 Lo yo

1 1 Zo Wi
B is reduced to 1 ¢ dy|,and Zypyr,)(A,B) = 1z
1 1

1 1

So (A, B) is of type Ry, and there are q(q — 1)? such branches.
When b; = 0, and dj = di, we get from Equation 7.12, we get a}, = ay. Hence B is

1 as 1 Y2 T2
1 1 Z2 W1
reduced to 1 ¢ dy |, and Zypr,) (A B) = 1 z3 wy . (A,B)
1 1
1 { 1 )
is of type Ry, and there are ¢(q — 1)? such branches.
1 21 zZ9
When C <1 1 zli) ,¢,d # 0: Here Z = 1 %21 . Equation 7.10 becomes
1

(0 bitern bo+dyp) = (0 b b+ 2eabi). Choose zy such that b = 0, and then
choose y1 such that b, = 0. So, on substituting by with 0, we get #; = 0. Then,
di + da2
on substituting b with 0, we get y; = 0. Equation 7.11 becomes da =
0
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dll + cwa

d) . We have d, = dy # 0, choose wy such that dj = 0. Thus, with these
0
1 as
1 ¢
Equation 7.12 becomes a, = as. So B becomes 1 d dy | Zynyw,)(A B) =
1
1
1 Y2 X2
1 221 29 wy
1 2z d?zzl . (A, B) is of type Ry. There are q(q — 1) such branches.
1
1

When a1 # 0: We now fook at the branches, where the entry a; # 0.

When C = I3: Equation 7.10 becomes (al b1 b2> = (al ajz1 + b, arzo+ bz + b’2>
As ay # 0, choose z1 such that ) = 0. Then choose z9 such that b, = 0. Now, when we
replace b1 and by by 0 in the above equation, we get z; = zo = 0. Then Equation 7.11

dy d}
becomes | dy +ayjz3 | = [ d, |. Choose z3 such that dy = 0. Equation 7.12 becomes
al aq
as + x1dy + a1y2 = afy + aqwy. Choose w; such that af, = 0. So, B is boiled down to
1 a I 21 y1 w2 x2
1 dl 1 Y2 + Z—iaq
1 , and Zypyr, (A4, B) = 1 Wy . Now, we
1 ay 1 I
1 1

see that this centralizer is of size ¢°, hence we expect it to be a commutative one. But
it isn’t. We also know that no matrix in UT5(F,) has a non-commutative centralizer of
size ¢°, and it is isomorphic to that of the type Bg. Thus, (A, B) is of type Bg, and there
are q(q — 1) such branches.

When C = (1 1 i) ,¢ # 0: Equation 7.10 in this case is

<CL1 b1 by + cxl) = <CL1 a1z + bll a1z + b/123 + blz) .

Choose z1 so that b} = 0. Then, we choose 23 so that b, = 0. Thus, on substituting b; and
dy
bsy with 0, we get 21 = 0, and 2z = a—clajl. Then Equation 7.11 becomes | do + 23a1 | =

ai
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di
dy | . Choose z3 such that dy = 0. Equation 7.12 becomes ag + z1d; + a1y2 = ab +

ai

1 aj
1 C d1
ajwy. Choose w; such that a), = 0. So B boils down to 1 , and
1 a1
1
Lz oy v Z2
1 Loy Dgy 4y,
Zuryry) (A, B) = 1 Wa . This too is a branch of type Bg,
1 T
1
and there are ¢(¢ — 1)? such branches.
1 21 2z
When C = <1 i 1) ,c# 0: Here Z = 1 . Equation 7.10 in this case is
1

<a1 b1 + cxy b2> = <a1 a1z1 + bll a1zo + b/2) .

Choose z1 so that b} = 0, and choose z3 so that b, = 0. Thus, on substituting b; and by
di + éﬂ?ldg

with 0, we get z; = %:pl, and zo = 0. Then Equation 7.11 becomes ds =
a
dll + cwsy
d . So d, = ds, and we choose ws such that dj = 0. Equation 7.12 becomes
ay
as + yids + a1y2 = afy + aqw;. Choose wy such that a4, = 0. So B boils down to
1 a Iz oy oy p)
1 ¢ I | Ly1 +
ds |, and Zyryw,) (A, B) = 1 Ly . This
1 a1 1 T
1 1 )
is a branch of type R3, and there are ¢(¢ — 1)? such branches.
1 Z9
When C = <1 1 (l:> ,c# 0: Here Z = 1 23 |. Equation 7.10 in this case is
1

<a1 b1 by + cyl) = (al b/l a1z + b/123 + b/2) .
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We get b} = b;. Choose y; so that b, = 0. Thus, on substituting bs with 0, we get

di + a129 dll
y1 = Lz + %123. Then Equation 7.11 becomes | dy + a123 dh + cxy | . Choose
ai a
zo such that dj = 0, and z3 such that d;, = 0. Equation 7.12 becomes as + a1y2 =
1 aj bl
1
ah+bywy +aywy. Choose wy such that a, = 0. So B boils down to 1 ¢ ,
1 aq
1
1oz Bay oy T2
1 Y2 — 2—11@
and ZUT5(Fq)(A, B) = 1 éxl Wo . This is a branch of type
1 T
\ 1 J
R3, and there are ¢(q — 1)? such branches.
And, lastly:
1 21 2
When C = (1 1 cll) ,¢,d # 0: Here Z = 1 %zl . Equation 7.10 in this case is
1

(a1 by +cx1 by + dy1> = (a1 a1z + bll a1z + %lb/121 + b,2> .

= 0.
Then Equation 7.11 becomes

Choose x1 so that ) = 0, and choose y; so that b} Thus, on substituting
ar

by and by with 0, we get vy = 2, and y1 = 2.

dy + z1da + z2a1 d} + cws
do = d . So d, = ds, and we choose ws such that dj = 0.
ai ai
Equation 7.12 becomes a2—|—%22d2+a1y2 = af+ajwy. Choose wy such that a, = 0. So B
1 ay 1 %2 Hz oy )
1 ¢ 1 Z1 22 %222 + Yo
boils down to 1 d dy|,and ZUT5(Fq)(A, B) = 1 %221 + 2y
1 aq 1 a?ll’l
1 1 )
This is a branch of type Rs3, and there are ¢(q — 1) such branches.
O

Proposition 7.8. An upper unitriangular matrixz of type Bs has
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Branch | No. of Branches Branch | No. of Branches
By ¢ R (¢ —1)%¢?
A4 ¢ —q UNTy | q(q—1)
By 7> —q UNT, ¢ —q
R | (@~ +q-1)| Bs ¢ — ¢
Ry (¢ —1)(° —q)
1 1
1 1
Proof. We may take A = 1 . The first of the two canonical forms men-
1
1
1 C1 C9 bl dl
1 C3 b2 d2
tioned for a matrix of type Bs. For this A, we have Zy7y g, )(A4) = 1 c1
1 a
1
%
o7
We rewrite such a matrix as . “ , where C' € UT3(F,), and ¢; is the (1,2)%
a
1
b d
entry of C, and ? =t , and 7 =™
bo do
- =+ =
o b d o Vod
0 C1 / 0 C/l .
Let B = , and B' = be a conjugate of B by X =
1 a 1 d
1 1
z 70
. “U| Then from XB = B'X, we have ZC = C'Z. Thus, we can C to be
x
1

a conjugacy class representative in UT3(Fy), and Z € Zyp,r,)(C), and we also have

L)
(7))

a’ = a. With this, we have the following equations

b 4
- o(7) - con(?)
W

(7.14) Z (E) + (?) = (C—1) <21>
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We first look at the case ? = 6>:

When a = 0: Here, Equation 7.13 becomes (C — I3) (g) =

o O O

When C' = I3: Here Equation 7.13 becomes void, and Equation 7.14 becomes
di + z1ds dll

do = | dj
0 0
1 dq
1
When dy = 0, we have dj = d;. Thus B = 1 , and Zyryr,) (A, B) =
1
1
Zyrs(r,)(A). So (A, B) is a branch of type Bg, and there are g such branches.
1
1 da
When dy # 0, choose z; so that dj = 0. Then B is reduced to 1
1
1
1 Zy Y1 wy
I z3 y2 we
Hence ZUT5(Fq)(A, B) = 1 , which is the centralizer of a matrix
1 =z
1

\ /
of type Ay. So (A, B) is of type Ay, and there are (¢ — 1) such branches.
1

[

When C = ( L )c # 0: Here too, Equation 7.13 stays void. So, we directly look

di + z1ds dll +c2
at Equation 7.14, which boils down to: do = d . We have d, = ds.
0 0
We look at two cases here:
1 C dl
1
When dy = ¢, we get dj = dj, and thus B is reduced to 1 , and
1
1

Zyryry) (A B) = Zyryr,)(A). (A, B) is of type Bz, and there are ¢(q—1) such branches.
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1 dsy
When dy # ¢, choose z; such that dj = 0. Thus B boils down to 1 ,
1
1
(1 Zy Y1 wi
1 z3 y2 wo
and Zyryr,) (4, B) = 1 . (A, B) is of type A4, and there are
1 =z
1
(q — 1)? such branches.
1 VA )
When C = (1 i 1) ,c # 0: Here Z = 1 . From Equation 7.13 we have
1
0 ¢ O Y1
Yo | = ﬁ We have cys = 0, thus yo = 0. Equation 7.14 becomes:
dy + z1dg + zoc dll + cwsy
do = df . Choose wy such that di = 0. Thus B is reduced to
c c
1 ¢ 1 21 2 w1 w1
da 1 zo + dfzq
1 c |, and Zyryw,) (A, B) = 1 z1 . (A,B) is
1 1 T
1 1
of type Bg, and there are (¢ — 1)g such branches.
1 29
When C = <1 1 f) ,c # 0: Here Z = 1 z3|. In this case, Equation 7.13
1
d1 ,1
stays void. So we directly jump to Equation 7.14. We have | do | = | d} |. So we have
1 dy 1 Zo Y1 wi
1 ¢ da 1 23 yo wo
B = 1 ;and Zyqyr,) (A, B) = 1 . Hence (A, B)
1 1 =
1 1

is of type A4, and there are ¢?(q — 1) such branches.
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1 Z1 z9

d
1 2251

1
CY2

When C = (111;),0,07/ # 0: Here Z =

Equation 7.13 becomes

6>. Thus yo = 0

dy + z1do + c2o
. From Equation 7.14 we have
0

do + z1d
dll + cwo

d,2+d21
1 c

c
). Hence d, = da, and choose wy such that dj = 0. So B boils down

)
1 21 2 wn w1
do

1 %Zl 2o + %Zl
C s and ZUTs(Fq)(AvB) = 1

21 . (A,B) is
1 1 T
1 1
of type Bg and there are (¢ — 1)2¢ such branches

bfseries a # 0: We are still dealing with ? = ﬁ here.
Y1 0

(C = 13) | yo 0

to

So Equation 7.13 becomes
dy Y1 dy

. And Equation 7.14 becomes: Z | do | + a | 32 dy | +

C1 0
wq
(C—I3) | wo
When C = I3: Equation 7.13 becomes void, and from Equation 7.14, we have
di + z1dg + ayy dll

do + ayg d/2

Choose y2 and y; such that, d), and d} become 0. Hence
0

1 21 2 w1
1 1 z3 w2
1 , and Zypyr,)(a,b) = 1 21 . (A,B) is of
1 a 1 =z
1 1
type By, and there are ¢ — 1 such branches
When C = (1 1 (1:) ¢ # 0: Here also, Equation 7.13 remains void. Equation 7.14 be-
dq1 + zoda + ayy dj +cz
do + ays d/z

. Choose y3 and y; so that di, = d} = 0. Thus
0 0

comes:
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1 21 22 21w
1 1 z3 w2
B is reduced to 1 , and Zyryr,) (4, B) = 1 z1
1 a 1 x
1 { 1
(A, B) is of type By, and there are (¢ — 1) such branches.

When C = (1 i L) c # 0: From Equation 7.13, like we saw before, yo = 0. Thus

dy + z1da + z1c + ayy

d} + cws
Equation 7.14 boils down to da = da . We see that
c c
1 ¢
1 do
, = dy. Choose wy such that dj = 0. So B is reduced to 1 c |, and
1 aq
1
I z1 2 wn wi
1 20+ L2y + Ly
Zyryr,) (A, B) = 1 21 . (A, B) is of type Bg, and
1 T
1 Vs
there are (¢ — 1)?¢ such branches.
When C = (1 1 §> ,¢ # 0: Here, Equation 7.13 stays void, and Equation 7.14
di + ayy d/l
becomes | do +ays | = | dy |. Choose y1,y2 such that di = d, = 0. SO B is reduced to
0 0
1 1 z92 w1
1 ¢ 1 23 w9
1 , and Zyryr,) (4, B) = 1 . (A, B) is therefore
1 a 1 =z
1

of type Ry, and there are (¢ — 1)? such branches.

When C = ! 1 tli) ,¢,d # 0: Here, like earlier, from Equation 7.13, we get yo = 0.

di + z1de + zoc + ayy d} + cw
do + z1d =

= | dy + dz |. This leaves

Hence Equation 7.14 boils down to

c c
us with d, = dy, and choose y; such that di = 0. So we have B boiling down to

91



1 c 1 Z1 Z9 g’(UQ — 322 — le w1
1 d  dy 1 4z wy
1 C and ZUTs(Fq)(Aa B) = 1 21
1 1
1)3

1 a 1
(A, B) is thus, of type Bg, and there zge q(q_)— such branches.
Now we look at what happens, when b # 0.
b1 + z1ba bll
When C = I5: Subcase a = 0: From Equation 7.13 we have by = | b
0 0
When by # 0, we choose z; such that ) = 0. Thus replacing b; by 0 in the above
dy d}
equation, we obtain z; = 0. Hence, Equation 7.14 boils down to | dy | = dé + xbsy
0 0
1 dy
ba
We have d} = d;. Choose z such that d; = 0. So B boils down to 1 ,
1
1
1 Zy Y1 wi
1 z3 y2 wo
and Zyryw,) (4, B) = 1 (A, B) is of type R;, and there are

q(q — 1) such branches.
When by = 0, we have to look at by # 0, and we have b} = b;. Equation 7.14 becomes

di + z1dy dll + xby
do = d So dy) = da, and choose = such that dj = 0. Hence
0 0

1 b1 1 21 20 y1 wy

1 do 1 23 y2 wo
B = 1 , and Zyyr,)(4,B) = 1 21 Thus

1 1

1 1

(A, B) is of the new type UNT5, and there are (¢ — 1)g such branches.
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Subcase a # 0, and bg # 0: In Equation 7.13, we choose z; to get rid of b}, and like

di + ayq dll
before z; = 0. Equation 7.14 becomes: | dy+ays | = | d)+ xby [. Choose y; such
0 0
1
1 bo
that dj =0, and z such that d;, = 0. So B = 1 ; and Zyryr, (A, B) =
1 a
1
1 zZ9 w1
I z3 y2  wo
1 . Thus (A, B) is of type Rs, and there are (¢ — 1)? such
L 5y
\ L)
branches.
Subcase a # 0 and by = 0. Here we have b} = by # 0. From Equation 7.14
di + z1dg + ayy dll + b1z
we have ds + ays = df Choose yy such that d), = 0, and z
0 0
1 b1
1
such that d] = 0. Thus B is reduced to 1 , and Zyryr,)(4, B) =
1 a
1
.
1L 2oz 1w
1 z3 w2
1 z1 . (A, B) is of new type UNT}y, and there are (¢ — 1)? such
L g
1
branches.

When C = (1 1 ;) ,¢ # 0: Here Equation 7.13 stays as it was in the previous case,

b1 + 2109 bll
i.e., b2 = b/2
0 0
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When by # 0, choose z; so that b} = 0, and on replacing by with b} = 0 in the above

dy + ay: d}
equation, we get z; = 0. Hence, Equation 7.14 becomes: | dy+ ays | = | dfy + by
0 0
We can choose x such that dy = 0.
1 C d1
1 b
Subcase a = 0. We have in this di = d;. B reduces to 1 , with
1
1
1 Zo Y1 w1
I z3 y2 we
ZuryFy) (A, B) = 1 . So, (A, B) is of type Ry, and there are
1
1

q(q — 1)? such branches.
Subcase a # 0. Here, in addition to getting rid of dj, we choose y; such that dj = 0.

1 c 1 29 w1
1 by I z3 y2 wy
So, B reduces to 1 , With Zyryw,) (A, B) = 1
1 a 1 %yg
1 1

So (A, B) is of type Ry, and there are (¢ — 1) such branches.
di + z1dy + ayp

When by = 0, here V) = by # 0. Equation 7.14 becomes da =
0
d) + bz + ez
df . Choose z so that dj = 0.
0
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Subcase a = 0. Here d), = dg, and B thus reduces to

I 21 22 ;1w

I z3 y2  wo

Zuryry) (A, B) = 1 21
1 d2bl_czl

1

and there are (¢ — 1)2¢ such branches.

. Hence (A, B) is of the new type UNT5,

Subcase a # 0. Here, choose yo such that d;, = 0. Hence B is reduced to

1 21 22

1 z3

with ZUT5(Fq)(A7 B) = 1
1

UNTy, and there are (g — 1)? such branches.

WhenC’:( 1

1c

w1
w2
Z1

a c
BT A

1

1) ,c # 0 : Here Equation 7.13 becomes

Hence (A, B) is of type

b1 + z1b9

ba =

0

by + cys

b
0

Choose yy such that ] = 0. We have b, = by # 0. On replacing b; with 0 in the above
di + z1dy + czo + ayg

equation, we get yo =

dll + cwsy
d/2 + xbg

cl, with ZUT5(Fq)(A7 B) =
a
1

(

\

1

21
1

of type R3, and there are (¢ — 1)2q such branches.
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%221. Equation 7.14 thus becomes

22

1
b2
C Zl

dy + %Zj

Cc

w1y
P )
21
a
c”l
1

. Choose wy such that d} = 0, and x such that d, = 0. Hence B is reduced to

. (A,B) is



by b,

When C = (1 1 i;) ,c¢ # 0 : Here Equation 7.13 becomes | by | = | b5 |. We have
0 0
dy + ay; d) + xby
by = b1, and by = by Equation 7.14 thus becomes | dy + ays | = | dy + xby
0 0
Subcase a = 0: When by # 0, choose x such that dj = 0. Thus, on replacing d; with
1 b1
1 ¢ bg d2
dy =0, we get x = 0, and thus d;, = dy. Hence B is reduced to 1 ,
1
1
1 zZo Y1 wi
1 z3 y2 wo
with Zyryw,) (4, B) = 1 . (A, B) is of type R;, and there are
1
1

(q — 1)%q? such branches.
When b; = 0, we work with by # 0. Choose z such that dj, = 0, and with this on
replacing dy with d, = 0, we have x = 0, which leaves us with d} = d;. B is reduced

1 dy 1 29 Y1 wi
1 ¢ bg 1 23 Y2 w2
to 1 , and Zyryr,) (A, B) = 1 . Hence we have
1 1
1 { L))

another branch of type Ry, and these are (¢ — 1)?¢ in number.
Subcase a # 0. We just choose y1,y2 such that dj = dy = 0. Here (b1, b2) # (0,0).

1 by 1 Z9 %x w1
1 ¢ by 1 2z %Qx w9
So, B = 1 , and Zyryr,) (A, B) = 1 . Thus
1 a 1 =z
1 1 )
(A, B) is of type Ry, and there are (¢ — 1)?(¢? — 1) such branches (as (b1, b2) # (0,0)).
b1 + z1b2 by + cyo
When C = <1 1 cll> ,¢,d # 0 : Here Equation 7.13 becomes by = bl
0 0

Choose y2 such that b = 0. We have b, = by # 0. On replacing b; with 0 in the above
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di + z1do + czo + ayr

equation, we get yo = b??zl. Equation 7.14 thus becomes dy + %zl +dz; =
c
dy + cws
dy + by + dz; |. Choose wy such that dj = 0, and « such that d) = 0. Hence B is re-
c
1 ¢ 1 2z 29 Y1 w1
1 d by 1 %21 %221 2y1 + 22
duced to 1 c |, with Zyryw,)(4, B) = 1 21
1 a 1 Il
1 { 1 )

(A, B) is of type R3, and there are (¢ — 1)3¢ such branches. O

Proposition 7.9. An upper unitriangular matriz of type Bz has ¢> branches of type Bs,
@?(¢> + q+1)(q — 1) branches of reqular type R1, and ¢3(q — 1) branches of reqular type
Rs.

1 a
1 b
Proof. Let A = 1 ,a,b # 0 a matrix of type Bs. The centralizer
1
1
(/1 To T1 T2 T3 1 29 1 z2 23
L yo v w2 L yo v v
Zurs (A) of Ais 1 Az | A="2%2;,y, € Fyp.Let X = 1 Az
1 1
1 ) 1
1 ap a1 a2 ag 1 af a dy a4
1 by b1 by 1 b by 0
be an element of Zy7, g,y (A). Let B = 1 Aag ,and B’ = 1 Aaj
1 1
1 1

be a conjugate of B by X. Thus equating X B = B'X gives us ag = a(, by = b, by = b},
and the following equations:

a1 + bozo = apyo + a}
as + xob1 + Ar1a9 = ajy1 + Avoa) + af
az + xoby = aj + agye

b1 + Aagyo = /\$0b6 + bll
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We look at three cases, the first case is when Aa; = by and (ag, by, b2) = 0. The second
case is when Aaj # by and (ag, bg, b2) = 0. The third case is when (ag, by, b2) # O.

Case: Aa; = by and (ag,bp,b2) = 0. In this case, we get as = af. Therefore
Zyry k) (A, B) = Zynw,)(A). So (A,B) is a branch of type Bs, and there are ¢
branches.

Case: \aj; # by and (ag, b, b2) = 0. In this case, we can choose ¢ in such a way that
we get as = 0. By routine check, we get ZUT5(Fq)(Aa B) is a commutative group of size
q%. Thus (4, B) is of regular type R1, and there are ¢?(q — 1) branches of this type.

Case: (ag,bg,bs) # 0. We first consider that ay # 0, then we can choose yo,y; and
y2 in such a way that we get a1 = ag = a3 = 0 and b; = b}. By simple calculations, we
get that Zyry(r,) (A, B) is a commutative group of size q*. Thus (A, B) is of regular type
R3, and there are ¢3(q — 1) branches of this type.

Next we consider the case when ag = 0 and by # 0. Here we can choose xg in such a
way that we get a; = 0. By routine check, we get ZUTs(Fq)(Aa B) is commutative group
of size ¢5. Thus (A, B) is of regular type R, and there are ¢*(¢ — 1) branches of this
type.

Finaly we consider the case when ag = by = 0 and by # 0., now we can choose g in
such a way that we get ag = 0. Again, we get ZUTs(Fq)(Aa B) is commutative group of
size ¢5. Thus (A, B) is of regular type Ry, and there are ¢®(g — 1) branches of this type.

Therefore we get that a matrix of type Bs has ¢3 branches of type Bz, ¢*(¢>*+q+1)(g—1)
braches of regular type Ry, and ¢®(q — 1) braches of regular type R3.

O

Proposition 7.10. An upper unitriangular matriz of type By has ¢> branches of type
By, ¢*(¢* — 1) branches of reqular type R, and ¢°(q — 1) branches of regular type Rs.

1 a
1 b
Proof. Let A = 1 ,a,b # 0 a matrix of type By. The centralizer
1
1
( 1 29 1 22 =x3
1 )\ZEQ
ZUT5(A) of A is 1 20 2 | A= 3,xi,zi S Fq
1
1
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1 Trog I T I3 1 ap ai a as

1 Axg 1 Aag
Let X = 1 2z 2z | beanelement of Zyp(p,) (A).Let B = 1 ¢
1 1
1 1
1 ay a) ay a4
1 Aay,
and B’ = 1 ¢, ;| bea conjugate of B by X. Thus equating XB = B'X
1

1
gives us ag = a), a1 = al, ¢o = ¢, c1 = ¢}, and the following equations:

x101 + a3 = z1a1 + ah
z1co + ag = zoa1 + aj

We look at two cases, when (a1, cg,c1) = 0 and (aq, co, 1) # bfO0.

Case: (a1, cg,c1) = 0: In this case, we get ag = ap and ag = a3. Therefore Zypy () (A, B) =
Zyry¥,)(A). So (A, B) is a branch of type By, and there are ¢ branches.

Case: (aj,cp,c1) # 0: When a; # 0, then we choose zp and z1 in such a way that we
get ag = a3 = 0. By routine check, we get that ZUTS(Fq)(A,B) is commutative group of
size ¢*. Thus (A, B) is of the regular type R3, and there are ¢3(q — 1) branches of this
type.

When a; = 0 and one of ¢y and ¢; is non-zero. We can choose z; in such a way that
we get either as = 0 or ag = 0. Again by simple calculations, we get ZUTs(Fq)(A,B)
is commutative group of size ¢°. Thus (A, B) is of the regular type Ry, and there are
¢*(¢* — 1) branches of this type. O

Proposition 7.11. An upper unitriangular matriz of type Bs has ¢* branches of type
Bs, (¢° — q) branches of regular type Be.

1 a
1
Proof. Let A = 1 ,a,b # 0 a matrix of type Bs. The centralizer Zyr, (A)
1 b
1
(1:130:E13:2:L"3 1 29 1 29 3
1 AZo 1 Ao
of Ais 1 21 |)\:3,xi,z1,w06Fq Let X = 1 21
1 wo 1 wo
1 1
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1 ay a1 a2 ag 1 af a) db

1 )\CLQ 1
be an element of Zyp, g, (A). Let B = 1 c1 | ,and B' = 1
1 do 1
1
be a conjugate of B by X. Thus equating XB = B'X gives us ag = q,
a; = ay, ag = ahy, ¢y = ¢}, dy = djj, and the following equation:

Tody + 171 + Aagwo + az = Azeaj, + z1a) + woah, + af

We look at three cases, the first case is when Aag = dy and (ai,az,¢1) = 0. The second
case is when Aag # dy and the third case is when Aag = dp but (a1, as,¢1) # 0.

Case: Map = dop and (aj,a2,¢1) = 0. In this case, we get a3 = aj. Therefore
Zursvy) (A B) = Zyryr,)(A). So (A, B) is a branch of type Bs, and there are ¢
branches.

Case: Aag # do In this case, we can choose 9 in such a way that we get az = 0. By
routine check, we get ZUTS(Fq)(A, B) is group of size ¢° isomorphic to centralizer of one
of the type Bg. Thus (A, B) is of type Bg, and there are ¢*(¢ — 1) branches of this type.

Case: \ayp = dyp and (aj,az,c;) # 0. In this case, one of aj,as and ¢; is non-zero
and depending on this, we can choose one of z1,wy or x1 suitably in such a way that we
get az = 0. By routine check, we get ZUTs(Fq)(AaB) is group of size ¢° isomorphic to
centralizer of one of the type Bg. Thus (A, B) is of type Bg, and there are q¢(q—1)(¢?>+q+1)
branches of this type.

Therefore a matrix of type Bs has ¢ branches of type Bs and total ¢(¢* — 1) braches
of type Bs. O

Proposition 7.12. An upper unitriangular matriz of type Bg has ¢> branches of type
Bg, and ¢*(q?> — 1) branches of reqular type Rs.

1 a
1 b
Proof. Let A = 1 ,a,b # 0 a matrix of type Bg. The centralizer
1
1
(1:E0l’1l’2$3 1 29 =
1 Axo 1 Az
Zurs (A) of Ais 1 A=t 2w eFyp.Let X = 1
1 wo
1
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1 Aag 1 Aa
be an element of Zyp, g, (A). Let B = 1 ,and B’ = 1
1 do 1 d
1 1
be a conjugate of B by X. Thus equating X B = B'X gives us ap = af,, a1 = a}, ag = ab,
do = djj, and the following equation:
zady + az = woah, + a4

We look at two cases, when (ag,dp) = (0,0) and (asz,dy) # (0,0).

Case: (a,dg) = (0,0) In this case, we get a3 = a3. Therefore Zyp g, (A, B) =
Zyryr,)(A). So (A, B) is a branch of type Bg, and there are g branches.

Case: (ag,dp) # (0,0) In this case, one of dy and ay is non-zero. We can choose
22 or wg in such a way that we get as = 0. By routine check, we get ZUT5(Fq)(A, B)
is commutative group of size q*. Thus (A, B) is of the regular type Rz, and there are
¢*(¢* — 1) branches of this type. O
7.3. Branching of type D. Now we look at the branching for type D.
Proposition 7.13. An upper unitriangular matriz of type D1 has the following branches:

Branch | No. of Branches || Branch | No. of Branches
Dy q° Ry ¢*(q — 1)
By 2q(q — 1) Ry ¢*(¢* — 1).
UNT; g(g —1)°
1 C1
1 C9
Proof. An upper unitriangular matrix of type Dy has the canonical form A = 1 cs
1
1
1 ap az b1 d1
1 as b2 d2
where a, b, c # 0. ZUT5(Fq)(A) = 1 z—fal Z—‘;’CLQ , which we rewrite as:
1 2—3613
2
1 Ve
%
cbv d , .
cs CeUTy(F). b =02 ). d=(.
ZuTy(py)(A) = 1 &0y | |CeUTs(Fy), b = ae, )= e,
1



c v d o v d

Let B = 1 20y |, and B = 1 20y be a conjugate of B by a
1 1
Z 7 ﬁ Y1 w1
_ c: : _( » _ [ w2
member X = 1 227y | € Zury(w,)(A), with Y = <2§le >, and 0 = (E—i’Zm >
1

We thus have X B = B’X. First thing we see is that ZC' = C'Z. So we can take C to be
a conjugacy class representative in UT3(F,), and we thus have the following equations:

(7.15) 720 +7 = C7+z7
(7.16) zd + 2—20237+B = C’U+Z—Z’Z23?+E’>
1 z1 29
When C = I3: In this case C19 = Ci3 = Cy3 = 0. We have Z = 1 2z
1
b1 + z1b9 bll
Equation 7.15 becomes: by = 5. We look at two cases here: When
0 0
ba # 0, and when by = 0.
When by = 0, We have 0] = by, and Equation 7.16 becomes:
dy + z1ds dll + %Zgbl
dy = | dy + 20,
0 0
We have df)y = ds.
1 dq
1
When by = by = do = 0: We have d] = d;. Thus B is reduced to 1
1
1

So Zyryw,) (A, B) = Zyryw,)(A). Hence (A, B) is a branch of type D1, and there are ¢
such branches.
When by, = by =0, and ds # 0, we can choose z; such that d; = 0. Thus, B is reduced

1 1 Z2 Y1 w
1 da 1 23 Y2 wo
to 1 , and Zygyr,) (A, B) = 1 2—"1’22 , which is of
1 1 2z
1 1

type . So (A, B) is a branch of type Ba, as Zyryr,)(A, B) can be conjugated by the
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elementary matrix that swaps rows and columns 1 and 2 to get the centralizer subgroup
of one of the canonical matrices of type By, and there are (¢ — 1) branches of this type.
When b; # 0, in Equation 7.16, we choose z3 so that d; = 0. Thus B is reduced to

1 b1 1 21 2 Y1 wi
1 d2 1 iigf z1 Y2 w2
1 , and Zygyr,) (A, B) = 1 Z—le i—izg . Again,
1 1 g—le
1 1 )
we have 2 cases here:
1 bl 1 V4 ) Y1 w1
1 1 Yo o w2
Whend, =0, B = 1 . Here Zyqy v, (A, B) = 1 Z—le i—iz2
1 1
1 1

\
On conjugating by an elementary matrix, which swaps rows and columns 2 and 3 of each
element of Zyryr,)(A, B), we get the centralizer of one of the canonical matrices of the

type Bys. Thus there are ¢ — 1 branches of type Bjy.
(
1 = 22 Y1 w1

1o2hy gy oy

c3by
When dy # 0, we have Zyryw,)(A4, B) = 1 2z 2z . Thus
1 &,
by ~1
1

\
this branch is of the new type UNT3, and there are (¢ — 1)? such branches.

When by # 0, choose z; such that b] = 0. Thus equating Equation 7.15 with b; replaced
by 0, we get that zy = 0. Thus with by = 0 and z; = 0, we get from Equation 7.16,
" = di, and with a nice choice of z3, we can reduce d, to 0. Hence, B is reduced to
1 dy (1 Z2 Y1 wi
1 by 1 Y2 w2
1 ; and Zyry(F,) = 1 z—i’z2 , which is a centralizer
1 1
1 { 1
of type Ro. Thus (A, B) is a branch of type Rg, and there are g(¢ — 1) such branches.

b1 + z1b9 bll—l-cci;,zl

When C = <1 1 ;) ,c # 0 : Here Equation 7.15 becomes: b = bl

0 0

So we have b, = ba. We see 2 cases here: by = i—fc, and by # %c.
When by # z—fc. In the above equation, we choose z; such that ) = 0. Thus, with
substituting b; with b, = 0 in the above equation, we get z; = 0. Thus, with this,
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U
dl 1

Equation 7.16 becomes | da + Z2czs | = | dy + Z2bozs | . As by # Zc¢, we can choose a
S ae
1 C dl
1 by
z3 so that dy = 0, and we have dj = d;. So B boils down to 1 e |, with
1
1
1 Z2 Y1 wr
1 Y2 w2
Zyryr,) (A, B) = 1 2—?22 . Thus (A, B) too is a branch of type Ry,
1
1

and there are ¢(q — 1)? such branches.
When by, = i—fc, we get from Equation 7.15, b} = b;. Equation 7.16 boils down to:

di + z1dy dll + 2—223()1
do = d . So we have d), = dy. We look first at b = dy = 0. B is
0 0
1 c dq
1 2
reduced to 1 2e |, and Zyryw,) (A, B) = Zury¥,)(A). Thus (A, B) is a
1
1
branch of type D, and there are g(¢ — 1) such branches.
1 c b
1 2—?6 d2
When b; # 0 choose z3 such that d}) = 0. So, B becomes: 1 i—fc . We
1

have two cases here:
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1 Le
When ds = 0, we have B = 1 - 2—?0 and
1
1
1z 22 y1 w
1 Y2 w2
ZUTs(Fq)(AaB) = 1 i—le 2—?22 5
1
1

thus (A, B) is of a type By, and there are (g — 1) such branches.

1 C bl
1 2—36 d2
When ds #£0, B = 1 z—i’c , and
1

1

I 21 2z yi o wi

1oefe oy w

Zuty(v,) (A, B) = L 22 22|,
1 g—le
1 /

so, this branch too is of the type UNT3. Thus there are (¢ — 1) branches of this new

type.
When b, = 0, and d2 # 0. We choose z; so that dj = 0. Thus B is reduced to

1 c 1 Zo Y1 Wi
1 i—fc d2 1 zZ3 Y2 w9
1 z—ic ; and Zyryr,) = 1 i—iz2 . This is of type Bjy.
1 1 2—‘;23
1 1
(A, B) is a branch of type By, and there are (¢ — 1)? such branches.
1 Z1 %9
When C = (1 1 1) ,¢ # 0: Here, Z = 1 Equation 7.15 boils down to
1
b1 +bazq + i—iCZg cy2 + by
b = bl So b, = by. As ¢ # 0, we choose y2 such that
2¢ Ze

Cc1
105



dy + dazy cwy + dll

b, = 0. Equation 7.16 becomes: do = d . We have d), = ds.
0 0
1 ¢

1 bs  ds

Take wg such that df = 0. So B is reduced to 1 z—fc , and therefore
1
1
1 21 2 Y1 Y2
1 %21 + 2—322 %221
ZUT5(Fq)(A7 B) = 1 i—le 2—'fz2 , which is of size ¢*. It is routine
1
1

to check that this centralizer is commutative. Thus this is a centralzier of type R3. Thus
(A, B) is a branch of type R3, and there are ¢?(q — 1) such branches.

1 zZ9
When C = <1 1 f) ,c # 0: In this case Z = 1 23 |. With this, Equation 7.15
1
b1 v}
becomes | by | = | b5 |. So, our focus thus is solely on Equation 7.16. The equation is
0 0
di + Zeyr dy + 2bi2s
reduced to [ do + S2cys | = | dy + Eezo + 2bozs
0 0
1 b1
1 ¢ b2
As & # 0, choose y1, yo so that d = dy = 0. Thus B is reduced to 1
1 Ze¢
c2
1
p

1 Z92 %123 wq

1 2z i—fZQ + %223 wo
and Zyryr,) (4, B) = 1 2—?732 . This is of size ¢*, and with

1 i—zZ3

1

a routine check we see that it is commutative. This is a centralizer of type Rs, hence
(A, B) is a branch of type Rs3, and there are ¢?(q — 1) such branches.
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1 Al zZ9

When C = (1 T dlo) ,Co,dg # 0: Here Z = 1 MXpz1 |, where A\g = Ccl—g. Equa-
1
bi + 212 + 222 ¢o coy2 + b

tion 7.15 becomes: by + i—fd/ozl = i—idozl +0,|. As ¢o and dp are non-

0 0
zero, we have b, = by. We choose ya such that b} = 0. Hence, on replacing b; with

0 in the above equation we get yo = 22z + %Zg. With these, Equation 7.16 boils

~

di + z1dy + i—jdoyl CoWwg + dll
down to dsy = d) . So d) = da, and choose ws such
0 0
1 Co
1 dy b do
that d] = 0. Hence, B is reduced to 1 2 , with Zypyr,) (A4, B) =
1 2dy
1
)
1 z1 2z Y1 w1
1 gy Boy g Bz Gy By
1 i—le 2—?22 . This too is of type R3. So (A, B) is
1 ngo
caco
1

a brach of type R3, and there are ¢?(q — 1)? such branches.
So, on adding up the branches of each of the types, we have

¢? branches of type D1,

e 2¢(q — 1) branches of type By,
e ¢*(q — 1) branches of type Ra,
e ¢*(¢*> — 1) branches of type R3, and

q(q — 1)? branches of type UNT3.

These match with the estimations done for ¢ = 3 in GAP. O

Proposition 7.14. An upper unitriangular matriz of type Dy has ¢> branches of type

Do, and ¢*(¢*> — 1) branches of reqular type R3.
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10
Proof. Let A = 1 c ,a,b,c # 0 a matrix of type Ds. The centralizer
1
1
( 1 29 =1 22 3
1 Alxo A2$1
ZUT5(A) of Ais 1 Ao | AL = g,)\g = g,lﬂi,ZU(] S Fq
1 wo
1
1 i) I X9 I3 1 a aq
1 Mz Aox1 1 Xao
Let X = 1 Aoz | be an element of Zy7y g,y (A). Let B = 1
1 wo
1
1 ay a) ah) af
1 Mg Aoa)
and B’ = 1 Xoal | = XBX~!. Thus equating XB = B'X gives us
1 d
1

ap = af, a1 = a}, ag = ab, dy = dj), and the following equation:
zady + az = woah, + a4

We look at two cases, when (ag,dy) = (0,0) and (ag, dy) # (0,0).

Case: (az,dg) = (0,0) In this case, we get a3 = aj. Therefore Zyp, (p, )(A,B) =
Zyry(r,)(A). So (A, B) is a branch of type Da, and there are ¢ branches.

Case: (ag,dp) # (0,0) In this case, one of dy and ay is non-zero. We can choose
o or wg in such a way that we get ag = 0. By routine check, we get ZUT5(Fq)(A,B)
is commutative group of size ¢*. Thus (A, B) is of the regular type Rz, and there are
¢*(¢* — 1) branches of this type. O

Proposition 7.15. A matriz of the Ry type has ¢® branches of type R1, a matriz of the
Ry type has ¢° branches of type Ry, and a matriz of the Rs type has ¢* branches of type
Rs.

Proof. The type Ri, Ry and R3 are Regular types, hence the centralizer of matrices of

such a type is a commutative. O

7.4. Branching Rules for the New Types. While determining the branching rules

for the types in UT5(Fy), we observed that there are some commuting pairs of elements of
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UT5(F,), which are not isomorphic to the centralizers of any of the elements in UT5(F).
Thus, giving rise to what we call “new types”. The new types, we have seen so far are
UNT; (first observed in Proposition 7.4), UNT5, (observed in Proposition 7.7) and UNT3
(observed in Propositions 7.7). Now, we compute the branching for these cases and we

see that no further new types occur.

Proposition 7.16. The new type UNT, has ¢* branches of type UNT, ¢*(¢> — 1)
branches of type Ra, and ¢* — ¢ branches of type Rs.

Proof. For some pair (A, B) of commuting elements in UT5(F,), of type UNT), the

1 zg 1 Az 3

centralizer subgroup is Zyyr,)(4, B) = { ( ! P y2> }, where \ # 0 is fixed. Let

L0
1 ap a1 Aoy as 1 af a) X af
1 b by 1) b,
C = 1 , and let C" = 1 = XCX~!, where
1 ¢ 1 ¢
1 1
1 290 21 Azo 23
L o Y2
X = 1 . On equation XC = CX, we get a, = ag, by = bg, by = ba,
1 20
1

¢y = ¢o, and the following equations:

(7.17) a1+ xoby = @ + agyo
(7.18) ag + xgby = aé + y2a9

We look at two main cases: (ag, b2) = (0,0), and (ag, b2) # (0,0).
When gy = by = 0: Equation 7.18 becomes a4 = a3, Equation 7.17 becomes a} =

a1 + xgbg. We have two subcases here:

1 aq )\CQ as
1
When by = 0, then we get aj = a;. Thus C boils down to 1 , and
1 Co
1

Zursvy) (A B,C) = Zyry¥,) (A, B). (4, B,C) is therefore of type UNT1, and there are

¢ such branches.
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When by # 0, in Equation 7.17, we can choose x( such that a} = 0. Hence C'is reduced

1 Ao as 1 T1 A2 T3
1 bo L yo Y2
to 1 , and Zygyr,) (4, B,C) = 1 . Easy to
1 ¢ 1 20
1 { 1

see that this is a commutative group of size ¢°. (A4, B,C) is a branch of type Ry, and
there are ¢?(q — 1) such branches.
When (ag, bs) # (0,0): When ag # 0, in Equation 7.17, we choose yo such that aj = 0.

Thus, on replacing a; with af = 0 in that equation, we get yo = Z—gzno. In Equa-
1 ag )\C()
1 b by
tion 7.18 choose ya so that af = 0. Thus C is reduced to 1 , and
1 Co
1
( 1 i) I )\ZQ I3
1 Z—gxo Z—Exo
thus Zyryr, (4, B,C) = 1 Y1 . Easy to see that this sub-
1 20
1

group is a commutative one of size ¢*. Thus (A, B, C) is a branch of type R3, and there
are (g — 1)¢® = ¢* — ¢> such branches.

When ag = 0, and bg # 0. Equation 7.18 becomes ag + xgbs = af, and Choose ¢ such
that af = 0. Then, on replacing a3 with a4 = 0 in Equation 7.18, we get zo = 0. With

1 a1 Ac
1 b bo
these, Equation 7.17 becomes aj = a;. C thus boils down to 1 ,
1 Co
1
1 I )\Z() I3
1 o Yo
and Zyryr,) (4, B,C) = 1 . This branch too is of type Ry, and
1 20
1

there are ¢3(q — 1) such branches. So, in total there are ¢*(q — 1) + ¢*(¢ — 1) = ¢* — ¢?
branches of type Rs. O

Proposition 7.17. The new type UNT, has ¢> branches of type UNT,, ¢° — ¢* branches

of type Ry, and ¢* — ¢ branches of type Rs.
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Proof. A commuting pair (A, B) of type U NT3 has the centralizer

/
1 aq bl b2 as 1 al 1 2 a2

1 ¢ o &b 1 ¢ & d

Let C = 1 Xap |, C' = 1 Aay

1 1 d

1 1
I 21 y1 y2 @2
1 zZ1 22 w1
and let X = 1 Axq
1 Tl
1

1 1 y1 vy 22
1 zZ1 22 w1
1 )\xl
1 Il
1

be a conjugate of C,

such that XC = C'X. Equating XC = C'X gives

us a'l = aq, c’1 = ¢ and 0’2 = ¢9, and the following bunch of equations:

(7.19) (al by +x1c1 ba + :E162> = (a1 b/l +a121 b/2 + a1z2>
(7.20) dy + ()\Zl + 22)(11 = dll + (/\61 + 62)331
(7.21) as +x1dy + (Ay1 +y2)ar = ah+ (Ab] + b))y + wiay

There are two main cases here:
Case: a1 =0

When ¢; = ¢ = 0, Equation 7.19 leads us to bj = by, b, = by, and from Equation 7.20
d} = di. With these, Equation 7.21 becomes ag + x1d; = ab + (Aby + be)xzy.

1

When d; = Abj + by, we get ay = ag. Thus C is reduced to

bl bg as
1 Ab1 + by
1 ;
1
1

and Zyr, 5 o(F,) = Zuts(F,) (A B). Thus, (A, B,C) is of type UNT3, and there are ¢°

such branches.

When dy # Ab1 + be, we can choose z1 such that a’2 = 0. Thus C is reduced to

1 bl b2 1 Yy Y2
1 dy 1 z1 2z
1 y and ZUTs(Fq)(A7 B, C) = 1

1

of type R1, and there are ¢%(¢ — 1) such branches.
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When ¢; # 0, in Equation 7.19, we can choose x; so that b] = 0. Thus on replacing
by with b] =0, we get x1 = 0, and thus b, = by. And Equation 7.20 reduces to dj = dy,

1 bg as
1 ¢ e di
and Equation 7.21 boils down to a), = ay. C' is reduced to 1 , and
1
1

1 Y1 Y2 X2
1 Z1 k2 wq
Zursr,) (A, B,C) = 1 . (A, B,C) is thus of type Rs, and there are

(¢ — 1)g* such branches.

When ¢; = 0, and ¢2 # 0. In Equation 7.19, we get b} = by, and choose z1 such
that o, = 0. Hence on substituting be with b, = 0 and equating Equation 7.19, we get
x1 = 0. With this Equation 7.20 boils down to d} = dy, and Equation 7.21 boils down to

1 b1 as 1 Y1 Y2 T2
1 Co dl 1 Z1 k2 w1
ay = ay. C is reduced to 1 ,and Z(A,B,C) = 1
1 1
1 1

(A, B,C) is a branch of type Ri, and there are ¢3(¢ — 1) such branches.
Case a; # 0: In this case, in Equation 7.19, we choose z; and z9 such that b} = 0 and
b, = 0 respectively. Thus, on replacing by by b) = 0, and be by b, = 0 in Equation 7.19,
and equating, we get z; = %xl and z9 = %xl‘ Putting these in Equation 7.20 leads us
to dy + (A%xl + 2—?3:1) a1 = db 4+ (Aep + ¢c2)xy. Thus df = d.

With all this, Equation 7.21 boils down to as + z1dy + (Ay1 + y2)a1 = a) + wia.

1 ai
1 Cc1 C2 d1
Choose wy so that a), = 0. Hence C' is reduced to 1 Aay |, and

1 aq
1

I =1 wn Y2 Z2
1 2—11331 2—?1’1 )\yl + yo + Z—ia:l

Zuryr) (A, B) = 1 Az

1 T

1
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Easy to check that the above centralizer subgroup is a commutative one, of size ¢*. Thus
(A, B,C) is of type R3, and there are (¢ — 1)¢> such branches.

Adding up all the branches of type Ry gives us ¢>(¢—1)+¢*(q—1)+q¢*(¢—1) = ¢® — ¢*
branches of type Rj. O

Proposition 7.18. The new type UNT3 has ¢ branches of type UNTs, ¢* — ¢? branches
of type Ry, and ¢* — ¢ branches of type Rs.

Proof. A commuting pair (A4, B) of matrices in UT5(F;) of type UNT3 has as its central-

p
I 1w Y2 T2
1 )\1%1 z92 w1

izer: 1 dom ﬁ_?yl
1 I
1
1 aj b1 b2 a9 1 a’l bll b/2 a’2
I a1 o 4 1 M\d) |
Let C = 1 doar $2by [, and O = 1 doa) 320 | =
1 ai 1 al
1 1
Lz y1 Y2
1 )\1331 Z9 w1
XCX~1 where X = 1 dery i—iyl . From XC = C'X, we get a}] = ay,
1 1
1

b, = b1, ¢h = ca, and the following equations:

(7.22) ba + x1co0 + Aoy1a1 = bé + z9a1 + Aoz1by
(7.23) di + Aox1by 4+ 2001 = d& + Xoyra1 + x1c2
(7.24) as + x1dy + Y201 = a'2 + wiay + 1‘11)’2.

Case a; = 0: Equation 7.22 becomes by +x1co = b) +x1 2b;. When ¢g = Aoby, then b, =
be, and similarly in Equation 7.23, d] = d;. Here, if by = d;, we get from Equation 7.24,
1 bl bg a9

1 Aob1 by
ay = as. Hence C is reduced to 1 i—ibl , and Zygyr,) (A, B,C) =
1
1

Zyryr,) (A, B). (A, B,C) is a branch of type UNT3, and there are q> such branches.
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1 Xoby  dy
When by # dy, choose z1 such that a), = 0. C' is reduced to 1 i—fbl ,
1
1
§
1 Y1 Y2 T2
1 z9 w1
and Zypyr,) (4, B,C) = 1 %yl . (A, B,C) is thus of type Ra, and
1
1

there are ¢?(q — 1) such branches.

When ¢z # A2bi. In this case, in equation 7.22 itself, we choose z; such that b, = 0.
And on substituting b with 0 in this equation and equating, we get 1 = 0. Thus, Equa-
tion 7.23 becomes d} = dj, and from Equation 7.24, we get a) = a. Thus C' is reduced

1 by a2 1 Y Y2 T2
1 Co dl 1 29 wy
to 1 b1 |, and Zypye,) (A, B,C) = 1 22y | ¢ This
1 1
1 1

too is a branch of type Ry, and there are ¢3(q — 1).

Case a; # 0: In Equation 7.22 choose zp such that by, = 0. Thus, substituting by with
, = 0 in this equation, leads us to z2 = Aay1 + (02_a7)1\2bl)$1. With these Equation 7.23
becomes d} = dy. Thus Equation 7.24 becomes ay + x1d; + y2a1 = ay + wya;. Choose

1 aq bl
1 )\1@1 Co dl
wy such that a, = 0. Thus C' is reduced to 1 Joaq i—fbl , and

1 al
1

1z wn Y2 Z2

L Az Aoyn + (627,7?2171)961 yo+ Ly
Zursr,) (A4, B,C) = 1 A2y :\\—fyl
1 T
{ 1

By a routine check, one can see that this centralizer group is commutative. Thus we have
a branch of type Rs3, and there are (¢ — 1)¢> such branches.
Adding up the branches of type R, there is a total of ¢?(q — 1) + ¢*(q — 1) = ¢* — ¢*

branches of type Rs. O
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8. COMMUTING PROBABILITIES

The number of simultaneous conjugacy classes of commuting k-tuples in UT,,(F,) is de-
noted by cyr(n, k,q) and the same for GT,,(F;) is denoted by cgr(n, k,q). From Lemma
7.1 [SS], it follows that cgr(n,k,q) = 1-Bng(Fq)-€1 and cyr(n,k,q) = 1.B5Tn(Fq).el

where 1 = (1 1 .- 1>, and e; = t(l o0 --- 0>. We note that all of the
branching matrices computed in this paper for triangular and unitriangular groups have
entries polynomial in ¢ with integer coefficients. Thus, cyr(n,k,q) for n = 3,4,5 and
cer(n, k,q) for n = 2,3,4 are polynomials in ¢ with integer coefficients.

From Theorem 1.1 in [SS], for £ > 2, and any finite group G, the probability that a
ca(k—1) 1B '.e
P = TG
the branching matrix for the groups GT;(F,) for i = 2,3,4, and UT}(F,) for j = 3,4,5,

for each of the groups, we will mention the commuting probabilities for £ < 5. This

. Now, that we have determined

k-tuple commutes is cpi(G) =

computation is done using Sage [SA|.

For the triangular groups we have:

cpr(GTo(Fy)) | k| cpr(GTa(Fy))
_1 4 q°—2q+4

q—1 ¢®=3¢*+3¢3—¢?
3 ¢*—q+2 5 | _¢'=3¢°+7¢>—3¢+2
" —2¢5+42 ¢8—4q"+6¢5—4¢5+¢*
cpr(GT3(Fy)) || k cpk(GT3(Fy))
5 Fq—1 4 °—=3¢*+7¢°—5¢"+11q+4
3(q—1)? ¢®(q—1)8
3 *—q*+q+5 5 q7—5¢%+17¢° —32¢* +54¢° — 344> +25¢+2
¢°(¢=1)* g (g=1)8
cpr(GTy(Fy))
9 °+3¢°—2q—1
T 10(,—1)3
q%(q-1)
3 12¢° —52¢*+116¢3 —97¢%2+63¢—37
q?%(q—1)°
6¢%—16¢7 +3¢%+195¢° —593¢* +1105¢% —1129¢ +912¢—477
4
¢30(qg—1)°
5 Tq'1—32¢"0+122¢° —192¢8+342¢" — 71445 +2038¢° —3954¢* +6136¢°> —6304¢% +45969—2213
40 12
q1%(q—1)

In the case of unitriangular group we have:
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cpp(UT3(Fy)) || k | cpp(UT3(F,))
9 ?+q—1 3 +¢* -1
¢ q°

4 3__ 5 4_

4 q +qq7 1 5 q +qu9 1_
cpp(UT4(Fy)) | k cpe(UTu(Fy))
9 2¢°—1 4 q"+3¢5—3¢°+5¢" =443 —3¢+2

q6 q15

3 | 20°436°~2¢°=3q+1 || £ | ¢942¢°~2¢°+3¢"—q®+q'—3¢°~2g+2
10 0

q q2(
cpp(UT5(Fy))
9 5q%—4¢+9¢%—14q+5
q10
3 11¢8% —7¢74+23¢% —41¢°+5¢* +11¢3+3¢>—7q+3
20
q

4 2¢1343¢124+5¢1 1 +10¢1° —6¢° —20¢% +8¢7 —27¢0+42¢° —24¢* +9¢° +¢>—5¢+3
q29

2q18+5q16_5q15+23q14_25q13+28q12_41q11+23q10_17q9+
108 —25¢" +18¢°+23¢° —26¢* +7¢° +3¢> —5¢+3
38
q

APPENDIX A. CONJUGACY CLASSES OF GTy(F,)

The conjugacy classes for upper triangular group can be algorathmically computed
following Belitskii’s algorithm as described in [Ko| and in the appendix of [Bh|. We list

them here for the convenience of reader and also to set the notation for types.

Class Representatives N‘élgzggsd Cce)rfsghggr‘ N%I}?Ife"f
aoly, a0 # 0 (q—1) (q—1)*° C
al a
@ ) “ 1
< “a> ( “a) 2(q — 1) (g— 13| A
a#0
a
al
( “a> q—1 (¢—17%¢" | A
a#0
a 1 a
a a 1
o) () |y e 4
a#0
(")
a »
“, q—1 (q—1)%° | As
a#0
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al
<a“i> g—1 (q—1)%¢" | A
a#0
aall
( “a> q—1 (-1 | As
a#0
aall
( “a> qg—1 (-1 | As
a#0
azlzl aal
( aa>’< ai) 2(q—1) (¢—1)2%¢ | As
a#0
a(ll 1 aal
( “a>’< “i) g—1 (q—1)2¢" | As
a#0
a(lll
( “é) qg—1 qlg—1)g* | Ay
a#0
() ()
o’ b 3q—1)(g—2) (¢—-1)%*| B
(bb>§a7éb
CLa ’aCLb)
a< b>b< ¢ 4(qg —1)(g—2) (-1 | B
(2, )i e
aT ¢
< . >,and3more
b
<a“é >’and3more; 8(¢-1-2) | (@@-1°*| Bs
b
aFb
<aa1 > <aa 1)
N o 4(g—1)(g—2) (¢—17%¢* | By
() e
alCL a
( b,) e B more: 6(a—1)(¢—2) |(@-1%| Bs
a#b
a and 5 more:
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The Regular types
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a,b,c#d

APPENDIX B. CONJUGACY CLASSES OF UTy(F,) AND UT5(F,)

Understanding conjugacy classes in unitriangular group is a challenging problem. We
refer a reader to [VA1, VA2| for the reference. We list down the same for UTy(F,) and
UTs(F,), what we need for our purpose.

Class Representatives | Number of Classes | Centralizer size | Name of Type
in UT4(Fq)
1 a
( Y > ,a€F, q q° C
1 1 a 1 1 1
a
< 11>7< 11>7 (@—1),(¢—1) ¢ Ay
a€Fy
T a
< ! b>>a>b€FZ (q_1)2 q5 A2
la L 1
1 1
1 Y 1a 9
1 ! la !
(lllb 115 (¢q—1),(g—1),
1 1 (q - 1)2a (q - 1)27 q4 A3
1 1 a 1 clz b ( 1 9 1 3
15 /> 1e )| 9T )% (-1
1 1
a,b,c € F
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Y Y (¢—1),(¢g - 1) ¢ Ry
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Ta 1
)0 s
1 1 q 7q I 3 R
la (_1)3 q 2
1t ),abceF; q
1
. Number of Order of Name of
Class Representatives ) i
Classes Centralizer in UT5(F;) | Type
1 a
< 111 ),aEFq q q'° C
1
11 a 11 "
1 , 1 9
a€Fy,
11 a 11 ab
1 s 1 2 8
» L) @-a- q 4
a,b e F,
) () T
s a - 1) - ) 8
11 11 - a( _1)2 ¢ AS
a,beF,
T i b
la la
1 L _17q_ 27
11 11 b )( ) q7 A4
la s la —1),((]— )
1 1
1 1
a,beF,
Ta Ta
1 1 b
1 , 1
1 1
1 a L la !
1 1 N
1b ’ 11b (q_1)7(q_1)7
1clzc L 11 ! (q—l)z,(q—1)2,
ol ) et 7 45
L b 1b ! (¢—1)% (g — 1),
—1)3
11111 , L (¢—1)
11bc !
( 1 ),a,b,cEFZ
g
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111ba
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