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BRANCHING RULES AND COMMUTING PROBABILITIES FOR

TRIANGULAR AND UNITRIANGULAR MATRICES

DILPREET KAUR, UDAY BHASKAR SHARMA, AND ANUPAM SINGH

Abstract. This paper concerns the enumeration of simultaneous conjugacy classes

of k-tuples of commuting matrices in the upper triangular group GTn(Fq) and uni-

triangular group UTm(Fq) over the finite field Fq of odd characteristic. This is done

for n = 2, 3, 4 and m = 3, 4, 5, by computing the branching rules. Further, using the

branching matrix thus computed, we explicitly get the commuting probabilities cpk for

k ≤ 5 in each case.

1. Introduction

Simultaneous conjugacy of commuting k-tuples in a group is understood by computing

its branching matrix. In [Sh1] and [SS], the branching table/matrix of finite general

linear, unitary and symplectic groups of small rank is computed. In this paper, we

continue the work for certain solvable groups, namely, upper triangular matrices. Since,

this work is continuation of that in [SS], we refer a reader to the same for definition

of branching and other related notation. We work with the groups of upper-triangular

invertible matrices, GTn(Fq), and the groups of upper unitriangular matrices UTn(Fq),

over a finite field Fq of odd characteristic. We compute the branching matrix for GT2(Fq)

(Theorem 2.1), GT3(Fq) (Theorem 3.1), GT4(Fq) (Theorem 4.1), UT3(Fq) (Theorem 5.1),

UT4(Fq) (Theorem 6.1) and UT5(Fq) (Theorem 7.1).

Further, for a group G, the relation of branching matrix BG to commuting probabil-

ities cpk(G) was explored in [SS, Theorem 1.1]. This relation is further explored in the

survey article [SS2], where commuting probabilities cpk(G) up to k ≤ 5 is computed for

G = GL2(Fq), GL3(Fq), U2(Fq) and U3(Fq). It was also proved that cpk(GL2(Fq)) =

cpk(U2(Fq)) for all k even though the branching matrices of the two groups are not same

(see Proposition 3.3 [SS2]). In [GR] (see Theorem 12) bounds for commuting probability

cp2, when G is a solvable group or p-group, is computed. Using the branching matrix we

compute the commuting probabilities cpk, up to k ≤ 5, for each of the groups GTn(Fq)

and UTn(Fq) for which we have branching matrix (see Section 8).
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For this work, we need conjugacy class types or z-classes (as defined in [SS] and also

dealt in [Bh]). This is defined as follows: two matrices are said to be of the same conjugacy

class type/z-class, if the centralizers of two elements are conjugate. However, a further

weaker version is enough for our purpose here. We say that two matrices are of same

type if their centralizers are isomorphic. This helps us reduce the size of computation

(and size of branching matrix) and causes no loss of generality. Throughout, we assume

q is odd. We hope our computation throws some light on the subject of commuting

probability and will help us understand the groups better.

Acknowledgments. The authors would like to thank Amritanshu Prasad, IMSc Chen-

nai, for his interest in this work.

2. Branching rules for GT2(Fq)

There are four conjugacy class types in GL2(Fq) given by the following partitions (as

in [Sh1]) (1, 1)2, (2)1, (1)1(1)1, and (1)2. We use this to get the same for GT2(Fq). Since

we are looking at GT2(Fq), the last one, (1)2 doesn’t exist in GT2(Fq). In this paper, we

shall not use the partition based nomenclature for the conjugacy class types. Instead we

use alphanumeric nomenclature as follows (similar to the pattern in [SS]).

Canonical Form No. of Classes Centralizer Name of Class Type

( a 0
0 a ) ,

a ∈ F
∗

q

q − 1 GT2(Fq) C

( a 1
0 a ) ,

a ∈ F
∗

q.
q − 1

{

( x0 x1

x0
) | x0 ∈ F

∗

q

}

R1

(

a 0
0 b

)

,

a, b ∈ F
∗

q, a 6= b
(q − 1)(q − 2)

{

( x0

z0 ) | x0, z0 ∈ F
∗

q

}

R2

Theorem 2.1. The branching rules are summarized in the table below given by the

branching matrix:

BGT2(Fq) =







q − 1 0 0

q − 1 q(q − 1) 0

(q − 1)(q − 2) 0 (q − 1)2






.

We mention the branching rules below.

Proposition 2.2. For an upper triangular matrix of type C, the branching rules are as

mentioned in the table above.

Proof. The result follows, as this type is central. �

Proposition 2.3. For matrices of any of the two regular types:

• A matrix of type R1 has q(q − 1) branches of type R1, and
2



• A matrix of type R2 has (q − 1)2 branches of type R2.

Proof. The centralizer of a matrix of any of the above mentioned regular types is com-

mutative, hence each element of the centralizer is a branch. �

Proof of Theorem 2.1. The branching rules stated in the above propositions, are sum-

marised in the the branching matrix, as mentioned in the statement of the thoerem. �

3. Branching in GT3(q)

Now, we compute the branching table for GT3(Fq). The table for the conjugacy classes

and their types are as follows:

Class Representative Number of Classes Centralizer size Name of Type

aI3, a 6= 0 q − 1 (q − 1)3q3 C
(

a 1
a
a

)

,
(

a
a 1
a

)

,

a 6= 0
2(q − 1) (q − 1)2q2 A1

(

a 1
a
a

)

, a 6= 0 q − 1 (q − 1)2q3 A2
(

a
a
b

)

,
(

a
b
a

)

,
(

b
a
a

)

, 0 6= a 6= b 6= 0
3(q − 1)(q − 2) (q − 1)3q B1

(

a 1
a 1
a

)

, a 6= 0 q − 1 (q − 1)q2 R1
(

a 1
a
b

)

,
(

a 1
b
a

)

,
(

b
a 1
a

)

, a 6= b
3(q − 1)(q − 2) (q − 1)2q R2

(

a
b
c

)

a 6= b 6= c 6= a
(q − 1)(q − 2)(q − 3) (q − 1)3 R3

The branching rules are described by the branching matrix as follows.

Theorem 3.1. The branching matrix for the group GT3(Fq) with types written in the

order {C,A1, A2, B1, R1, R2, R3} is BGT3(Fq)

=













q−1 0 0 0 0 0 0
2(q−1) q(q−1) 0 0 0 0 0
q−1 0 q(q−1) 0 0 0 0

3(q−1)(q−2) 0 0 (q−1)2 0 0 0

q−1 q(q−1) q2−1 0 (q−1)q2 0 0

3(q−1)(q−2) q(q−1)(q−2) q(q−1)(q−2) (q−1)2 0 (q−1)2q 0

(q−1)(q−2)(q−3) 0 0 (q−1)2(q−2) 0 0 (q−1)3













.

Proposition 3.2. For an upper triangular matrix of type C, the branches are as in the

second column of the table in the the opening paragraph of this section.

Proof. The result follows, since the matrices of type C are central. �

Proposition 3.3. An upper triangular matrix of type A1 has q(q − 1) branches of type

A1, q(q − 1) branches of type R1, and q(q − 1)(q − 2) branches of type R2.
3



Proof. Let A =







a 1

a

a






, a matrix of type A1. The centralizer of A is: ZGT3(Fq)(A) =

















x0 x1 x2

x0

z0






| x0, z0 6= 0











. Let X =







x0 x1 x2

x0

z0






, be an invertible member of

ZGT3(Fq)(A). Let B =







a0 a1 a2

a0

c0






, and B′ =







a0 a′1 a′2
a0

c0






= XBX−1. Thus

equating XB = B′X leads us to the following equations:

a′1 = a1(3.1)

x0a2 + x2c0 = x2a0 + z0a
′

2(3.2)

Case: a0 = c0. Here, equation 3.2 becomes x0a2 = z0a
′

2. When a2 = 0, then, we have B

reduced to







a0 a1

a0

a0






, with ZGT3(Fq)(A,B) = ZGT3(Fq)(A). Thus (A,B) is of type

A1, and there are q(q − 1) such branches.

When a2 6= 0, choose z0 so that a2 = 1. Then B is reduced to







a0 a1 1

a0

a0






,

and ZGT3(Fq)(A,B) =

















x0 x1 x2

x0

x0

















. This subgroup is commutative. Thus (A,B)

is of type R1, and there are q(q − 1) such branches. There are no further cases to

see here. Case: a0 6= c0. In Equation 3.2, choose x2 so that a′2 = 0. Thus, B is

reduced to







a0 a1

a0

c0






, and ZGT3(Fq)(A,B) =

















x0 x1

x0

z0

















. This subgroup is

commutative. Thus (A,B) is of type R2, and there are q2(q−1) = q3− q2 such branches.

These are all the cases here. Thus, we have a total of q2 + q3 − q2 = q3 branches of

type R. �

Proposition 3.4. An upper triangular matrix of type A2 has q(q − 1) branches of type

A2, and q2 − 1 branches of type R1, and q(q − 1)(q − 2) branches of type R2.
4



Proof. Given A =







a 1

a

a






, the canonical form of a matrix of type A2. The cen-

tralizer of A, ZGT3(Fq)(A) is

















x0 x1 x2

y0 y1

x0






| x0, y0 6= 0











. Let X =







x0 x1 x2

y0 y1

x0






∈

ZGT3(Fq)(A). Let B =







a0 a1 a2

b0 b1

a0






, and B′ =







a0 a′1 a′2
b0 b′1

a0






= XBX−1. Thus

equating XB = B′X gives us the following equations:

x0a1 + x1b0 = x1a0 + y0a
′

1(3.3)

y0b1 + y1a0 = x0b
′

1 + y1b0(3.4)

x0a2 + x1b1 = x0a
′

2 + y1a
′

1(3.5)

Using these we reduce B to the mentioned branches. �

Proposition 3.5. An upper triangular matrix of type B1 has (q − 1)2 branches of type

B1, and (q − 1)2 branches of type R2, and (q − 1)2(q − 2) branches of type R3.

Proof. One of the canonical forms of an upper triangular matrix of type B1 is A =
(

aI2

b

)

, where a 6= b ∈ F
∗

q. Hence the centralizer of A is

ZGT3(Fq)(A) =

{(

X

z0

)

| X ∈ GT2(Fq), z0 6= 0

}

.

Thus the branches of A are of the form

(

C

d

)

, where d 6= 0, and C is a conjugacy

class of GT2(Fq). Hence, the result. �

Proposition 3.6. For matrices of the Regular types:

• A matrix of type R1 has (q − 1)q2 branches of type R1.

• For type R2, there are (q − 1)2q branches of type R2.

• For type R3, there are (q − 1)3 branches of type R3

Proof. The result follows, as the centralizers of matrices of any of the Regular types are

commutative. �

Proof of Theorem 3.1. From the data in Propositions 3.2 to 3.6, the branching rules are

summarized to the branching table/matrix described in the statement of the theorem. �
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4. Branching for GT4(q)

In this section, we discuss the simultaneous conjugacy classes of tuples of commuting

matrices of GT4(Fq). The conjugacy classes of GT4(Fq) is described in Appendix A.

The branching rules are as follows (types written in the order listed in last column of

Appendix A):

Theorem 4.1. The branching matrix for GT4(Fq) is of size 28 (22 types of GT4(Fq)

and 6 new types), which we write as BGT4(Fq) = (A | B | C) (split in three parts along the

columns for convenience of writing) described in Table 1, 2 and 3.

For the convenience, the branching of non-regular types are in part A, those of regular

types in part B, and those of the new types in part C. In each of the sub-tables, the

regular branches are in blue, and the new types in red. The 0r,s denotes the zero matrix

of size r × s. Rest of the section is devoted to proof of this.

6



Table 1. The matrix A























































































































C A1 A′

1
A2 A3 A4 A5 A6 A7 A8 A9 B1 B2 B3 B4 B5 B6

q−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2q−2 q2−q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

q−1 0 q2−q 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2q−2 0 0 q2−q 0 0 0 0 0 0 0 0 0 0 0 0 0

q−1 0 0 0 q2−q 0 0 0 0 0 0 0 0 0 0 0 0

q−1 0 0 0 0 q2−q 0 0 0 0 0 0 0 0 0 0 0

q−1 0 q2−q q2−q q2−q 0 q3−q2 q(q−1)2 0 0 0 0 0 0 0 0 0

q−1 0 0 0 0 0 0 q2−q 0 0 0 0 0 0 0 0 0

2q−2 q2−q 0 q2−q 0 0 0 0 q3−q2 0 0 0 0 0 0 0 0

q−1 q2−q 0 0 2q2−2q 0 0 0 0 q3−q2 0 0 0 0 0 0 0

q−1 0 0 0 q2−q 0 0 0 0 0 q3−q2 0 0 0 0 0 0
(3q−3).
(q−2)

0 0 0 0 0 0 0 0 0 0 (q−1)2 0 0 0 0 0

(4q−4).
(q−2)

0 0 0 0 0 0 0 0 0 0 0 (q−1)2 0 0 0 0

(8q−8).
(q−2)

2(q2−q).
(q−2)

2(q2−q).
(q−2)

(q2−q).
(q−2)

0 0 0 0 0 0 0 0 (q−1)2 q(q−1)2 0 0 0

(4q−4).
(q−2)

0 0
(q2−q).
(q−2)

2(q2−q).
(q−2)

0 0 0 0 0 0 0 (q−1)2 0 q(q−1)2 0 0

(6q−6).
(q−2)

(q2−q).
(q−2)

(q2−q).
(q−2)

(q2−q).
(q−2)

(q2−q).
(q−2)

0 0 0 0 0 0 2(q−1)2 0 0 0
(q2−q).
(q−2)

0

(6q−6).
(q−2).
(q−3)

0 0 0 0 0 0 0 0 0 0 2q3−8q2+
10q−4

q3−4q2+
5q−2

0 0 0 (q−1)3

q−1 q2−q 0 q2−q q2−1 q3−q2 0 q3−q2 q3−q2 q3−q
q4−q3−

q2+q
0 0 0 0 0 0

(4q−4).
(q−2)

(2q−2).
(q−2)

(2q−2).
(q−2)

(3q−3).
(q−2)

2q3−4q2−
2q+4

0 0 0
(q3−q2).
(q−2)

(q3−q2).
(q−2)

0 0 (q−1)2 q(q−1)2 q3−q2−
q+1

0 0

(3q−3).
(q−2)

(q2−q).
(q−2)

(q2−q).
(q−2)

(q2−q).
(q−2)

(q2−q).
(q−2)

(q3−q2).
(q−2)

(q3−q2).
(q−2)

(q3−q2).
(q−2)

0 0 0 (q−1)2 0 0 0 q(q−1)2 0

(6q−6).
(q−2).
(q−3)

q4−6q3+

11q2−6q

q4−6q3+

11q2−6q

q4−6q3+

11q2−6q

q4−6q3+

11q2−6q
0 0 0 0 0 0 2q3−8q2+

10q−4
q3−4q2+
5q−2

q4−4q3+

5q2−2q

q4−4q3+

5q2−2q

q4−4q3+

5q2−2q
q3−3q2+
3q−1

4!(q−1

4 ) 0 0 0 0 0 0 0 0 0 0
q4−6q3

+13q2−12q
+4

q4−7q3+

17q2−17q
+6

0 0 0
q4−5q3+

9q2−7q
+2

0 q2−q 0 0 0 q(q−1)2 0 0 0 0 0 0 0 0 0 0 0

0 0 2q2−2q q−1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 q2−q 2q−2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 q−1 0 0 q3−q2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 q2−q 0 0 0 0 0 0 0 0 0 0 0

0 0 q3+q2−2q q2−1 0 0 q4−q2 q3−q2 0 0 0 0 0 0 0 0 0






















































































































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Table 2. The matrix B

B =













































R1 R2 R3 R4 R5

017×5

q4 − q3 0 0 0 0

0 q4 − 2q3 + q2 0 0 0

0 0 q4 − 2q3 + q2 0 0

0 0 0 q4 − 3q3 + 3q2 − q 0

0 0 0 0 (q − 1)4

06×5













































The first column of A corresponds to the central type C and the entries in the column

are number of classes of each type in GT4(Fq) which is the column two of table in

Appendix A. For all the regular types R1, R2, R3, R4 and R5, the only branch is that

type itself, and the the number of branches is the size of its centralizer which is again

listed in Appendix A. This fully describes the matrix B. Thus, it only remain to explain

the matrix A and C.

4.1. Branching rules for type A. Let us deal with type A classes as in Section A.

Table 3. The matrix C

C =

































































tNT1 tNT2 tNT3 tNT4 tNT5 NR1

017×6

q3 − q2 0 q3 − q2 q4 − 2q3 + q2 q4 − q3 − q2 + q 0

0 q4 − 3q3 + 2q2 q4 − 3q3 + 2q2 0 0 0

q4 − 3q3 + 2q2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

q3 − q2 0 0 0 0 0

0 q3 − q2 0 0 0 0

0 0 q3 − q2 0 0 0

0 0 0 q3 − q2 0 0

0 0 0 0 q3 − q 0

0 q4 − q2 q3 − q q4 − q3 − q2 + q 0 q5 − q4
































































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Proposition 4.2. The branching rules of a matrix of type A1 are:

Branch No. Of Branches Branch No. of Branches

A1 q(q − 1) R1 (q − 1)q

A7 q(q − 1) R2 2q(q − 1)(q − 2)

A8 q(q − 1) R3 q(q − 1)(q − 2)

B3 2q(q − 1)(q − 2) R4 q(q − 1)(q − 2)(q − 3)

B5 q(q − 1)(q − 2) tNT1 q(q − 1).

Here, a new type appears, called tNT1, whose centralizer is

{(

x0 x1 x3
x0

z0 z1
z0

)

| x0z0 6= 0

}

.

Proof. A matrix of type A1 has either of the canonical forms











a 1

a

a

a











, or











a

a

a 1

a











.

We may consider any one of them. WLOG, we take A =











a 1

a

a

a











. The central-

izer ZGT4(Fq)(A) is





























a0 a1 a2 a3

a0

c0 c1

d0











| a0, c0, d0 6= 0



















. Let B =











a0 a1 a2 a3

a0

c0 c1

d0











,

B′ =











a0 a′1 a′2 a′3
a0

c0 c′1
d0











XBX−1, where X =











x0 x1 x2 x3

x0

z0 z1

w0











. Equating XB =

B′X leads us to the following:

a′1 = a1
(

z0 z1

w0

)(

c0 c1

d0

)

=

(

c0 c′1
d0

)(

z0 z1

w0

)

.

Let C =

(

c0 c1

d0

)

, and Z =

(

z0 z1

w0

)

. The second equation leads us to various

conjugacy classes of GT2(Fq). Hence, we take C to be some conjugacy class representative

in GT2(Fq), and Z ∈ ZGT2(Fq)(C). This leads us to the following equation:

(4.1) x0

(

a2 a3

)

+
(

x2 x3

)

.(C − a0I2) =
(

a′2 a′3

)

.Z

When a0 is an eigenvalue of C:

When (a2, a3) = (0, 0): Equation 4.1 becomes
(

x2 x3

)

.(C − a0I2) = (0 0).
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When C = a0I2, Equation 4.1 is void, and we have B reduced to











a0 a1

a0

a0

a0











,

and ZGT4(Fq)(A,B) = ZGT4(Fq)(A). Thus (A,B) is of type A1, and there are q(q − 1)

such branches.

When C =

(

a0 1

a0

)

, Equation 4.1 becomes
(

x2 x3

)

.

(

0 1

0

)

= (0 0). Thus x2 = 0.

We have B reduced to











a0 a1

a0

a0 1

a0











, and ZGT4(Fq)(A,B) =





























x0 x1 x3

x0

z0 z1

z0





























.

This centralizer is not isomorphic to the centralizers of te known types. Thus (A,B) is

of a new type, which we will call tNT1 and there are q(q − 1) such branches.

When C =

(

a0

b0

)

(a0 6= b0), Equation 4.1 becomes
(

x2 x3

)

.

(

(b0 − a0)

)

=

(0 0). Thus x3 = 0. We have B reduced to











a0 a1

a0

a0

b0











, and ZGT4(Fq)(A,B) =





























x0 x1 x2

x0

z0

z2





























. Thus (A,B) is of type B3, and there are q(q − 1)(q − 2) such

branches.

When C =

(

b0

a0

)

(a0 6= b0), Equation 4.1 becomes
(

x2 x3

)

.

(

(b0 − a0)
)

=

(0 0). Thus x2 = 0. We have B reduced to











a0 a1

a0

b0

a0











, and ZGT4(Fq)(A,B) =





























x0 x1 x3

x0

z0

z2





























. Thus (A,B) is of type B3, and there are q(q − 1)(q − 2) such

branches.

When (a2, a3) 6= (0, 0):

When C = a0I2, Equation 4.1 becomes:
(

a2 a3

)

=
(

a′2 a′3

)

(

z0
x0

z1
x0

z2
x0

)

.
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We have from this:

a2 =
z0
x0

a′2(4.2)

a3 =
z1
z0

a′2 +
z2
x0

a′3(4.3)

When a2 6= 0, choose x0 such that a′2 = 1. In the equation below, choose z1 so that a′3 = 0.

So, B reduces to











a0 a1 1

a0

a0

a0











, and ZGT4(Fq)(A,B) =





























x0 x1 x2 x3

x0

x0

z2





























.

This (A,B) is of type A7, and there are q(q − 1) such branches.

When a2 = 0, a3 6= 0, choose z2 such that a′3 = 1. Thus B is reduced to











a0 a1 1

a0

a0

a0











,

and ZGT4(Fq)(A,B) =





























x0 x1 x2 x3

x0

z0 z1

x0





























. This (A,B) is of type A8, and there are

q(q − 1) such branches.

When C =

(

a0 1

a0

)

, here Z =

(

x0 x1

x0

)

. Equation 4.1 becomes

(

a2 a3

)

+
(

x2

x0

x3

x0

)

(

0 1

0 0

)

=
(

a′2 a′3

)

(

z0
x0

z1
x0

z0
x0

)

.

We have:

a2 = a′2
z0
x0

a3 +
x2
x0

=
z1
z0

a′2 +
z0
x0

a′3.

Choose x2 such that a′3 = 0. As (a2, a3) 6= (0, 0), and a3 = 0, we have a2 6= 0. Choose

z0 such that a′2 = 1. So, B is reduced to











a0 a1 1

a0

a0 1

a0











, and ZGT4(Fq)(A,B) =





























x0 x1 x2 x3

x0

x0 x2

x0





























. This (A,B) is of type R1, and there are q(q− 1) such branches.
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When C =

(

a0

b0

)

, where a0 6= b0. Here Z =

(

z0

z2

)

. Here, Equation 4.1

becomes:
(

x2

x0

x3

x0

)

(

0

0 b0 − a0

)

=
(

a′2 a′3

)

(

z0
x0

z2
x0

)

.

We have:

a2 = a′2
z0
x0

a3 +
x3
x0

(b0 − a0) =
z0
x0

a′3.

As b0 − a0 6= 0, choose x3 so that a′3 = 0. So we are left with a2 6= 0. Choose

z0 such that a′2 = 1. So B is reduced to











a0 a1 1

a0

a0

b0











, and ZGT4(Fq)(A,B) =





























x0 x1 x2

x0

x0

z2





























. Thus, (A,B) is of type R2, and there are q(q − 1)(q − 2) such

branches.

When C =

(

b0

a0

)

, where a0 6= b0. Here Z =

(

z0

z2

)

. Here, Equation 4.1

becomes:
(

x2

x0

x3

x0

)

(

b0 − a0

0

)

=
(

a′2 a′3

)

(

z0
x0

z2
x0

)

.

We have:

a2 +
x2
x0

(b0 − a0) = a′2
z0
x0

a3 =
z0
x0

a′3.

As b0 − a0 6= 0, choose x2 so that a′2 = 0. So we are left with a3 6= 0. Choose

z2 such that a′3 = 1. So B is reduced to











a0 a1 1

a0

b0

a0











, and ZGT4(Fq)(A,B) =





























x0 x1 x3

x0

z0

x0





























. Thus, (A,B) is of type R2, and there are q(q − 1)(q − 2) such

branches.
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Now, we come to the case of a0 not being an eigenvalue of C. In Equation 4.1, the

matrix (C−a0I2) is invertible. So, we can choose x2, x3 such that both a2 = a3 = 0. Thus,

on replacing a2 and a3 with 0 each in Equation 4.1, we get
(

x2 x3

)

(C−a0I2) =
(

0 0
)

.

So x2 = x3 = 0. Thus, we have:

When C = b0I2, b0 6= a0, B is reduced to











a0 a1

a0

b0

b0











, and ZGT4(Fq)(A,B) =





























x0 x1

x0

z0 z1

z2





























. (A,B) is of the type B5, and there are q(q − 1)(q − 2) such

branches.

When C =

(

b0 1

b0

)

, b0 6= a0, B is reduced to











a0 a1

a0

b0 1

b0











, and ZGT4(Fq)(A,B) =





























x0 x1

x0

z0 z1

z0





























. (A,B) is of the type R3, and there are q(q − 1)(q − 2) such

branches.

When C =

(

b0

c0

)

, b0 6= a0 6= c0 6= b0, B is reduced to











a0 a1

a0

b0

c0











, and

ZGT4(Fq)(A,B) =





























x0 x1

x0

z0

z2





























. (A,B) is of the type R4, and there are q(q −

1)(q − 2)(q − 3) such branches.

We are left with no other cases.

�

Proposition 4.3. The branching rules of a matrix of type A′

1 are:
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Branch No. of Branches Branch No. of Branches

A′

1 q(q − 1) R2 2q(q − 1)(q − 2)

A5 q(q − 1) R3 q(q − 1)(q − 2)

B3 2q(q − 1)(q − 2) R4 q(q − 1)(q − 2)(q − 3)

B5 q(q − 1)(q − 2) NR1 q(q − 1)(q + 2)

tNT2 2q(q − 1)

Two new types NR1 and tNT2 appear here. The centralizers of these new types are
{(

x0I2 Y
x0I2

)

| Y ∈ M2(Fq), x0 6= 0
}

, and

{(

x0 x2 x3

x0 y1 y2
x0

y0

)

| x0y0 6= 0

}

, respectively.

Proof. A matrix of type A′

1 has the canonical form: A =











a

a 1

a

a











. The cen-

tralizer ZGT4(Fq)(A), of A is





























a0 a2 a3

b0 b1 b2

b0

c0





























. Let B =











a0 a2 a3

b0 b1 b2

b0

c0











,

B′ =











a0 a′2 a′3
b0 b′1 b′2

b0

c0











= XBX−1, and where X =











x0 x2 x3

y0 y1 y2

y0

z0











. Denote the

submatrix

(

a0 a3

c0

)

of B by C, and the submatrix

(

x0 x3

z0

)

by Z. Then equating

XB = B′X leads us to ZC = C ′Z. Thus, we can take C to be a canonical form in

GT2(Fq), and Z ∈ ZGT2(Fq)(C). Thus we have b′1 = b1, and the following equaitons:

x0a2 + x2b0 = x2a0 + y0a
′

2(4.4)

y0b2 + y2c0 = y2b0 + z0b
′

2(4.5)

When C has b0 as an eigenvalue:

When (a2, b2) = (0, 0):

When C = b0I2, Equation 4.4 and 4.5 become void, and B becomes, B =











b0

b0 b1

b0

b0











,

and ZGT4(Fq)(A,B) = ZGT4(Fq)(A). (A,B) is of type A′

1, and there are q(q − 1) such

branches.
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When C =

(

b0 1

b0

)

. Here too, Equations 4.4 and 4.5 are void. So, B reduces to











b0 1

b0 b1

b0

b0











, and ZGT4(Fq)(A,B) =





























x0 x2 x3

y0 y1 y2

y0

x0





























. This (A,B) is of type

A5, and there are q(q − 1) such branches.

When C =

(

b0

c0

)

, b0 6= c0. Here Equation 4.4 stays void, but 4.5 becomes

y2c0 = y2b0, thus y2 = 0. So, B reduces to











b0

b0 b1

b0

c0











, and ZGT4(Fq)(A,B) =





























x0 x2

y0 y1

y0

z0





























. (A,B) is of type B3, and there are q(q−1)(q−2) such branches.

When C =

(

a0

b0

)

, b0 6= a0. Here Equation 4.4 becomes x2b0 = x2a0, hence x2 = 0,

and Equation 4.5 stays void. So, B reduces to











c0

b0 b1

b0

b0











, and ZGT4(Fq)(A,B) =





























x0

y0 y1 y2

y0

z0





























. (A,B) is of type B3, and there are q2(q − 1) = q3 − q2 such

branches.

When (a2, b2) 6= (0, 0):

When C = b0I2, Equations 4.4 and 4.5 become

x0a2 = y0a
′

2

y0b2 = z0b
′

2

When a2 6= 0, choose y0 such that a′2 = 1. When b2 6= 0, choose z0 such that b′2 = 1.

So, B is reduced to











b0 1

b0 b1 1

b0

b0











, and ZGT4(Fq)(A,B) =





























y0 x2 x3

y0 y1 y2

y0

y0





























.
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This centralizer is not of any known type in GT4(Fq), and it is clearly a commutative

one. We call this new type NR1. There are q(q − 1) such branches.

When b2 = 0, then Equation 4.5 is void, and B is reduced to











b0 1

b0 b1

b0

b0











, and

ZGT4(Fq)(A,B) =





























y0 x2 x3

y0 y1 y2

y0

z0





























. This centralizer too is not of any known type

in GT4(Fq), and definitely not of R1, as this one is 6-dimensional. We call this new type

tNT2. There are q2 such branches.

When a2 = 0, and b2 6= 0, choose z0 such that b′2 = 1, and B is reduced to










b0

b0 b1 1

b0

b0











, and ZGT4(Fq)(A,B) =





























x0 x2 x3

y0 y1 y2

y0

y0





























. We have another q2

branches of this new type tNT2.

When C =

(

b0 1

b0

)

. Here Z =

(

x0 x3

x0

)

. Equation 4.4 becomes x0a2 = y0a
′

2, and

Equation 4.5 becomes y0b2 = x0b
′

2.

When a2 6= 0, choose y0 such that a′2 = 1. Now, on substituting a2 by a′2 = 1 in the

equation, we get y0 = x0, and thus b′2 = b2. B is reduced to











b0 1 1

b0 b1 b2

b0

b0











, with

ZGT4(Fq)(A,B) =





























y0 x2 x3

y0 y1 y2

y0

y0





























. (A,B) is of type NR1, and there are q2(q−1)

such branches.

When a2 = 0, we look at b′2 6= 0, Choose x0 such that b′2 = 1. Then B is reduced to










b0 1

b0 b1 1

b0

b0











, with ZGT4(Fq)(A,B) =





























y0 x2 x3

y0 y1 y2

y0

y0





























. (A,B) is of type R1,

and there are another q(q − 1) such branches.
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When C =

(

b0

c0

)

, b0 6= c0, then Z =

(

x0

z0

)

. Equation 4.4 becomes x0a2 =

y0a
′

2, and Equation 4.5 becomes y0b2 + y2c0 = y2b0 + z0b
′

2. As b0 6= c0, choose y2 such

that b′2 = 0. So we have only one case here a2 6= 0. Thus, choose x0 such that a′2 = 1.

Thus B is reduced to











b0 1

b0 b1

b0

c0











, and ZGT4(Fq)(A,B) =





























y0 x2

y0 y1

y0

z0





























.

(A,B) is of type R2, and there are q(q − 1)(q − 2) such branches.

When C =

(

a0

b0

)

, a0 6= b0, then Z =

(

x0

z0

)

. Equation 4.4 becomes x0a2 +

x2b0 = y0a
′

2 + x2a0, and Equation 4.5 becomes y0b2 = z0b
′

2. As b0 6= c0, choose x2 such

that a′2 = 0. So we have only one case here b2 6= 0. Thus, choose z0 such that b′2 = 1.

Thus B is reduced to











a0

b0 b1 1

b0

b0











, and ZGT4(Fq)(A,B) =





























x0

y0 y1 y2

y0

y0





























.

(A,B) is of type R2, and there are q(q − 1)(q − 2) such branches.

Now, the second main case of b0 not being an eigenvalue of C, i.e., b0 6= a0 and b0 6= c0.

Here in Equation 4.4, choose x2 so that a′2 = 0, and in Equation 4.5 choose y2 so that

b′2 = 0.

When C = a0I2, where a0 6= b0, B is reduced to











a0

b0 b1

b0

a0











, and ZGT4(Fq)(A,B) =





























x0 x3

y0 y1

y0

z0





























. (A,B) is of type B5, and there are q(q−1)(q−2) such branches.

When C =

(

a0 1

a0

)

, where a0 6= b0, B is reduced to











a0 1

b0 b1

b0

a0











, and

ZGT4(Fq)(A,B) =





























x0 x3

y0 y1

y0

x0





























. (A,B) is of type R3, and there are q(q −

1)(q − 2) such branches.
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When C =

(

a0

c0

)

, where a0, c0 6= b0, and a0 6= c0, B is reduced to











a0

b0 b1

b0

c0











,

and ZGT4(Fq)(A,B) =





























x0

y0 y1

y0

z0





























. (A,B) is of type R, and there are q(q −

1)(q − 2)(q − 3) such branches.

With this there are no other cases left for us to analyse.

Adding up the branches of type NR1, we have a total of 2q(q − 1) + q2(q − 1) =

q(q − 1)(q + 2) branches.

�

Proposition 4.4. The branching rules of a matrix of type A2 are given below:

Branch No. of Branches Branch No. of Branches

A2 q(q − 1) R2 3(q2 − q)(q − 2)

A5 q(q − 1) R3 (q2 − q)(q − 2)

A7 q(q − 1) R4 q(q − 1)(q − 2)(q − 3)

B3 (q2 − q)(q − 2) tNT2 q − 1

B4 (q2 − q)(q − 2) tNT3 q(q − 1)

B5 (q2 − q)(q − 2) NR1 q2 − 1.

R1 q(q − 1)

A further new type tNT3 appears here, whose centralizer is

{(

x0 x1 x2 x3
y0 y1 y2

x0

x0

)

| x0, y0 6= 0

}

.

Proof. Matrices of this type have two non-similar canonical forms:











a 1

a

a

a











, and











a

a 1

a

a











. Proving this for anyone of them is enough. We consider A =











a 1

a

a

a











.

The centralizer ZGT4(Fq)(A) of A is:





























a0 a1 a2 a3

b0 b1 b2

a0

c0





























. Let B =











a0 a1 a2 a3

b0 b1 b2

a0

c0











,
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and B′ =











a0 a′1 a′2 a′3
b0 b′1 b′2

a0

c0











, be a conjugate of B by X =











x0 x1 x2 x3

y0 y1 y2

x0

z0











. Denote

C =

(

b0 b2

c0

)

, and Z =

(

y0 y2

z0

)

. Equating XB = B′X, we have first ZC = C ′Z.

Thus, we may take C to be a canonical form from GT2(Fq), and Z ∈ ZGT2(Fq)(C). With

these, we have the following equations:

x0.
(

a1 a3

)

+
(

x1 x3

)

(C − a0I2) =
(

a′1 a′3

)

.Z(4.6)

y0b1 + y1a0 = x0b
′

1 + y1b0(4.7)

x0a2 + x1b1 = x0a
′

2 + y1a
′

1(4.8)

We have two main cases, under each of which there are subcases:

When a0 is an eigenvalue of C When C = a0I2:, Equation 4.6 becomes:

(4.9)
(

x0a1 x0a3

)

=
(

y0a
′

1 y2a
′

1 + z0a
′

3

)

Equation 4.7 becomes y0b1 = x0b
′

1.

When a1 = b1 = 0: From Equation 4.9 we have x0a3 = z0a
′

3, and from Equation 4.8

a′2 = a2

We have two subcases:

When a3 = 0: B is reduced to











a0 a2

a0

a0

a0











, and ZGT4(Fq)(A,B) = ZGT4(Fq)(A).

(A,B) is of type A2, and there are q(q − 1) such branches.

When a3 6= 0, choose z0 so that a′3 = 1. B is reduced to











a0 a2 1

a0

a0

a0











, with

ZGT4(Fq)(A,B) =





























x0 x1 x2 x3

y0 y1 y2

x0

x0





























. Now, this centralizer is not isomorphic to any

known centralizer of a matrix in GT4(Fq), and neither it is isomorphic to those of the

three new types we encountered in the previous propositions. We have a new type tNT3,

and there are q(q − 1) such branches.

When a1 = 0, and b1 6= 0. In Equation 4.7 choose y0 such that b′1 = 1. Then

Equation 4.8 becomes x0a2 + x1 = x0a
′

2. Choose x1 such that a′2 = 0.
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Here, when a3 = 0, B is reduced to











a0

a0 1

a0

a0











, with ZGT4(Fq)(A,B) =





























x0 x2 x3

x0 y1 y2

x0

z0





























. (A,B) is of type tNT2, and there are q − 1 such branches.

When a3 6= 0, choose z0 such that a′3 = 1. Thus B is reduced to











a0 1

a0 1

a0

a0











,

with ZGT4(Fq)(A,B) =





























x0 x2 x3

x0 y1 y2

x0

x0





























. (A,B) is of type NR1, and there are

q − 1 such branches.

When a1 6= 0, in Equation 4.9, choose y0 such that a′1 = 1. Thus, on replacing a1

with a′1 = 1 in Equation 4.9, we get y0 = x0. In the same equation, choose y2 such that

a′3 = 0.

From Equation 4.7, we get b′1 = b1. Equation 4.8 becomes x0a2 + x1b1 = x0a
′

2 +

y1. Choose y1 such that a′2 = 0. Here, B is reduced to











a0 1

a0 b1

a0

a0











, with

ZGT4(Fq)(A,B) =





























x0 x1 x2 x3

x0 b1x1

x0

z0





























. (A,B) is of type A7, and there are q(q− 1)

such branches.

When C =

(

a0 1

a0

)

: Equation 4.6 becomes

(4.10)
(

x0a1 x0a3

)

+
(

0 x1

)

=
(

y0a
′

1 y2a
′

1 + y0a
′

3

)

.

Choose x1 such that a′3 = 0. Hence, on replacing a3 by a′3 = 0 in the above equation, we

have x1 = a′1y2.

Equation 4.7 becomes x0b
′

1 = y0b1.
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When a1 = b1 = 0, from Equation 4.8 a′2 = a2, B is reduced to











a0 a2

a0 1

a0

a0











,

with ZGT4(Fq)(A,B) =





























x0 x2 x3

y0 y1 y2

x0

y0





























. (A,B) is of type A5. There are q(q − 1)

such branches.

When a1 = 0, and b1 6= 0, we choose y0 in Equation 4.7 so that b′1 = 1. So, Equation 4.8

becomes x0a2 = x0a
′

2, since x1 = y2a1 = 0. Hence a′2 = a2. So B is reduced to










a0 a2

a0 1 1

a0

a0











, with ZGT4(Fq)(A,B) =





























x0 x2 x3

x0 y1 y2

x0

x0





























. So, we have another

q(q − 1) branches of type NR1 here.

When a1 6= 0, in Equation 4.6, choose y0 so that a′1 = 1. So, x1 = y2, and on replacing

a′1 with a1 in the same equation, we have y0 = x0, and hence from Equation 4.7, b′1 = b1.

With these, Equation 4.8 becomes x0a2+ x1b1 = x0a
′

2 + y1. Choose y1 so that a′2 = 0.

Thus B is reduced to











a0 1

a0 b1 1

a0

a0











, with ZGT4(Fq)(A,B) =





























x0 x1 x2 x3

x0 b1x1 x1

x0

x0





























.

By a routine check, one can see that this subgroup is commutative. Thus (A,B) is of

type R1, and there are q(q − 1) such branches.

When C =

(

a0

b0

)

, b0 6= a0: Here Z =

(

y0

z0

)

. Equation 4.6 becomes

(4.11)
(

x0a1 x0a3

)

+
(

0 (b0 − a0)x3

)

=
(

y0a
′

1 z0a
′

3

)

And, Equation 4.7 becomes y0b1 = x0b
′

1.

Choose x3 such that a′3 = 0.

When a1 = b1 = 0, from Equation 4.8, we have a′2 = a2, and B is reduced to










a0 a2

a0

a0

b0











, with ZGT4(Fq)(A,B) =





























x0 x1 x2

y0 y1

x0

z0





























. This (A,B) is of

type B4, and there are q(q − 1)(q − 2) such branches.

When a1 = 0, and b1 6= 0. In Equation 4.7, choose y0 so that b′1 = 1. And, Equation 4.8

becomes x0a2 + x1 = x0a
′

2. We choose x1 so that a′2 = 0. Hence, B is reduced to
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









a0

a0 1

a0

b0











, with ZGT4(Fq)(A,B) =





























x0 x2

x0 y1

x0

z0





























. By a routine check,

one can see that this subgroup is commutative. Thus (A,B) is of type R2, and there are

q(q − 1)(q − 2) such branches.

When a1 6= 0, in Equation 4.6, choose y0 so that a′1 = 1. Hence, on replacing a1 by

a′1 = 1 on both sides of Equation 4.11, we get x0 = y0. Hence, Equation 4.7 becomes

x0b1 = x0b
′

1, thus leaving use with b′1 = b1. Equation 4.8 becomes x0a2+x1b1 = y1+x0a
′

2.

Thus, choose y1 such that a′2 = 0. Hence B is reduced to











a0 1

a0 b1

a0

b0











, with

ZGT4(Fq)(A,B) =





























x0 x1 x2

x0 b1x1

x0

z0





























. By a routine check, one can see that this

subgroup is commutative. Thus (A,B) is of type R2, and there are q(q − 1)(q − 2) such

branches.

When C =

(

b0

a0

)

, a0 6= b0: Here too Z =

(

y0

z0

)

. In this case, Equation 4.6 is

reduced to
(

x0a1 x0a3

)

+
(

(b0 − a0)x1 0
)

=
(

y0a
′

1 z0a
′

3

)

. Choose x1 so that a′1 = 0.

Equation 4.7 becomes y0b1 + y1a0 = y1b0 + x0b
′

1. As a0 6= b0, choose y1 such that

b′1 = 0. With these, Equation 4.8 becomes x0a2 = x0a
′

2, thus leaving us with a′2 = a2.

Now, we are left to deal with a3.

When a3 = 0, B is reduced to











a0 a2

b0

a0

a0











, with ZGT4(Fq)(A,B) =





























x0 x2 x3

y0

x0

z0





























.

This subgroup is isomorphic to the subgroup





























y0

x0 x2 x3

x0

z0





























, which is the cen-

tralizer of a matrix of type B3. Hence, we have q(q − 1)(q − 2) branches of type B3.
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When a3 6= 0, choose z0 so that a′3 = 1. Hence B is reduced to











a0 a2 1

b0

a0

a0











,

with ZGT4(Fq)(A,B) =





























x0 x2 x3

y0

x0

x0





























. By a routine check, one can see that this

subgroup is commutative. Thus (A,B) is of type R2, and there are q(q − 1)(q − 2) such

branches. With this we have looked at all the cases, when a0 is an eigenvalue of C.

When a0 is not an eigenvalue oc C: When a0 is not an eigenvalue of C, C − a0I2 =
(

b0 − a0 b2

c0 − a0

)

, with b0 − a0 6= 0, and c0 − a0 6= 0. Hence, in equation 4.6, we can

choose
(

x1 x3

)

such that a′1 = 0, and a′3 = 0. In Equation 4.7 choose y1 so that b′1 = 0.

Hence Equation 4.8 becomes x0a2 = x0a
′

2. Therefore a′2 = a2.

On replacing a1 and a3 by 0 in Equation 4.6, we get x1 = x3 = 0, and on replacing b1

by 0 in Eqaution 4.7, we get y1 = 0. Now, we can look at the various cases of C.

When C = b0I2, b0 6= a0: B is reduced to











a0 a2

b0

a0

b0











and ZGT4(Fq)(A,B) =





























x0 x2

y0 y2

x0

z0





























. Thus (A,B) is of type B5, and there are q(q − 1)(q − 2) such

branches.

When C =

(

b0 1

b0

)

, b0 6= a0: B is reduced to











a0 a2

b0 1

a0

b0











and ZGT4(Fq)(A,B) =





























x0 x2

y0 y2

x0

y0





























. Thus (A,B) is of type R3, and there are q(q − 1)(q − 2) such

branches.
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When C =

(

b0

c0

)

, b0 6= c0, a0 /∈ {b0, c0}: B is reduced to











a0 a2

b0

a0

c0











and ZGT4(Fq)(A,B) =





























x0 x2

y0

x0

z0





























. Thus (A,B) is of type R4, and there are

q(q − 1)(q − 2)(q − 3) such branches.

Adding up the branches of type NR1, we have a total of q − 1 + q(q − 1) = q2 − 1

branches of type R1. �

Proposition 4.5. For a matrix of type A3, the branching rules are in the table below:

Branch No. of Branches Branch No. of Branches

A3 q(q − 1) R1 q2 − 1

A5 q(q − 1) R2 2(q2 − 1)(q − 2)

A8 2q(q − 1) R3 (q2 − q)(q − 2)

A9 q(q − 1) R4 (q2 − q)(q − 2)(q − 3)

B4 2(q2 − q)(q − 1) tNT3 2(q − 1)

B5 (q2 − q)(q − 1) tNT4 q − 1.

A new type tNT4 appears here, whose centralizer is

{(

x0 x1 x2 x3

x0 y1 y2
x0 x1

x0

)

| x0 6= 0

}

.

Proof. A matrix of type A3 has the canonical form A =











a 1

a

a

a











. Then we have

ZGT4(Fq)(A) =





























a0
t−→b a1

C
−→
d

a0






|

a0 6= 0, C ∈ T2(Fq)
t−→b = (b1 b2) ∈ M1×2(Fq)

−→
d =

(

d1

d2

)

∈ M2×1(Fq)























. Let B =







a0
t−→b a1

C
−→
d

a0






,

and B′ =







a0
t
−→
b ′ a′1
C ′

−→
d ′

a0






= XBA−1, where X =







x0
t−→y x1

Z −→w

x0






. XB = B′X leads to

firstly, ZC = C ′Z, hence we shall take C to be a canonical conjugacy class representative
24



in GT2(Fq), and Z ∈ ZGT2(Fq)(C). Then we have the following set of equations:

x0
t−→b + t−→y .(C − a0I2) = t−→b ′.Z(4.12)

Z.
−→
d + (a0I2 − C)−→w = x0

−→
d ′(4.13)

x0a1 + y1d1 + y2d2 = x0a
′

1 + b′1w1 + b′2w2(4.14)

When a0 is an eigenvalue of C:

When
−→
b =

−→
d =

−→
0 :

Here, Equation 4.12 becomes t−→y (C − a0I2) = t−→0 , Equation 4.13 becomes (a0I2 −

C)−→w =
−→
0 , and Equation 4.14 becomes x0a1 = x0a

′

1. Hence we have a′1 = a1.

When C = a0I2: Equations 4.12 and 4.13 are void. Hence B is reduced to











a0 a1

a0

a0

a0











,

and ZGT4(Fq)(A,B) = ZGT4(Fq)(A). (A,B) is of type A2, and there are q(q − 1) such

branches.

When C =

(

a0 1

a0

)

: Here Equation 4.12 becomes:
(

0 y1

)

=
(

0 0
)

, and Equa-

tion 4.13 becomes

(

−w2

0

)

=

(

0

0

)

. Thus y1 = 0, and w2 = 0. B is reduced to











a0 a2

a0 1

a0

a0











, and ZGT4(Fq)(A,B) =





























x0 y2 x1

z0 z1 w1

z0

x0





























. (A,B) is of type

A5, and there are q(q − 1) such branches.

When C =

(

a0

c0

)

, a0 6= c0: Here Equation 4.12 becomes:
(

0 y2(c0 − a0)
)

=

(

0 0
)

, and Equation 4.13 becomes

(

(a0 − c0)w2

)

=

(

0

0

)

. Thus y2 = 0, and w2 = 0. B

is reduced to











a0 a2

a0

c0

a0











, and ZGT4(Fq)(A,B) =





























x0 y1 x1

z0 w1

z2

x0





























. (A,B)

is of type B4, and there are q(q − 1)(q − 2) such branches.

When C =

(

b0

a0

)

, a0 6= b0: Here Equation 4.12 becomes:
(

(b0 − a0)y1 0
)

=

(

0 0
)

, and Equation 4.13 becomes

(

(b0 − a0)w1

0

)

=

(

0

0

)

. Thus y1 = 0, and w1 = 0.
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B is reduced to











a0 a2

b0

a0

a0











, and ZGT4(Fq)(A,B) =





























x0 y2 x1

z0

z2 w2

x0





























. This

(A,B) too is of type B4, and there are q(q − 1)(q − 2) such branches.

When (
−→
b ,

−→
d ) 6= (

−→
0 ,

−→
0 ).

When C = a0I2: Equation 4.12 becomes:

(4.15)
(

x0b1 x0b2

)

=
(

z0b
′

1 z1b
′

1 + z2b2

)

,

and Equation 4.13 becomes:

(4.16)

(

z0d1 + z1d2

z2d2

)

=

(

x0d
′

1

x0d
′

2

)

.

When b1 = 0 and b2 6= 0. In Equation 4.15 choose z2 so that b′2 = 1. Hence, on

replacing b2 by b′2 = 1 in Equation 4.15, we get x0 = z2. Hence in Equation 4.16,

x0d
′

2 = x0d2. Thus d2 = d′2.

Here, if d2 = 0, in Equation 4.16, we have x0d
′

1 = z0d1. When d1 = 0; Equa-

tion 4.14 becomes x0a1 = x0a
′

1 + w2. Choose w2 so that a′1 = 0. Hence B is reduced

to











a0 1

a0

a0

a0











, and ZGT4(Fq)(A,B) =





























x0 y1 y2 x1

z0 z1 w1

x0

x0





























. (A,B) is of type

tNT3, and there are q − 1 such branches.

When d1 6= 0, choose z0 so that d′1 = 1. Then Equation 4.14 becomes x0a1 + y1 =

x0a
′

1w2. Choose w2 such that a′1 = 0. With these, B is reduced to:











a0 1

a0 1

a0

a0











,

and ZGT4(Fq)(A,B) =





























x0 y1 y2 x1

x0 z1 w1

x0 y1

x0





























.Now, this is a centralizer we have not seen

so far. Thus we have a new type, tNT4. There are q − 1 such branches.

When d2 6= 0, in Equation 4.16, choose z1 so that d′1 = 0. Equation 4.14 becomes x0a1+

y2d2 = x0a
′

1 + w2. Choose w2 such that a′1 = 0. So, B is reduced to











a0 1

a0

a0 d2

a0










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and ZGT4(Fq)(A,B) =





























x0 y1 y2 x1

z0 w1

x0 d2y2

x0





























. (A,B) is of type A8, and there are

(q − 1)2 such branches.

When b1 = b2 = d2 = 0. Here d1 6= 0. Choose z0 so that d′1 = 1. Then, in

Equation 4.14, we have x0a1 + y1 = x0a
′

1. Choose y1 so that a′1 = 0. Thus B is reduced

to:











a0

a0 1

a0

a0











, and ZGT4(Fq)(A,B) =





























x0 y2 x1

x0 z1 w1

z2 w2

x0





























. (A,B) is of type

tNT3. There are q − 1 such branches.

When b1 = b2 = 0, and d2 6= 0. In Equation 4.16, choose z2 such that d′2 = 1,

and in the same equation, choose z1 so that d′1 = 0. With these, Equation 4.14 becomes

x0a1+y2 = x0a
′

1. Choose y2 such that a′1 = 0. Thus B is reduced to:











a0

a0

a0 1

a0











,

and ZGT4(Fq)(A,B) =





























x0 y1 x1

z0 w1

x0 w2

x0





























. This too is of type A8. There are q − 1

such branches.

When b1 6= 0. In Equation 4.15, choose z0 so that b′1 = 1, and choose z1 so that b′2 = 0.

On replacing b1 with b′1 = 1, and b2 with b′2 = 0 in Equation 4.15, we get z0 = x0, and

z1 = 0. Putting these in equation 4.16 leaves us with d′1 = d1 and z2d2 = x0d
′

2.

With these, Equation 4.14 is reduced to x0a1 + d1y1 = x0a
′

1 + w1. Choose w1 so that

a′1 = 0.

When d2 = 0, B is reduced to











a0 1

a0 d1

a0

a0











, and ZGT4(Fq)(A,B) =





























x0 y1 y2 x1

x0 d1y1

z2 w2

x0





























.

This too is of type A8. There are q(q − 1) such branches.

When d2 6= 0, in Equation 4.16, choose z2 so that d′2 = 1. With these Equation 4.14

becomes x0a1 + y1d1 + y2 = x0a
′

1 +w1. Choose w1 such that a′1 = 0. Thus B is reduced
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to











a0 1

a0 d1

a0 1

a0











, and ZGT4(Fq)(A,B) =





























x0 y1 y2 x1

x0 y2 + d1y1

x0 w2

x0





























. This is of

type A9. There are q(q − 1) such branches.

So, with these, we are done with all the cases, when C = a0I2.

When C =

(

a0 1

a0

)

: Here Z =

(

z0 z1

z0

)

. Equation 4.12 becomes:

(

x0b1 x0b2

)

+
(

0 y1

)

=
(

z0b
′

1 z1b
′

1 + z0b
′

2

)

Choose y1 such that b′2 = 0. On substituting b2 with b′2 = 0 in the above equation, we

have y1 = z1b
′

1.

Similarly, Equation 4.13 becomes

(

z0d1 + z1d2

z0d2

)

+

(

−w2

0

)

=

(

x0b
′

1

x0b
′

2

)

.

Choose w2 such that d′1 = 0. On substituting d1 with d′1 = 0 in the above equation, we

have w2 = d2z1.

When b1 6= 0, choose z0 so that b′1 = 1. Then, on substituting b1 with b′1 = 1

in Equation 4.12, we get z0 = x0, and thus d′2 = d2. With these, Equation 4.14 be-

comes x0a1 + y2d2 = x0a
′

1 + w1. Choose w1 such that a′1 = 0. Thus, B is reduced to










a0 1

a0 1

a0 d2

a0











, and ZGT4(Fq)(A,B) =





























x0 z1 y2 x1

x0 z1 d2y2

x0 d2z1

x0





























. This (A,B) is of

type R1, and there are q(q − 1) such branches.

When b1 = 0, and d2 6= 0 y1 = 0. In Equation 4.13, choose z0 so that d′2 = 1. With

these, Equation 4.14 becomes x0a1 + y2 = x0a
′

1. Choose y2 so that a′1 = 0. Thus, B

is reduced to











a0

a0 1

a0 1

a0











, and ZGT4(Fq)(A,B) =





























x0 x1

x0 z1 w1

x0 z1

x0





























. By a

routine check, one can see that this is commutative. Thus (A,B) is of type R1, and there

are q − 1 such branches.

When C =

(

a0

b0

)

, b0 6= a0: Here Z =

(

z0

z2

)

. Equation 4.12 becomes :

(

x0b1 x0b2

)

+
(

0 (b0 − a0)y2

)

=
(

z0b
′

1 z2b
′

2

)
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As b0−a0 6= 0, choose y2 such that b′2 = 0. Hence, on replacing b2 by b′2 = 0 in the above

equation, we get y2 = 0.

Similarly Equation 4.13 becomes:

(

z0d1 z2d2

)

+

(

0

(a0 − b0)w2

)

=
(

x0d
′

1 x0d
′

2

)

Choose w2 so that d′2 = 0. So, if we replace d2 by d′2 = 0 in the above equation, we have

w2 = 0.

When b1 = 0 and d1 6= 0, choose z0 so that d′1 = 1. With these, Equation 4.14 becomes

x0a1 + y1 = x0a
′

1. Choose y1 so that a′1 = 0. B is thus reduced to











a0

a0 1

b0

a0











,

and ZGT4(Fq)(A,B) =





























x0 x1

x0 w1

z2

x0





























. By a routine check, we can see that this

centralizer is commutative. Thus (A,B) is of type R2, and there are (q − 1)(q − 2) such

branches.

When b1 6= 0. in Equation 4.12 for this C, choose z0 so that b′1 = 1. Thus on

substituting b1 with b′1 = 1 in the same, we get z0 = x0. Hence, from Equation 4.13

for this case, we have d′1 = d1. With these Equation 4.14 becomes x0a1 + d1y1 =

x0a
′

1 + w1. Choose w1 so that a′1 = 0. Hence B is reduced to











a0 1

a0 d1

b0

a0











and

ZGT4(Fq)(A,B) =





























x0 y1 x1

x0 d1y1

z2

x0





























. Easy to see that this centralizer too is

commutative. Thus (A,B) is of type R2, and there are q(q − 1)(q − 2) such branches.

When C =

(

b0

a0

)

, b0 6= a0: Here Z =

(

z0

z2

)

. Equation 4.12 becomes :

(

x0b1 x0b2

)

+
(

(b0 − a0)y1 0
)

=
(

z0b
′

1 z2b
′

2

)

As b0−a0 6= 0, choose y1 such that b′1 = 0. Hence, on replacing b1 by b′1 = 0 in the above

equation, we get y1 = 0.
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Similarly Equation 4.13 becomes
(

z0d1 z2d2

)

+

(

(a0 − b0)w1

0

)

=
(

x0d
′

1 x0d
′

2

)

.

Choose w1 so that d′1 = 0. So, if we replace d1 by d′1 = 0 in the above equation, we have

w1 = 0.

When b2 = 0 and d2 6= 0, choose z2 so that d′2 = 1. With these, Equation 4.14 becomes

x0a1 + y2 = x0a
′

1. Choose y2 so that a′1 = 0. B is thus reduced to











a0

b0

a0 1

a0











,

and ZGT4(Fq)(A,B) =





























x0 x1

z0

x0 w2

x0





























. By a routine check, we can see that this

centralizer is commutative. This (A,B) is of type R2, and there are (q − 1)(q − 2) such

branches.

When b2 6= 0, in Equation 4.12 for this C, choose z2 so that b′2 = 1. Thus on

substituting b2 with b′2 = 1 in the same, we get z2 = x0. Hence, from Equation 4.13

for this case, we have d′2 = d2. With these Equation 4.14 becomes x0a1 + d2y2 =

x0a
′

1 + w2. Choose w2 so that a′1 = 0. Hence B is reduced to











a0 1

a0 d1

b0

a0











and ZGT4(Fq)(A,B) =





























x0 y2 x1

z0

x0 d2y2

x0





























. Easy to see that this centralizer is

commutative. This (A,B) too is of type R, and there are q(q − 1)(q − 2) such branches.

With these, we have covered all the subcases under the case of a0 being an eigenvalue

of C.

When a0 is not an eigenvalue of C: In this case C − a0I2 is invertible. Hence, in

Equation 4.12, choose y1, y2 so that b′1 = b′2 = 0. Similarly, in Equation 4.13, choose

w1, w2 so that d′1 = d′2 = 0.

So, Equation 4.14 becomes x0a1 = x0a
′

1, thus a′1 = a1.
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When C = b0I2, b0 6= a0: B is reduced to











a0 a1

b0

b0

a0











, and ZGT4(Fq)(A,B) =





























x0 x1

z0 z1

z2

x0





























. This (A,B) is of type B5. There are q(q−1)(q−2) such branches.

When C =

(

b0 1

b0

)

, b0 6= a0:In this case, B is reduced to











a0 a1

b0 1

b0

a0











, and

ZGT4(Fq)(A,B) =





























x0 x1

z0 z1

z0

x0





























. This one is a commutative centralizer. This

(A,B) is of type R3, and there are q(q − 1)(q − 2) such branches.

When C =

(

b0

c0

)

, b0, c0 6= a0, and b0 6= c0:In this case, B is reduced to











a0 a1

b0

c0

a0











, and ZGT4(Fq)(A,B) =





























x0 x1

z0

z2

x0





























. This (A,B) is of

type R, and there are q(q − 1)(q − 2)(q − 3) such branches.

So, those are all the cases available.

Adding up all the branches of type A8, we have a total of q− 1+ q(q− 1) + (q− 1)2 =

2q(q − 1) branches. �

Proposition 4.6. A matrix of type A4 has:

Branch No. of Branches Branch No. of Branches

A4 q(q − 1) tNT1 q(q − 1)2

R1 q3 − q2 tNT5 q(q − 1)

R3 q2(q − 1)(q − 2)

A new type tNT5 appears with centralizer

{(

a0 a1 b0 b1
a0 b0

a0 c1
a0

)

| a0 6= 0

}

.
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Proof. The canonical form of a matrix of this type is A =











a 1

a

a 1

a











. Then

ZGT4(Fq)(A) =





























a0 a1 b0 b1

a0 b0

c0 c1

c0











| a0, c0 6= 0



















. Let B =











a0 a1 b0 b1

a0 b0

c0 c1

c0











, and

B′ =











a0 a1 b′0 b′1
a0 b′0

c0 c1

c0











= XBX−1, where X =











x0 x1 y0 y1

x0 y0

z0 z1

z0











. XB = B′X

gives us the following:

x0b0 + y0c0 = z0b
′

0 + y0a0(4.17)

x0b1 + x1b0 + y0c1 + y1c0 = y1a0 + y0a1 + z1b
′

0 + z0b
′

1(4.18)

When a0 = c0: From Equation 4.17, we have x0b0 = z0b
′

0.

When b0 = 0: Equation 4.18 becomes x0b1 + y0c1 = z0b
′

1 + y0a1. Here we first

look at what happens when a1 = c1, and b1 = 0. Here B reduces to











a0 a1

a0

a0 a1

a0











,

ZGT4(Fq)(A,B) = ZGT4(Fq)(A). (A,B) is of type A4, and there are q(q−1) such branches.

When a1 = c1, and b1 6= 0. We can choose x0 such that b′1 = 1. Thus B is reduced to










a0 a1 1

a0

a0 a1

a0











, and ZGT4(Fq)(A,B) =





























x0 x1 y0 y1

x0 y0

x0 z1

x0





























. We see a centralizer,

not isomorphic to the ones seen so far. Thus, we have a new type tNT5. (A,B) is of

type tNT5, and there are q(q − 1) such branches.

When a1 6= c1, in Equation 4.18, we can choose y0, so that b′1 = 0. Thus, B is reduced

to











a0 a1

a0

a0 c1

a0











, and ZGT4(Fq)(A,B) =





























x0 x1 y1

x0

z0 z1

z0





























(A,B) is of type

tNT1, and there are q(q − 1)2 such branches.

When b0 6= 0: In Equation 4.17, choose x0 such that b′0 = 1. Then, on replacing

b0 and b′0 by 1 in the same equation, we have x0 = z0. Hence, Equation 4.18 becomes

x0b1+x1+ y0c1 = x0b
′

1+ z1+ y0a1. Hence, choose z1 so that b′1 = 0. Then, B is reduced
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to











a0 a1 1

a0 1

a0 c1

a0











, and ZGT4(Fq)(A,B) =





























x0 x1 y1

x0

x0
x1+

y0(c1−a1)

x0





























(A,B) is of

type R1, and there are q2(q − 1) such branches.

When a0 6= c0: In Equation 4.17, choose y0 so that b′0 = 0. With this, Equation 4.18

becomes x0b1 + y1c0 = z0b
′

1 + y1a0. Choose y1 such that b′1 = 0. Thus, B is reduced to










a0 a1

a0

c0 c1

c0











, and ZGT4(Fq)(A,B) =





























x0 x1

x0

z0 z1

z0





























. (A,B) is of type R3,

and there are q2(q − 1)(q − 2) = q4 − q3 such branches. Thus, there are no more cases

left to deal with.

�

Proposition 4.7. An upper triangular matrix of type A5 has q2(q − 1) branches of type

A5, q
2(q − 1)(q − 2) branches of type R3, and q2(q2 − 1) branches of type NR1.

Proof. A matrix of type A5 has the canonical form: A =











a 1

a 1

a

a











. Thus its

centralizer ZGT4(Fq)(A) is:





























a0 a2 a3

b0 b1 b2

b0

a0





























. Let B =











a0 a2 a3

b0 b1 b2

b0

a0











, and

B′ =











a0 a′2 a′3
b′0 b′1 b2

b0

a0











= XBX−1, where X =











x0 x2 x3

y0 y1 y2

y0

x0











. Thus, from XB =

B′X, we have a′3 = a3, b
′

1 = b1, and the following equations:

x0a2 + x2b0 = y0a
′

2 + x2a0(4.19)

y0b2 + a0y2 = x0b
′

2 + y2b0(4.20)

Case a0 = b0. Equations 4.19 and 4.20 become x0a2 = y0a
′

2, and y0b2 = x0b
′

2 respec-

tively.
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If a2 = b2 = 0, the above equations are void, and we have B reduced to











a0 a3

a0 b1

a0

a0











,

and ZGT4(Fq)(A,B) = ZGT4(Fq)(A). Thus (A,B) is a branch of type A5, and there are

q2(q − 1) such branches.

If a2 6= 0, then choose x0 so that a′2 = 1. Substituting a2 with a′2 = 1 in the equation

x0a2 = y0a
′

2, we get x0 = y0, thus leaving us with b′2 = b2. Hence B is reduced to










a0 1 a3

a0 b1 b2

a0

a0











, and ZGT4(Fq)(A,B) =





























x0 x2 x3

x0 y1 y2

x0

x0





























. Thus (A,B) is a

branch of type NR1, and there are q3(q − 1) such branches.

If a2 = 0 and b2 6= 0, then we choose y0 such that b′2 = 1. Thus B is reduced to










a0 a3

a0 b1 1

a0

a0











, and ZGT4(Fq)(A,B) =





























x0 x2 x3

x0 y1 y2

x0

x0





























. This branch too is

of type NR1, and there are q2(q − 1) such branches.

If a0 6= b0. Then, in Equation 4.19, choose x2 such that a′2 = 0. Similarly in Equa-

tion 4.20, choose y2 such that b′2 = 0. Thus B boils down to











a0 a3

b0 b1

b0

a0











, and

ZGT4(Fq)(A,B) =





























x0 x3

y0 y1

y0

x0





























. This (A,B) is of type R3, and there are

q22(q − 1)(q − 2) such branches.

Adding up the branches of type NR1, we have a total of q3(q−1)+q2(q−1) = q2(q2−1)

branches of type NR1. �

Proposition 4.8. For a matrix of type A6, the branchings are:

Branch No. of Branches Branch No. of Branches

A6 q(q − 1) R3 q2(q − 1)(q − 2)

A5 q(q − 1)2 tNT4 q2(q − 1)

R1 q2(q − 1) NR1 q2(q − 1).
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Proof. A matrix of type A6 has the canonical form











a 1

a 1

a

a











. The centralizer

subgroup ZGT4(Fq)(A) is

{(

C D

C

)

| C ∈ GT2(Fq)

}

, where D =

(

d0 d1

d2 d3

)

, and W =

(

w0 w1

w2 w3

)

.

Let B =

(

C D

C

)

, and B′ =

(

C ′ D′

C ′

)

= XBX−1, where X =

(

Z W

Z

)

. So

XB = B′X leads to ZC = C ′Z. Hence, we can take C to be a representative of a

conjugacy class in GT2(Fq), and Z = ZGT2(Fq)(C). We have the following equation

(4.21) ZD +WC = CW +D′Z

So the cases to deal with here are the three conjugacy class types in GT2(Fq).

Case C =
(

a0 1
a0

)

: here Z =

(

x0 x1

x0

)

, and Equation 4.21 becomes:

(

x0d0 + x1d2 x0d1 + x1d3 + w0

x0d2 x0d3 + w2

)

=

(

w2 + x0d
′

0 w3 + x1d
′

0 + x0d1

x0d
′

2 x1d
′

2 + x0d3

)

Choose w2 so that d′0 = 0. Thus, on replacing d0 by 0, we get w2 = x1d2, and hence

d′3 = d3.

We can choose w0 such that d′1 = 0. Thus B is reduced to











a0 1

a0 d2 d3

a0 1

a0











, and

ZGT4(Fq)(A,B) =





























x0 x1 w0 w1

x0 x1d2 w0 + x1d3

x0 x1

x0





























. This (A,B) is of type R1, and there

are q2(q − 1) such branches.

Case C =
( a0

b0

)

, a0 6= b0: here Z =

(

x0

x3

)

, and Equation 4.21 becomes:

(

x0d0 + a0w0 x0d1 + w1b0

x3d2 + a0w2 x3d3 + b0w3

)

=

(

a0w0 + x0d
′

0 w1a0 + x3d1

b0w2 + x0d2 b0w3 + x3d3

)

.
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We have d′0 = d0 and d′3 = d3. As a0 6= b0, choose w2 such that d′2 = 0, and

w1 so that d′1 = 0. Thus B is reduced to











a0 d0

b0 d3

a0

d0











, and ZGT4(Fq)(A,B) =





























x0 w0

x3 w3

x0

x3





























. This (A,B) is of type R3, and there are q2(q − 1)(q − 2) such

branches.

Case C = a0I2: Here Equation 4.21 becomes: ZD = D′Z, where Z ∈ T2(Fq). With

Z =

(

x0 x1

x2

)

, we see that:

(4.22)

(

x0d0 + x1d2 x0d1 + x1d3

x3d2 x3d3

)

=

(

x0d
′

0 x1d
′

0 + x3d
′

1

x0d
′

2 x1d
′

2 + x3d
′

3

)

.

We see that x0d
′

2 = x3d2. We have two main cases here:

Case d2 = 0. In this case, from Equation 4.22 we have d′0 = d0, and d′3 = d3, and we

have x0d1 + (d3 − d0)x1 = x3d
′

1.

When d0 = d3, we have x0d1 = x′3d1. Now, if d1 = 0. we have B =

(

a0I2 d0I2

a0I2

)

,

and ZGT4(Fq)(A,B) = ZGT4(Fq)(A). Thus, (A,B) is of type A6, and there are q(q − 1)

such branches.

If d1 6= 0, choose x0 so that d′1 = 1. Thus B is reduced to











a0 d0 1

a0 d3

a0

a0











, and

ZGT4(Fq)(A,B) =





























x0 x1 w1 w2

x0 w2 w3

x0 x1

x0





























.

(A,B) is therefore of type tNT4, and there are q2(q − 1) such branches.

When d0 6= d3, in the (1,2)th entry of Equation 4.22, we choose x1 so that d′1 = 0. Thus

B is reduced to











a0 d0

a0 d3

a0

a0











, and ZGT4(Fq)(A,B) =





























x0 w1 w2

x3 w2 w3

x0

x3





























.
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This is isomorphic to the centralizer of a matrix of type A5. Thus (A,B) is a branch of

type A5, and there are q2(q − 1) such branches.

Case d2 6= 0. First, we choose x0 such that d′2 = 1. On replacing d2 with d′2 = 1 in

Equation 4.22, and equating, we get x0 = x3.

In the same equation, we can choose x1 such that d′0 = 0. On replacing d0 with d′0 = 0

and equating, we get x1 = 0. Thus, d′3 = d3. Lastly, we have x0d1 = x0d
′

1, hence d′1 = d1.

Thus B is reduced to











a0 d1

a0 1 d3

a0

a0











, and ZGT4(Fq)(A,B) =

{(

x0I2 W

x0I2

)

| W ∈ M2(Fq)

}

.

(A,B) is a branch of type NR1, and there are q2(q − 1) such branches.

There are no other cases. �

Proposition 4.9. The branching rules of remaining A types are as follows.

(1) For a matrix of type A7, there are q2(q−1) branches of type A7, q
2(q−1) branches

of type R1, and q2(q − 1)(q − 2) branches of type R2.

(2) The type A8 has q2(q − 1) branches of type A8, q
3 − q branches of type R1, and

q2(q − 1)(q − 2) branches of type R2.

(3) The type A9 has q2(q − 1) branches of type A9, (q
2 − q)(q2 − 1) branches of type

R1.

Proof. (1) A matrix of type A7 has two non-similar canonical forms,











a 1

a 1

a

a











,

and











a

a 1

a 1

a











. As their centralizer subgroups in T4(Fq) are conjugate in

GL4(Fq), we may prove the branching for any one. Let A =











a 1

a 1

a

a











.

Then ZGT4(Fq)(A) =





























a0 a1 a2 a3

a0 a1

a0

d0











| a0, d0 6= 0



















.
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Let B =











a0 a1 a2 a3

a0 a1

a0

d0











, and B′ =











a0 a′1 a′2 a′3
a0 a′1

a0

d0











= XBX−1, where

X =











x0 x1 x2 x3

x0 x1

x0

z0











. From XB = B′X we have a′1 = a1, a
′

2 = a2, and this

equation:

(4.23) x0a3 + x3d0 = z0a
′

3 + x3a0

.

If a0 = d0, then Equation 4.23 becomes x0a3 = z0z
′

3.

Here, if a3 = 0, then B is reduced to











a0 a1 a2

a0 a1

a0

a0











, and ZGT4(Fq)(A,B) =

ZGT4(Fq)(A). Thus (A,B) is of type A7, and there are q2(q − 1) such branches,.

If a3 6= 0, then choose z0 so that a′3 = 1. Thus, B is reduced to











a0 a1 a2 1

a0 a1

a0

a0











,

and ZGT4(Fq)(A,B) =





























x0 x1 x2 x3

x0 x1

x0

x0





























. This (A,B) is of type R1, and

there are q2(q − 1) such branches.

When a0 6= d0, then, in Equation 4.23, choose x3 so that a′3 = 0. Thus B

is reduced to











a0 a1 a2

a0 a1

a0

d0











, and ZGT4(Fq)(A,B) =





























x0 x1 x2

x0 x1

x0

z0





























.

This too is commutative (by a routine check). (A,B) is of type R, and there are

q2(q − 1)(q − 2) such branches. There are no other cases left to analyze, so these

are all the branches.
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(2) Matrices of type A8 have either of the two non-similar canonical forms:











a 1

a 1

a

a











,

and











a 1

a

a 1

a











. As their centralizers are conjugate in GL4(Fq), it is enough

to prove for any one of the canonical forms. Let A =











a 1

a 1

a

a











. Then the

centralizer of A is ZGT4(Fq)(A) =





























a0 a1 b a2

a0 a1

d c

a0





























. let B ∈ ZGT4(Fq)(A)

be the matrix











a0 a1 b a2

a0 a1

d c

a0











, and let B′ =











a0 a′1 b′ a′2
a0 a′1

d c′

a0











= XBX−1,

where X =











x0 x1 y x2

x0 x1

z w

x0











. Now XB = XB′X leads us to a′1 = a1, and the

following equations:

x0b+ yd = zb′ + ya0(4.24)

zc+ wa0 = x0c
′ + wd(4.25)

x0a2 + yc = wb′ + x0a
′

2(4.26)

When a0 = d: Here, Equations 4.24 and 4.25 become x0b = zb′, and zc = x0c
′

respectively.

When b = c = 0, Equation 4.26 becomes x0a2 = x0a
′

2, hence a′2 = a2. B is

reduced to











a0 a1 a2

a0 a1

a0

a0











, and ZGT4(Fq)(A,B) = ZGT4(Fq)(A). (A,B) is of

type A8, and there are q2(q − 1) such branches.
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When b 6= 0, choose z such that b′ = 1. Then, on substituting b with b′ = 1

in Equation 4.24, we get z = x0. Thus, we have c = c′. And, in Equa-

tion 4.26, choose w so that a′2 = 0. Thus B is reduced to











a0 a1 1

a0 a1

a0

a0











,

and ZGT4(Fq)(A,B) =





























x0 x1 y x2

x0 x1

x0 cy

x0





























. (A,B) is of type R1, and there

are q2(q − 1) such branches.

When b = 0 and c 6= 0, in Equation 4.25, choose x0 such that c′ = 1. Then

Equation 4.26 becomes x0a2+y = x0a
′

2. Thus, choose y so that a′2 = 0. Hence B

is reduced to











a0 a1

a0 a1

a0 1

a0











, and ZGT4(Fq)(A,B) =





























x0 x1 x2

x0 x1

x0 w

x0





























.

(A,B) is of type R1, and there are q(q − 1) such branches.

There are no further cases for us to look at here. We now look at the case of

a0 6= d.

When a0 6= d: In Equation 4.24, choose y such that b′ = 0, and in Equa-

tion 4.25, choose w such that c′ = 0. Then Equation 4.26 becomes x0a2 =

a0a
′

2, implying a′2 = a2. B reduces to











a0 a1 a2

a0 a1

d

a0











, and ZGT4(Fq)(A,B) =





























x0 x1 x2

x0 x1

z

x0





























. This too is a commutative centralizer. (A,B) is of type

R2, and there are q2(q − 1)(q − 2) such branches. Now, there are no more

cases to look at. Adding up all the branches of type R1, we have a total of

q2(q − 1) + q(q − 1) = q3 − q branches of type R1.
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(3) A matrix of type A9 has the following canonical form: A =











a 1 1

a

a 1

a











. Then

we have ZGT4(Fq)(A) =





























a0 a1 b a2

a0 c

a0 b− c

a0





























. Let B =











a0 a1 b a2

a0 c

a0 b− c

a0











,

and B′ =











a0 a′1 b′′ a2

a0 c′

a0 b′ − c′

a0











= XBX−1, where X =











x0 x1 y x2

x0 w

x0 y − w

x0











,

with x0 6= 0. So, XB = B′X leaves us with a′1 = a1, b
′ = b, and c′ = c, and the

following equation:

(4.27) x0a2 + (x1 − x2)c = x0a
′

2 + (a1 − b)w

When a1 = b and c = 0 Here Equation 4.27 ends up as a′2 = a2. B is thus

reduced to











a0 a1 a1 a2

a0

a0 a1

a0











, and ZGT4(Fq)(A,B) = ZGT4(Fq)(A). Thus (A,B)

is of type A9, and there are q2(q − 1) such branches.

When a1 6= b: Here, in Equation 4.27, we choose w such that a′2 = 0. B is thus re-

duced to











a0 a1 b

a0 c

a0 b− c

a0











, with ZGT4(Fq)(A,B) =





























x0 x1 y x2

x0
(x1−y)
a1−b

c

x0 y − (x1−y)
a1−b

c

x0





























.

(A,B) is therefore of type R1, and there are q2(q − 1)2 such branches.

When a1 = b, and c 6= 0: In Equation 4.27, choose x1 or y such that a′2 = 0.

Thus, B is reduced to











a0 a1 a1

a0 c

a0 a1 − c

a0











. So ZGT4(Fq)(A,B) =





























x0 x1 x1 x2

x0 w

x0 x1 − w

x0





























.

This (A,B) too is of type R1, and there are q(q − 1)2 such branches.

With this, we have no other cases to look at. Thus, we have q3 branches of

type A9, and q(q − 1)2 + q2(q − 1)2 = (q2 − q)(q2 − 1) branches of type R1.

�
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4.2. Branching rules for type B. Matrices of types B1, B2, B3, B4, B5 are in block

form of the kind A =

(

C1

C2

)

, where C1 ∈ GTm1
(Fq), and C2 ∈ GTm2

(Fq), where

m1 + m2 = 4. Thus, ZGT4(Fq)(A) =

{(

X1

X2

)}

where X1 ∈ ZGTm1
(C1) and X2 ∈

ZGTm2
(C2). Thus, the branches of A are of the form

(

D1

D2

)

, where D1 is a branch of

C1, and D2 is a branch of C2. With this argument, we can prove the following proposition.

Proposition 4.10. The branching rules are as follows:

(1) For a matrix of type B1, there are:

Branch No. of Branches Branch No. of Branches

B1 (q − 1)2 R3 (q − 1)2

B5 2(q − 1)2 R4 2(q − 1)2(q − 2)

B6 2(q − 1)2(q − 2) R5 (q − 1)2(q − 2)2

(2) For a matrix of type B2, there are:

Branch No. of Branches Branch No. of Branches

B2 (q − 1)2 R2 (q − 1)2

B3 (q − 1)2 R4 (q − 1)2(q − 2)

B4 (q − 1)2 R5 (q − 1)2(q − 2)(q − 3)

B6 (q − 1)2(q − 2)

(3) For a matrix of type B3, there are q(q−1)2 branches of type B3, q(q−1)2 branches

of type R2, and q(q − 1)2(q − 2) branches of type R4.

(4) For a matrix of type B4, there are, q(q − 1)2 branches of type B4, (q
2 − 1)(q − 1)

branches of type R2, and q(q − 1)2(q − 2) branches of type R4.

(5) For a matrix of type B5, there are q(q−1)2 branches of type B5, q(q−1)2 branches

of type R3, and q(q − 1)2(q − 2) branches of type R4.

Finally,

Proposition 4.11. For a matrix of type B6, there are, (q − 1)3 branches of type B6,

(q − 1)3 branches of type R4, and (q − 1)3(q − 2) branches of type R5.

Proof. A matrix of type B6 has the canonical form: A =

(

a
a
b
c

)

. Here, ZGT4(Fq)(A) =
{(

C
c0

d0

)

| C ∈ GT2(Fq), c0, d0 6= 0
}

. Enumerating the conjugacy classes of GT2(Fq)

gives us the branches mentioned. �

4.3. Branching Rules of the New Types. While determining the branching rules

of the existing types of conjugacy classes of GT4(Fq), we came across six new types of
42



simultaneous conjugacy classes of pairs of commuting matrices. We called them tNT1,

tNT2, tNT3, tNT4,tNT5, and NR1. In this subsection, we shall focus on the branching

rules of these new types.

Proposition 4.12. A commuting tuple of type tNT1 has q2(q−1) branches of type tNT1,

q2(q − 1) branches of type R1, and q2(q − 1)(q − 2) branches of type R3.

Proof. For a commuting pair (A,B) of matrices of type tNT1, the centralizer is ZGT4(Fq)(A,B) =




























a0 a1 a3

a0

c0 c1

c0











| a0, c0 6= 0



















. Let C =











a0 a1 a3

a0

c0 c1

c0











, and C ′ =











a0 a′1 a′3
a0

c0 c′1
c0











=

XCX−1 by X =











x0 x1 x3

x0

z0 z1

z0











. XC = C ′X leads us to a′1 = a1, c
′

1 = c1, and just

one equation:

(4.28) x0a3 + x3b0 = z0a
′

3 + x3a0.

When a0 = c0: Here Equation 4.28 becomes x0a3 = z0a
′

3.

So, we have two cases over here: a3 = 0, and a3 6= 0.

When a3 = 0, C is reduced to











a0 a1

a0

a0 c1

a0











, with ZGT4(Fq)(A,B,C) = ZGT4(Fq)(A,B).

(A,B,C) is of type tNT1, and there are q2(q − 1) such branches.

When a3 6= 0, we choose z0 such that a′3 = 1. Here, C is reduced to











a0 a1 1

a0

a0 c1

a0











,

with ZGT4(Fq)(A,B,C) =





























x0 x1 x3

x0

x0 z1

x0





























. This (A,B,C) is of type R1, and

there are q2(q − 1) such branches.

So now, with a0 = c0, we have no other cases left to analyse. We move on to the case

of a0 6= c0.
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When a0 6= c0: Here, in Equation 4.28, we can choose x3 so that a′3 = 0. So C is reduced

to











a0 a1

a0

c0 c1

c0











, with ZGT4(Fq)(A,B,C) =





























x0 x1

x0

z0 z1

z0





























. This (A,B,C)

is of type R3, and there are q2(q − 1)(q − 2) such branches.

So, with this, we have no other cases to look at. �

Proposition 4.13. The new type tNT2 has q2(q−1) branches of type tNT2, q
2(q−1)(q−

2) branches of type R2, and q2(q2 − 1) branches of type NR1.

Proof. For a commuting pair (A,B) of type tNT2, the centralizer is

ZGT4(Fq)(A,B) =





























a0 b0 b1

a0 b2 b3

a0

c0











|
a0, b0, b1

b2, b3, c0 ∈ Fq



















. Let C =











a0 b0 b1

a0 b2 b3

a0

c0











,

and C ′ =











a0 b′0 b′1
a0 b′2 b′3

a0

c0











= XCX−1 for some X =











x0 y0 y1

x0 y2 y3

x0

z0











. So, equating

XC = C ′X leads us to b′0 = b0, b
′

2 = b2, and the following equations:

x0b1 + y1c0 = z0b
′

1 + y1a0(4.29)

x0b3 + y3c0 = z0b
′

3 + y3a0(4.30)

We have two main cases: a0 = c0, and a0 6= c0:

When a0 = c0: Here, Equation 4.29 becomes x0b1 = z0b
′

1, and Equation 4.30 becomes

x0b3 = z0b
′

3.

When b1 = b3 = 0, C is reduced to











a0 b0

a0 b2

a0

a0











, with ZGT4(Fq)(A,B,C) =

ZGT4(Fq)(A,B). Thus (A,B,C) is of type tNT2, and there are q2(q − 1) such branches.

When b1 6= 0. In Equation 4.29, choose z0 such that b′1 = 1. Then, on replacing b1

and b′1 by 1 in the same equation, we get z0 = x0. Hence, Equation 4.30 becomes x0b3 =
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x0b
′

3, hence b′3 = b3. C is reduced to











a0 b0 1

a0 b2 b3

a0

a0











, with ZGT4(Fq)(A,B,C) =





























x0 y0 y1

x0 y2 y3

x0

x0





























. (A,B,C) is of type NR1. There are q3(q − 1) such branches.

When b1 = 0, and b3 6= 0. In Equation 4.30, choose z0 so that b′3 = 1. Thus

C is reduced to











a0 b0

a0 b2 1

a0

a0











, with ZGT4(Fq)(A,B,C) =





























x0 y0 y1

x0 y2 y3

x0

x0





























.

(A,B,C) is of type NR1. There are q2(q − 1) such branches. We have exhausted all the

cases under a0 = c0.

When a0 6= c0: Here, in Equation 4.29, choose y1 so that b′1 = 0, and in Equa-

tion 4.30, choose y3 so that b′3 = 0. C is thus reduced to











a0 b0

a0 b2

a0

b0











, with

ZGT4(Fq)(A,B,C) =





























x0 y0

x0 y2

x0

z0





























. This (A,B,C) is of type R2, and there are

q2(q − 1)(q − 2) such branches.

This leaves us with no further cases to analyse. Adding up the branches of type NR1,

we have a total of q2(q − 1) + q3(q − 1) = q2(q2 − 1) branches of type NR1. �

Proposition 4.14. A commuting pair of type tNT3 has q2(q−1) branches of type tNT3,

q2(q−1) branches of type R1, q
2(q−1)(q−2) branches of type R2, and q(q2−1) branches

of type NR1.

Proof. Let (A,B) be a pair of commuting matrices of type tNT3. Their common central-

izer is ZGT4(Fq)(A,B) =

{(

D E

D11I2

)

| D ∈ T2(Fq), E ∈ M2(Fq)

}

. Let C =

(

D E

a0I2

)

,

where D =

(

a0 a1

b0

)

and E =

(

b0 b1

b2 b3

)

. Let C ′ =

(

D′ E′

a0I2

)

= XCX−1, where X =

(

Z Y

x0I2

)

∈ ZGT4(Fq)(A,B), where Z =

(

x0 x1

z0

)

∈ GT2(Fq), and Y =

(

y0 y1

y2 y3

)

.
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So XC = C ′X leaves us with the following ZD = D′Z. Thus D can be taken to be a

representative of a conjugacy class in GT2(Fq), and Z ∈ ZGT2(Fq)(D). We are therefore

left with the following equation:

ZE + a0Y = DY + x0E
′

Exapanding this, we have:

(4.31)

(

x0b0 + x1b2 x0b1 + x1b3

z0b2 z0b3

)

+

(

−a1y2 −a1y3

(a0 − b0)y2 (a0 − b0)y3

)

=

(

x0b
′

0 x0b
′

1

x0b
′

2 x0b
′

3

)

When D = a0I2: Here Equation 4.31 becomes:

(

x0b0 + x1b2 x0b1 + x1b2

z0b2 z0b3

)

+ =

(

x0b
′

0 x0b
′

1

x0b
′

2 x0b
′

3

)

When b2 = b3 = 0, we have b′0 = b0, and b′1 = b1. Thus, C is reduced to











a0 b0 b1

a0

a0

a0











,

and ZGT4(Fq)(A,B,C) = ZGT4(Fq)(A,B). (A,B,C) is of type tNT3, and there are

q2(q − 1) such branches.

When b2 6= 0, choose z0 such that b′2 = 1. Thus, on replacing b0 by b′0 = 1 in

Equation 4.31, we get z0 = x0. Hence b′3 = b3. With these, Eqaution 4.31 becomes

(

x0b0 + x1 x0b1 + x1b2

1 b3

)

+ =

(

x0b
′

0 x0b
′

1

1 b′3

)

Choose x1 so that b′0 = 0. On replacing b0 by b′0 = 0 in the above equation, we have

x1 = 0. Thus b′1 = b1. So C is reduced to











a0 b1

a0 1 b3

a0

a0











with ZGT4(Fq)(A,B,C) =





























x0 y0 y1

x0 y2 y3

x0

x0





























. (A,B,C) is of type NR1, and there are q2(q−1) such branches.

When b2 = 0 and b3 6= 0. Choose z0 so that b′3 = 1. Equation 4.31 becomes

(

x0b0 x0b1 + x1

0 1

)

+ =

(

x0b
′

0 x0b
′

1

0 1

)
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Hence, b′0 = b0, and choose x1 so that b′1 = 0. C is reduced to











a0 b0

a0 1

a0

a0











,

with ZGT4(Fq)(A,B,C) =





























x0 y0 y1

x0 y2 y3

x0

x0





























. This (A,B,C) too is of type NR1,

and there are q(q − 1) such branches.

With this, we have no other cases to analyse when D = a0I2.

When D =

(

a0 1

a0

)

: Here Z =

(

x0 x1

x0

)

. Equation 4.31 becomes:

(

x0b0 + x1b2 x0b1 + x1b3

x0b2 x0b3

)

+

(

−y2 −y3

0 0

)

=

(

x0b
′

0 x0b
′

1

x0b
′

2 x0b
′

3

)

We have from this b′2 = b2, b′3 = b3, and we can choose y2 so that b′0 = 0 and y3

such that b′1 = 0. Hence C is reduced to











a0 1

a0 b2 b3

a0

a0











, with ZGT4(Fq)(A,B,C) =





























x0 x1 x2 x3

x0 b2x1 b3x1

x0

x0





























. This (A,B,C) is of type R1, and there are q2(q − 1) such

branches.

When C =

(

a0

c0

)

, c0 6= a0: Here Z =

(

x0

z0

)

. Equation 4.31 becomes:

(

x0b0 x0b1

z0b2 z0b3

)

+

(

(a0 − c0)y2 (a0 − c0)y3

)

=

(

x0b
′

0 x0b
′

1

x0b
′

2 x0b
′

3

)

We have b′0 = b0 and b′1 = b1. Choose y2 and y3 such that b′2 = b′3 = 0. C is reduced to










a0 b0 b1

c0

a0

a0











, and





























x0 y0 y1

z0

x0

x0





























. Here (A,B,C) is of type R2, and there

are q2(q − 1)(q − 2) such branches.

With this, we have no other cases to deal with.

Adding up the branches of type NR1, we have a total of q(q−1)+q2(q−1) = q(q2−1)

branches of this type. �

47



Proposition 4.15. For a pair of commuting matrices of type tNT4, there are q2(q − 1)

branches of type tNT4, q
2(q − 1)2 branches of type R1, and q(q2 − 1)(q − 1) branches of

type NR1.

Proof. The centralizer of a commuting pair (A,B) of this type is

ZGT4(Fq)(A,B) =

{(

a0 a1
a0 B1

a0 a1
a0

)

| a0 6= 0, B1 ∈ M2(Fq)

}

.

This was seen, and proved in [Sh1, , Lemma 5.14] as the new type NT1. �

Proposition 4.16. For a commuting pair of type tNT5, there are q2(q − 1) branches of

type tNT5, and q(q2 − 1)(q − 1) branches of type R1.

Proof. The centralizer of a commuting pair (A,B) of type tNT5 is:

ZGT4(Fq)(A,B) =





























a0 a1 b0 b1

a0 b0

a0 c1

a0











| a0 6= 0



















.

Let C =











a0 a1 b0 b1

a0 b0

a0 c1

a0











, and C ′ =











a0 a1 b′0 b′1
a0 b′0

a0 c1

a0











= XCX−1, for some X =











x0 x1 y0 y1

x0 y0

x0 z1

x0











. So XC = C ′X leads us to b′0 = b0, and the equation:

(4.32) x0b1 + x1b0 + y0c1 = x0b
′

1 + z1b0 + y0a1.

We have two main cases: a1 = c1 and a1 6= c1.

When a1 = c1: Equation 4.32 becomes x0b1 + x1b0 = x0b
′

1 + z1b0.

When b0 = 0, we have b′1 = b1. C is reduced to











a0 a1 b1

a0

a0 a1

a0











, with ZGT4(Fq)(A,B,C) =

ZGT4(Fq)(A,B). (A,B,C) is thus of type tNT5, and there are q2(q − 1) such branches.
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When b0 6= 0, choose z1 such that b′1 = 0. C is reduced to











a0 a1 b0

a0 b0

a0 a1

a0











, with

ZGT4(Fq)(A,B,C) =





























x0 x1 y0 y1

x0 y0

x0 x1

x0





























. (A,B,C) is of type R1, and there are

q(q − 1)2 such branches.

So, we have no other cases to look at for a1 = c1.

a1 6= c1: In Equation 4.32, choose y0 so that b′1 = 0. Thus, C is reduced to











a0 a1 b0

a0 b0

a0 c1

a0











,

with ZGT4(Fq)(A,B,C) =





























x0 x1
b0(z1−x1)
c1−a1

x0
b0(z1−x1)
c1−a1

x0 z1

x0





























. Here (A,B,C) is of type

R1, and there are q2(q − 1)2 such branches.

With this, we have no other case to look at. So, adding up the branches of type R, we

have a total of q(q − 1)2 + q2(q − 1)2 = q(q2 − 1)(q − 1) branches of type R1.

�

Proposition 4.17. For a commuting pair of type NR1, there are q4(q − 1) branches of

type NR1.

Proof. The centralizer of a commuting pair (A,B) of type NR1 is

ZGT4(Fq)(A,B) =

{(

a0I2 D

a0I2

)

| a0 6= 0,D ∈ M2(Fq)

}

.

The result follows, as this is a commutative subgroup. �

5. Branching in UT3(q)

For the unitriangular group UT3(Fq), the conjugacy classes are as follows:
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Canonical Form No. of Classes Centralizer Name of Type
(

1 0 a
0 1 0
0 0 1

)

,

a ∈ Fq

q UT3(Fq) C

(

1 a 0
0 1 0
0 0 1

)

,

a ∈ F
∗

q .
(q − 1)

{(

1 x0 x1

1
1

)

| x0, x1 ∈ Fq

}

R1

(

1 0 0
0 1 a
0 0 1

)

,

a ∈ F
∗

q .
(q − 1)

{(

1 x1

1 x0

1

)

| x1, x0 ∈ Fq

}

R1

(

1 a 0
0 1 b
0 0 1

)

,

a, b ∈ F
∗

q.
(q − 1)2

{(

1 x0 x1

1 b
a
x0

1

)

| x0, x1 ∈ Fq

}

R2

We see that there are two types here: central C and regular R. Note that the centralizers

of both regulars R1 and R2 are isomorphic (not conjugate). For the type C, the centralizer

is full group UT3(Fq), thus all types appear in the first column. For the regular type, it

has q2 branches of the same R type, as the centralizer is commutative, of size q2, hence

the number of branches is q2.

Theorem 5.1. The branching matrix (with the order of type C,R1):

BUT3(Fq) =

(

q 0

q2 − 1 q2

)

.

We prove the branching rules below.

Proposition 5.2. An upper unitriangular matrix of type C has q branches of type C,

and q2 − 1 branches of the type R.

Proof. The result follows as matrices of this type are central. �

Proposition 5.3. A matrix of of any of the R types has q2 branches of the same R type.

Proof. A matrix of any of the R types is a Regular type, hence its centralizer in UT3(Fq)

is commutative, of size q2, hence the number of branches is q2. �

6. Branching in UT4(q)

We shift our focus to commuting tuples of matrices in UT4(Fq). The conjugacy classes

according to the types of this group are listed in Appendix B.
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Theorem 6.1. The branching rules for the upper unitriangular group is given by the

following matrix (with order C,A1, A2, A3, R1, R2):

BUT4(Fq) =





















q 0 0 0 0 0

2(q − 1) q2 0 0 0 0

(q − 1)2 0 q2 0 0 0

q(q2 − 1) 0 0 q2 0 0

q(q − 1) q(q2 − 1) q2(q − 1) q(q2 − 1) q4 0

(q2 − 1)(q − 1) q2(q − 1) q(q2 − 1) 0 0 q3





















.

The first column corresponds to type C, thus all types of UT4(Fq) appears. The last

two columns are the regular types. There are no new types here. The proof for other

columns is listed below in propositions.

Proposition 6.2. An upper unitriangular matrix of type A1 has q2 branches of type A1,

and q(q2 − 1) branches of type R1, and q2(q − 1) branches of type R2.

Proof. Let A =











1

1 a

1

1











, a matrix of type A1. The centralizer ZUT4
(A) of A

is:





























1 x1 x2

1 y0 y1

1 z0

1











| xi, yi, z0 ∈ Fq



















. Let X =











1 x1 x2

1 y0 y1

1 z0

1











, be an element of

ZUT4
(A). Let B =











1 b1 b2

1 c0 c1

1 d0

1











, and B′ =











1 b′1 b′2
1 c′0 c′1

1 d′0
1











be the conjugate of

B by X, i.e., B′ = XBX−1. Thus equating XB = B′X leads us to b′0 = b0, c
′

0 = c0,

c′1 = c1, and the following equations:

x0c0 + b1 = y0b
′

0 + b′1
x0c1 + b2 = y1b

′

0 + b′2

We use these to simplify B to the branches mentioned in the statement of the proposition.

�

Proposition 6.3. An upper unitriangular matrix of type A2 has q2 branches of type A2,

and q2(q − 1) branches of type R1, and q(q2 − 1) branches of R2.
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Proof. Given A =











1 a

1 b

1

1











, where a, b ∈ F
∗

q. the canonical form of a matrix of

type A2. The centralizer of A, ZUT4
(A) is





























1 x0 x1 x2

1 y0 y1

1 λx0

1











| λ = b
a
, xi, yi, z0 ∈ Fq



















.

Let X =











1 x0 x1 x2

1 y0 y1

1 λx0

1











be an element of ZUT4
(A). Let B =











1 b0 b1 b2

1 c0 c1

1 λb0

1











,

and B′ =











1 b′0 b′1 b′2
1 c′0 c′1

1 λb′0
1











be the conjugate of B by X. Thus equating XB = B′X

gives us the following equations:

b0 = b′0
c0 = c′0

x0c0 + b1 = y0b
′

0 + b′1
λb0y0 + c1 = λx0c

′

0 + c′1
x0c1 + λb0x1 + b2 = y1b

′

0 + λb′1x0b
′

2

Using these we reduce B to the mentioned branches. �

Proposition 6.4. An upper triangular matrix of type A3 has q2 branches of type A3,

and q(q2 − 1) branches of type R1.

Proof. One of the canonical forms of an upper triangular matrix of type A3 is A =










1 a

1

1

1











, where a ∈ F
∗

q. Here ZUT4(Fq)(A) =





























1 x0 x1 x2

1

1 z0

1











| xi, z0 ∈ Fq



















.

Let X =











1 x0 x1 x2

1

1 z0

1











, be an element of ZUT4
(A). Let B =











1 b0 b1 b2

1

1 d0

1











, and
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B′ =











1 b′0 b′1 b′2
1

1 d′0
1











be the conjugate of B by X, i.e., B′ = XBX−1. Thus equating

XB = B′X leads us to the b′0 = b0, b
′

1 = b1, d
′

0 = d0, and the following equation:

x1d0 + b2 = z0b
′

1 + b′2

We use these to simplify B to the branches mentioned in the statement of the proposition.

�

Proposition 6.5. A matrix of the R1 type has q4 branches of type R1 and A matrix of

the R2 type has q3 branches of type R2.

Proof. The type R1 and R2 are Regular types, hence the centralizer of matrices of such

a type is a commutative. �

Proof of Theorem 6.1. From the data in Propositions 6.2 to 6.5, we summarize the branch-

ing rules for UT4, as in the table described in the theorem. �

Here are some isomorphisms between centralizers of matrices of the same z-class for

some z-classes in UT4(Fq).

Proposition 6.6. The centralizer of conjugacy classes with representative











1 a

1

1

1











and











1

1 a

1

1











, for a ∈ F
∗

q are isomorphic.

Proof. The centralizer of conjugacy class with representative











1 a

1

1

1











is





























1 x0 x1 x2

1 y0 y1

1

1











| xi, yi ∈ Fq



















.
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The centralizer of conjugacy class with representative











1

1 a

1

1











is





























1 x1 x2

1 y0 y1

1 z0

1











| xi, yi, z0 ∈ Fq



















.

The following map gives isomorphism between these two centralizers.










1 x1 x2

1 y0 y1

1 z0

1











7→











1 −z0 y1 − z0y0 x2 − x1z0

1 y0 x1

1

1











�

Proposition 6.7. The centralizers of all conjugacy classes of type A3 are isomorphic.

Proof. There are six conjugacy classes of type A3. In the following table, we give the

centralizer of these conjugacy classes. We also set a notation for these conjugcay classes

which will be used later in this proof.

Class Representative Centralizer in UT4(Fq) Name of Conjugacy class
(

1 a
1
1
1

)

, a ∈ F
∗

q

{(

1 x0 x1 x2

1
1 z0

1

)

| xi, z0 ∈ Fq

}

A31

(

1
1
1 a
1

)

, a ∈ F
∗

q

{( 1 x0 x2

1 y1
1 z0

1

)

| xi, y1, z0 ∈ Fq

}

A32

(

1 a
1
1 b
1

)

, a, b ∈ F
∗

q

{(

1 x0
a
b
y1 x2

1 y1
1 z0

1

)

| xi, y1, z0 ∈ Fq

}

A33

Class Representative Centralizer in UT4(Fq) Name of Conjugacy class
(

1 a
1 b
1
1

)

, a, b ∈ F
∗

q

{(

1 x0 x1 x2

1 b
a
x0

1 z0
1

)

| xi, z0 ∈ Fq

}

A34

(

1 a
1
1 b
1

)

, a, b ∈ F
∗

q

{(

1 x0 x1 x2

1 y1

1 b
a
x1

1

)

| xi, y1 ∈ Fq

}

A35

(

1 a b
1
1 c
1

)

, a, b, c ∈ F
∗

q

{(

1 x0 x1 x2

1 y1
1 c

b
x1−

a
b
y1

1

)

| xi, y1 ∈ Fq

}

A36

(1) The following map gives isomorphism between centralizers of representative of

conjugacy classes A31 and A32 .










1 x0 x2

1 y1

1 z0

1











7→











1 z0 y1 x2 − y1x0

1

1 −x0

1










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(2) The following map gives isomorphism between centralizers of representative of

conjugacy classes A31 and A34 .










1 x0 x1 x2

1

1 z0

1











7→













1 x0 x1 x2 −
(

x0(x0−1)
2

)

λ

1 λx0

1 z0

1













(3) The following map gives isomorphism between centralizers of representative of

conjugacy classes A32 and A35 .










1 x0 x2

1 y1

1 z0

1











7→













1 x0 λz0 x2 +
(

z0(z0−1)
2

)

λ

1 y1

1 z0

1













(4) The following map gives isomorphism between centralizers of representative of

conjugacy classes A32 and A33 .










1 x0 x2

1 y1

1 z0

1











7→











1 x0 + λz0 λy1 x2 + λy1z0

1 y1

1 z0

1











(5) The following map gives isomorphism between centralizers of representative of

conjugacy classes A32 and A36 .










1 x0 x2

1 y1

1 z0

1











7→













1 x0 + λ2z0 λ1z0 + λ2y1 x2 + λ2y1z0 +
(

z0(z0−1)
2

)

λ1

1 y1

1 z0

1













�

7. Branching rules for UT5(Fq)

In this section, we will discuss the simultaneous conjugacy classes of tuples of com-

muting matrices of UT5(Fq). The types are listed in Section B. The branching matrix is

as follows:

Theorem 7.1. The branching rule of UT5(Fq) has 3 new types. The branching matrix

BUT5(Fq) is in table 4 which is a 20× 20 matrix.

Once again it’s easy to see the branches for central and regular types.
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Table 4. Branching matrix of UT5(Fq)















































































C A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 D1 D2 R1 R2 R3 UNT1 UNT2 UNT3

q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2(q−1) q2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

q2−q q(q2−1) q4 0 0 0 3q2−3q 0 0 0 0 0 0 0 0 0 0 0 0 0

2q2−2q 0 0 q2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2q2−2q 2q2(q−1) 0 q(q2−1) q4 0 0 q3−q 0 0 0 0 0 0 0 0 0 0 0 0

(q2−1).
(2q−1)

0 0 0 0 q2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(q−1)2 0 0 0 0 0 q2 0 0 0 0 0 0 0 0 0 0 0 0 0

2q2−2q 0 0 0 0 0 0 q2 0 0 0 0 0 0 0 0 0 0 0 0
2(q−1)2 q2(q−1) 0 q2(q−1) 0 0 0 0 q3 0 0 0 0 0 0 0 0 0 0 0

(2q2+4).

(q−1)2
q(q−1).

(q3+q2−1)
0 0 0 2q(q−1) 0 q2−q 0 q3 0 0 2q(q−1) 0 0 0 0 0 0 0

q(q−1)2 0 0 q3(q−1) 0 0 0 0 0 0 q2 0 0 0 0 0 0 0 0 0

2q(q−1)2 0 0 0 0 q2(q−1) q2(q−1) q4−q3 0 0
(q3+q).

(q2−1)
q3 0 0 0 0 0 0 0 0

(q−1)3 0 0 0 0 0 0 0 0 0 0 0 q2 0 0 0 0 0 0 0
(2q+1).

(q−1)3
0 0 0 0 0 0 0 0 0 0 0 0 q3 0 0 0 0 0 0

2(q−1)2 2q3−2q2 2q4−2q2
q(q−1).

(q2+q−1)
0 0 2q3−4q+2

(q2−q).

(q2+q−1)

q2(q−1).

(q2+q−1)
0 0 0 0 0 q6 0 0 0 q5−q2 0

q(q−1)2
q(q−1)2.
(q+1)

q(q2−1)2
q(q2−1).
(q−1)

q4(q−1) q2(q−1)
q(q−1)2.
(q+2)

(q−1).

(q3−q)
0 q4−q2 0 0 0 0 0 q5 0 q4−q2 q4−q3 q4−q2

(q2−1).

(q−1)2
q2(q−1)2 0 q2(q−1)2 q3(q2−1)

q(q−1).

(q2−1)
(q−1)2.

(q2+q+1)
q2(q−1)2 q3(q−1) 0 q4−q3 q2(q2−1) q2(q2−1) q2(q2−1) 0 0 q4 q4−q3 q4−q3 q4−q3

0 0 0 q2(q−1) 0 q(q−1)2 (q−1)2 q(q−1)2 0 0 0 0 0 0 0 0 0 q3 0 0

0 0 0 0 0 0 2q(q−1) q3−q2 0 0 0 0 0 0 0 0 0 0 q3 0

0 0 0 0 0 0 (q−1)3 0 0 0 0 0 q(q−1)2 0 0 0 0 0 0 q3















































































5
6



7.1. Branching of type A.

Proposition 7.2. An upper unitriangular matrix of type A1 has the following branches:

Branch No. of Branches Branch No. of Branches

A1 q2 B4 q(q − 1)(q3 + q2 − 1)

A2 q(q2 − 1) R1 2q2(q − 1)

A4 2q2(q − 1) R2 q(q − 1)2(q + 1)

B3 q2(q − 1) R3 q2(q − 1)2

Proof. For a matrix of type A1, there are two canonical forms: I5 + aE14, and I5 + aE25,

where a 6= 0. We will take our matrix A of type A1, to be the canonical form I5 + aE14,

a 6= 0. So the centralizer of A is ZUT5(Fq)(A) =















































1 a1 b1 b2 a2

1 c1 c2 d1

1 c3 d2

1

1















































. Let B =

















1 a1 b1 b2 a2

1 c1 c2 d1

1 c3 d2

1

1

















, B′ =

















1 a′1 b1 b′2 a′2
1 c′1 c′2 d′1

1 c′3 d′2
1

1

















, and X =

















1 x1 y1 y2 x2

1 z1 z2 w1

1 z3 w2

1

1

















, be

such that XB = B′X. From XB = B′X, we get that a′1 = a1. Let C denote the middle

3 × 3 unitriangular block







1 c1 c2

1 c3

1






in the matrix B, and let Z denote the middle

block,







1 z1 z2

1 z3

1






, from X. Likewise, we have C ′. We see that from XB = B′X, we

have ZC = C ′Z. Thus we take C to be a conjugacy class representative from UT3(Fq),

and Z to be its centralizer element in UT3(Fq). Now, with this, we have the following

set of equations:

(

x1 y1 y2

)

C +
(

a1 b1 b2

)

=
(

a1 b′1 b′2

)

Z +
(

x1 y1 y2

)

(7.1)

Z







d1

d2

0






+







w1

w2

0






= C







w1

w2

0






+







d′1
d′2
0






(7.2)

x1d1 + y1d2 + a2 = a1w1 + b′1w2 + a′2(7.3)

We look at two main cases, a1 = 0, and a1 6= 0.
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Case a1 = 0: Here Equation 7.3 is reduced to x1d1 + y1d2 + a2 = b′1w2 + a′2. Here we

look at subcases:

When (b1, b2) = (d1, d2) = (0, 0): Thus Equations 7.1 and 7.2 become:

(

x1 y1 y2

)

C =
(

x1 y1 y2

)







w1

w2

0






= C







w1

w2

0







and a′2 = a2.

When C = I3: Equations 7.1 and 7.2 are void, and B is reduced to

















1 a2

1

1

1

1

















.

Thus ZUT5(Fq)(A,B) = ZUT5(Fq)(A). So (A,B) is a branch of type A1, and there are q

branches.

When C =
(

1 c
1
1

)

, c 6= 0: Equation 7.2 remains void, but from Equation 7.1,

we get cx1 + y2 = y2, which leaves us with x1 = 0, as c 6= 0. Thus the branch is

B =

















1 a2

1 c

1

1

1

















, and ZUT5(Fq)(A,B) =















































1 y1 y2 x2

1 z1 z2 w1

1 z3 w2

1

1















































, which is the

centralizer of one of the canonical forms of type A2. So (A,B) is a branch of type A2,

and there are q(q − 1) such branches.

When C =
(

1 c
1
1

)

, c 6= 0: Here we have Z =
(

1 z1 z2
1

1

)

. From Equations 7.1

and 7.2, we have cx1 + y1 = y1 and w1 + cw2 = w1, thus we have x1 = w2 = 0. So we

have B =

















1 a2

1 c

1

1

1

















, and ZUT5(Fq)(A,B) =















































1 y1 y2 x2

1 z1 z2 w1

1

1

1















































, and by

a routine check, we see that ZUT5(Fq)(A,B) is commutative, of size q6. (A,B) is of the

regular type R1, and there are (q − 1)q branches of this type.

When C =
(

1
1 c
1

)

, c 6= 0: We have Z =
(

1 z2
1 z3

1

)

. In this case Equation 7.2

becomes void, and from Equation 7.1, we have cy1 + y2 = y2, thus leading to y1 = 0.
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Hence, B =

















1 a2

1

1 c

1

1

















. We have ZUT5(Fq)(A,B) =















































1 x1 y2 x2

1 z2 w1

1 z3 w2

1

1















































,

which is the centralizer of a unitriangular matrix of type A4. So (A,B) is a branch of

type A4, and there are q(q − 1) branches.

When C =
(

1 c1
1 c2

1

)

, c1, c2 6= 0: We have Z =
( 1 z1 z2

1 λz1
1

)

, where λ = c2/c1.

From Equation 7.1, we have c1x1 + y1 = y1, which leaves us with x1 = 0, and then we

have c2y1 + y2 = y2, which leaves us with y1 = 0. Then, from Equation 7.2, we have

w1 + c1w2 = w1, leaving us with with w2 = 0. So, we have B =

















1 a2

1 c1

1 c2

1

1

















,

and ZUT5(Fq)(A,B) =















































1 y2 x2

1 z1 z2 w1

1 λz1

1

1















































. This is of size q5, and by a routine

check, it can be seen that ZUT5(Fq)(A,B) is commutative. Thus (A,B) is of the regular

type R2, and there are q(q − 1)2 branches.

When ((b1, b2), (d1, d2)) 6= ((0, 0), (0, 0)): We shall start with C = I3.

When C = I3: Here Z is any aribtrary matrix in UT3(Fq), and Equations 7.1 and

7.2 become:

(

0 b1 b2

)

=
(

0 b′1 b′2

)







1 z1 z2

0 1 z3

0 0 1













1 z1 z2

0 1 z3

0 0 1













d1

d2

0






=







d′1
d′2
0







From the above equation, we have b′1 = b1, and b2 = b′2+b1z3, and we have d1+z1d2 =

d′1, and d′2 = d2.

Firstly, if both b1 6= 0 and d2 6= 0. Then we can choose a z3 such that b′2 = 0, and

similarly we can choose z1 such that d′1 = 0. Hence, with this Equation 7.3 is reduced to

y1d2 + a2 = b1w2 + a′2. We may choose a w2 such that d′2 = 0. Thus, we have reduced B
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to

















1 b1

1

1 d2

1

1

















, and ZUT5(Fq)(A,B) =















































1 x1 y1 y2 x2

1 z2 w1

1 λy1

1

1

















| λ = d2/b1































.

This is the centralizer of a matrix of type A4. Thus, we have (q − 1)2 branches of this

type.

When b1 6= 0 and d2 = 0, we again pick a z3 such that b′2 = 0, and Equation 7.3 is

reduced to x1d1 + a2 = b1w2 + a′2. Again, choose w2 so that a′2 = 0. Thus B is reduced

to

















1 b1

1 d1

1

1

1

















, and ZUT5(Fq)(A,B) =















































1 x1 y1 y2 x2

1 z1 z2 w1

1 λx1

1

1

















| λ = d1/b1































,

which is isomorphic (conjugation by the matrix that swaps the 4th and 5th rows and

columns) to centralizer of a matrix of type B3. Thus there are q(q − 1) branches of this

type.

When b1 = 0, we have b′22 = b2. We consider d2 6= 0, and choose a suitable z1 so

that d′1 = 0. Equation 7.3 is reduced to y1d2 + a2 = a′2. Thus, we choose an apporpriate

y1 so that a′2 = 0. B is thus reduced to

















1 b2

1

1 d2

1

1

















, and ZUT5(Fq)(A,B) =















































1 x1 y2 x2

1 z2 w1

1 z3 w2

1

1

















| λ = d1/b1































, which is the centralizer of one of the canonical

forms of type A4. There are q(q − 1) such branches.

When b2 6= 0, d2 = 0, we have d′1 = d1. We first take d1 = 0. Then Equation 7.3

is reduced to a′2 = a2. We thus have B reduced to

















1 b2 a2

1

1

1

1

















, and thus

ZUT5(Fq)(A,B) = ZUT5(Fq)(A). Hence, (A,B) is a branch of type A1, and there are

q(q − 1) branches.
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When b1 = 0, with d2 = 0, and d1 6= 0. Equation 7.3 is reduced to x1d1 + a2 = a′2.

With a suitable x1, we can get rid of d1. Hence B is reduced to

















1 b2

1 d1

1

1

1

















,

and ZUT5(Fq)(A,B) =















































1 y1 y2 x2

1 z1 z2 w1

1 z3 w2

1

1















































. Thus (A,B) is of type A2, and there

are q(q − 1) such branches.

When C =
(

1 c
1
1

)

: Equation 7.1 is reduced to
(

0 b1 b2 + cx1

)

=
(

0 b′1 b′1z3 + b′2

)

.

Thus, we have b′1 = b1, and we can choose x1 such that b′2 = 0. Now, here, on replacing

b′2 and b2 by 0 in the above equation, we get that x1 =
b1
c
z3. From Equation 7.2, we have

d′2 = d2, and d′1 = d1 + z1d2. Equation 7.3 becomes b1
c
z3d1 + y1d2 + a2 = w2b1 + a′2.

We now look at the case when b1 6= 0, and d′2 6= 0. We choose z1 so that d′1 = 0,

and w2 such that a′2 = 0. Hence, we reduce B to

















1 b1

1 c

1 d2

1

1

















, and we have

ZUT5(Fq)(A,B) =















































1 λz3 y1 y2 x2

1 z2 w1

1 z3 µy1

1

1

















| λ = b1
c
, µ = d2

b1































, which is isomorphic to

the centralizer of some canonical matrix of type B4. There are (q − 1)3 such branches.

When b1 6= 0, and d2 = 0, then d′1 = d1. Equation 7.3 becomes b1
c
z3d1+a2 = w2b1+a′2.

Choose a suitable w2, to make a′2 = 0. Then B is reduced to

















1 b1

1 c d1

1

1

1

















,
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and ZUT5(Fq) =















































1 λz3 y1 y2 x2

1 z1 z2 w1

1 z3 µz3

1

1

















| λ = b1
c
, µ = d1

c































. If we write z3 in terms

of z1, then ZUT5(Fq) will be this:















































1 x1 y1 y2 x2

1 z1 z2 w1

1 λx1 µx1

1

1

















| λ = c
b1
, µ = d1

b1































. If we

conjugate this centralizer by the matrix I + µ
λ
E45, we get the centralizer of a canonical

unitriangular matrix of type B3. Thus (A,B) is a branch of type B3, and there are

q(q − 1)2 such branches.

Now, when b1 = 0, and (d1, d2) 6= (0, 0). We have x1 = b1
c
z3 = 0,a nd Equation 7.3

becomes y1d2 + a2 = a′2. First, when d2 6= 0, then we choose z1 so that d′1 = 0, and

choose y1 so that a′2 = 0. So, B is reduced to

















1

1 c

1 d2

1

1

















, and ZUT5(Fq) =















































1 y2 x2

1 z2 w1

1 z3 w2

1

1















































, which is commutative of size q6, (A,B) is of regular type R1,

and there are q(q − 1) such branches.

When b1 = d2 = 0, d1 6= 0. We have d′1 = d1, and Equation 7.3 reduces to a′2 = a2.

Thus, B is reduced to

















1 a2

1 c d1

1

1

1

















, and ZUT5(Fq) =

















1 a2

1 c

1

1

1

















, and

ZUT5(Fq)(A,B) =















































1 y1 y2 x2

1 z1 z2 w1

1 z3 w2

1

1















































, which is the centralizer of a matrix of type

A2. Thus (A,B) is of type A2, and there are q(q − 1)2 such branches.
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When C =
(

1 c
1
1

)

, c 6= 0: Here Z =







1 z1 z2

1

1






, and Equation 7.1 becomes:

(

cx1 + b1 b2

)

=
(

b′1 b′2

)

.

Using a nice x1, we can make b′1 = 0, and b′2 = b2. So, if we replace b1 by b′1 = 0 in the

above equation, we have x1 = 0. Next, Equation 7.2 becomes:






d1 + z1d2

d2

0






=







cw2 + d′1
d′2
0






.

As c 6= 0, we choose a w2 so that d′1 = 0. We have d′2 = d2. With these, Equation 7.3

becomes

(7.4) y1d2 + a2 = a′2

When d2 6= 0, choose y1 such that a′2 = 0. B is reduced to

















1 b2

1 c

1 d2

1

1

















, and

ZUT5(Fq)(A,B) =















































1 y2 x2

1 z1 z2 w1

1 λz1

1

1

















| λ = d2
c































. Thus (A,B) is of regular type R2,

and there are q(q − 1)2 branches of this type.

When d2 = 0, then we are left with b2 6= 0. Hence Equation 7.3 is reduced to a′2 = a2.

Hence B is reduced to

















1 b2 a2

1 c

1

1

1

















, and ZUT5(Fq)(A,B) =















































1 y1 y2 x2

1 z1 z2 w1

1

1

1















































,

which is the centralizer of a matrix of type R1. (A,B) is a branch of type R1, and there

are (q − 1)2q such branches.

When C =
(

1
1 c
1

)

, c 6= 0: Here Z =







1 z2

1 z3

1






. With these, Equation 7.1

becomes:
(

b1 b2 + cy1

)

=
(

b′1 b′2 + b′1z3

)
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So, we have b′1 = b1, and we can choose y1 so that b′2 = 0. Thus, on equating the above

equation, with b2 replaced by 0, we get that y1 = b1
c
z3; and from Equation 7.2, we have

d′1 = d1, and d′2 = d2, and thus Equation 7.3 boils down to x1d1 +
b1
c
z3.d1 = b1w2 + a′2.

We first look at the case, when b1 6= 0. Then choose w2 so that a′2 = 0. So B reduces to
















1 b1

1 d1

1 c d2

1

1

















, and ZUT5(Fq)(A,B) =















































1 x1 λ1z3 y2 x2

1 z2 w1

1 z3 λ2z3 + µx1

1

1

















|
λ1=

b1
c
,λ2=

d2
c
,

µ=
d1
b1































.

This is isomorphic to a centralizer of canonical form of type A4. So (A,B) is a branch of

type A4, and there are q2(q − 1)2 such branches.

When b1 = 0. Then we have y1 = 0. Hence Equation 7.3 becomes x1d1 + a2 = a′2.

When d1 6= 0, choose x1 so that a′2 = 0. B is reduced to

















1

1 d1

1 c d2

1

1

















, and

ZUT5(Fq)(A,B) =















































1 y2 x2

1 z2 w1

1 z3 w2

1

1















































, which is the centralizer of a matrix of type

R1. Thus (A,B) is of type R1, and thus there are q(q − 1)2 branches of this type.

When d1 = 0, and d2 6= 0. Equation 7.3 ends up becoming a′2 = a2, and B is reduced

to

















1 a2

1

1 c d2

1

1

















, hence ZUT5(Fq)(A,B) =















































1 x1 y2 x2

1 z2 w1

1 z3 w2

1

1















































. Thus (A,B)

is a branch of type A4, and there are q(q − 1)2 such branches.

When C =
(

1 c1
1 c2

1

)

, c 6= 0: Here Z =







1 z1 z2

1 λ0z1

1






, where λ0 = c2

c1
. Thus,

from Equation 7.1, we have:
(

c1x1 + b1 c2y1 + b2

)

=
(

b′1 λ0z1b
′

1 + b′2

)

. So, we

choose x1 so that b′1 = 0. Similarly, we choose y1 such that b′2 = 0. Thus, on re-

placing b1, and b2 by 0 in the above equation, we get that x1 = 0, and y1 = 0.
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Equation 7.2 becomes







d1 + z1d2

d2

0






=







d′1 + c1w2

d′2
0






. Thus d′2 = d2, and we can

choose w2 so that d′1 = 0. So we are left with d2 6= 0. With x1 = y1 = b1 = 0,

Equation 7.3 becomes a′2 = a2. Hence B is reduced to

















1 a2

1 c1

1 c2 d2

1

1

















, with

ZUT5(Fq)(A,B) =















































1 y2 x2

1 z1 z2 w1

1 λ0z1 λ1z1

1

1

















| λ0 =
c2
c1
, λ1 =

d2
c1































, which is a central-

izer of type R2. (A,B) is a branch of type R2, and there are q(q − 1)3 branches of this

type.

Case a1 6= 0: We look at the various types of C as our subcases.

When C = I3: Here Equation 7.1 becomes:

(

a1 b1 b2

)

=
(

a1 b′1 + a1z1 b′2 + b′1z3 + z2a1

)

.

Using a suitable z1, we can make b′1 = 0, and using a suitable z2, we can make b′2 = 0.

Thus, on replacing b1 and b′2 by 0 in the above equation, we have z1 = z2 = 0. Hence with

this, Equation 7.2 becomes







d1

d2

0






=







d′1
d′2
0






. Equation 7.3 is reduced to a2+x1d1+y1d2 =

a′2+a1w1. So we choose w1 such that a′2 = 0. Thus B is reduced to

















1 a1

1 d1

1 d2

1

1

















,

and ZUT5(Fq) =















































1 x1 y1 y2 x2

1 λx1 + µy1

1 z3 w2

1

1

















| λ = d1
a1
, µ = d2

a1































, which is the central-

izer of type B4. (A,B) is thus a branch of type B4, and there are q2(q−1) such branches.
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When C =
(

1 c
1
1

)

, c 6= 0: Equation 7.1 becomes:

(

a1 b1 b2 + cx1

)

=
(

a1 a1z1 + b′1 a1z2 + b′1z3 + b′2

)

.

Choose z1 and z2 such that b′1 = b′2 = 0. Again, like in the previous case on replacing b1

and b2 by 0 in the above equation, we have z1 = 04 and z2 = c
a1
x1. From Equation 7.2,

we get d′1 = d1 amd d′2 = d2. Equation 7.3 is reduced to x1d1 + y1d2 + a2 = w1a1 +

a′2. We choose w1 such that a′2 = 0. Thus B is reduced to

















1 a1

1 c d1

1 d2

1

1

















, and

ZUT5(Fq)(A,B) =















































1 x1 y1 y2 x2

1 λ1x1 λ2x1 + µy1

1 z3 w2

1

1

















| λ1 =
c
a1
, λ2 =

d1
a1
, µ = d2

a1































. This

is of type B4. Hence (A,B) is a branch of type B4, and there are (q−1)2q2 such branches.

When C =
(

1 c
1
1

)

, c 6= 0: Z =







1 z1 z2

1

1






. Equation 7.1 becomes

(

a1 cy1 + b1 b2

)

=
(

a1 a1z1 + b′1 a1z2 + b′2

)

Choose z1 such that b′1 − 0, and choose z2 such that b′2 = 0. So, on substituting b1

and b2 with 0 in the above, we have z1 = c
a1
y1, and z2 = 0. Thus Equation 7.2 is

reduced to







d1 +
c
a1
y1d2

d2

0






=







cw2 + d′1
d′2
0






. We have d′2 = d2. Choose w2 so that d′1 = 0.

Equation 7.3 is reduced to y1d2+a2 = a1w1+a′2. Choose w1 such that a′2 = 0. Thus B is

reduced to

















1 a1

1 c

1 d2

1

1

















, with ZUT5(Fq)(A,B) =















































1 x1 y1 y2 x2

1 c
a1
y1

d2
a1
y1

1 d2
a1
y1

1

1















































,

which is a centralizer of a matrix of type R3. So (A,B) is a branch of type R3, and there

are (q − 1)2q branches of this type.
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When C =
(

1
1 c
1

)

, c 6= 0: Here Z =







1 z2

1 z3

1






. Equation 7.1 becomes

(

a1 b1 b2 + cy2

)

=
(

a1 b′1 a1z2 + b′1z3 + b′2

)

.

We have b′1 = b1. we can choose y2 such that b′2 = 0. Thus, on replacing b2 by 0 in

the above equation, we have y2 = a1
c
z2 + b1

c
z3. And Equation 7.2 ends up giving us

d′1 = d1, and d′2 = d2. Thus Equation 7.3 stays as it is. Since a1 6= 0, we choose

w1 so that a′2 = 0. B is therefore reduced to

















1 a1 b1

1 d1

1 c d2

1

1

















. ZUT5(Fq)(A,B) =















































1 x1 y1
a1
c
z2 +

b1
c
z3 x2

1 z2
d1
a1
x1 +

d2
a1
y1 −

b1
a1
w2

1 z3 w2

1

1















































, which is that of type B4. (A,B)

is of type B4, and the number of branches is q3(q − 1)2.

When C =
(

1 c1
1 c2

1

)

, c1, c2 6= 0: Here Z =







1 z1 z2

1 c2
c1
z1

1






. Equation 7.1 becomes:

(

a1 b1 + c1x1 b2 + c2y1

)

=
(

a1 a1z1 + b′1 a1z2 + b′1
c2
c1
z1 + b′2

)

.

Choose z1 such that b′1 = 0, and choose z2 such that b2 = 0. On replacing b1 and b2

by 0 in the above equation, we see that z1 = c1
a1
x1, and z2 = c2

a1
y1. From Equation 7.2,

we have d1 + c1
a1
x1d2 = c1w2 + d′1, and d′2 = d2. So we choose w2 such that d′1 = 0.

Equation 7.3 becomes: y1d2 + a2 = w1a1 + a′2. Choose w1 such that a′2 = 0. Thus B

is reduced to

















1 a1

1 c1

1 c2 d2

1

1

















, and ZUT5(Fq) =















































1 x1 y1 y2 x2

1 c1
a1
x1

c2
a1
y1

d2
a1
y1

1 c2
a1
x1

d2
a1
x1

1

1















































,

which is the centralizer of a matrix of type R3. Thus (A,B) is branch of type R3, and

there are q(q − 1)3 such branches. Hence, adding up the branches of each type, we get

the numbers as mentioned in the statement of this proposition. �

Proposition 7.3. An upper unitriangular matrix of type A2 has q4 branches of type A2,

2q2(q2 − 1) branches of regular type R1, and q(q2 − 1)2 branches of regular type R2.
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Proof. Let A =

















1

1 a

1

1

1

















, a 6= 0 a matrix of type A2. The centralizer ZUT5
(A)

of A is















































1 x1 x2 x3

1 y0 y1 y2

1 z0 z1

1

1

















| , xi, yi, zi ∈ Fq































. Let X =

















1 x1 x2 x3

1 y0 y1 y2

1 z0 z1

1

1

















be an

element of ZUT5(Fq)(A). Let B =

















1 a1 a2 a3

1 b0 b1 b2

1 c0 c1

1

1

















, and B′ =

















1 a′1 a′2 a′3
1 b′0 b′1 b′2

1 c′0 c′1
1

1

















be a conjugate of B by X. Thus equating XB = B′X gives us a′1 = a1, b
′

0 = b0, c
′

0 = c0,

c′1 = c1, and the following equations:

x1c0 + a2 = a1z0 + a′2
x1c1 + a3 = a1z1 + a′3
y0c0 + b1 = b′1 + b′0z0

y0c1 + b2 = b′2 + b′0z1

We consider two cases when (a1, b0, c0, c1) = 0 and when (a1, b0, c0, c1) 6= 0.

Case: (a1, b0, c0, c1) = 0. In this case, we get a2 = a′2, a3 = a′3, b1 = b′1 and b2 = b′2.

Therefore ZUT5(Fq)(A,B) = ZUT5(Fq)(A). So (A,B) is a branch of type A2, and there are

q4 branches.

Case: (a1, b0, c0, c1) 6= 0. First we consider that c1 6= 0. We choose x1 and y0 in such

a way that we get a3 = b2 = 0. Now if (a1, b0) = (0, 0), then by simple calculations, we

get ZUT5(Fq)(A,B) is a commutative group of size q6. Thus (A,B) is of regular type R1,

and there are q3(q − 1) branches of this type. If we consider that case when at least one

of a1 and b0 is non-zero, then we can choose z0 suitably so that we get one of a2 or b1

equal to zero. By routine check, we get that ZUT5(Fq)(A,B) is a commutative group of

size q5. Thus (A,B) is of regular type R2, and there are (q3− q2)(q2−1) branches of this

type.

Now we consider that c1 = 0 and c0 6= 0. We choose x1 and y0 in such a way that we

get a2 = b1 = 0. Now if (a1, b0) = 0, then by simple calculations, we get ZUT5(Fq)(A,B) is

a commutative group of size q6. Thus (A,B) is of regular type R1, and there are q2(q−1)

branches of this type. If we consider that case when at least one of a1 and b0 is non-zero,
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then we can choose z1 suitably so that we get one of a3 or b2 equal to zero. By routine

check, we get that ZUT5(Fq)(A,B) is a commutative group of size q5. Thus (A,B) is of

regular type R2, and there are (q2 − q)(q2 − 1) branches of this type.

Next we consider when c1 = c0 = 0 and b0 6= 0. We choose z0 and z1 in such a way that

we get b1 = b2 = 0. Now by simple calculations, we get ZUT5(Fq)(A,B) is a commutative

group of size q6. Thus (A,B) is of regular type R1, and there are q3(q − 1) branches of

this type.

Finaly we consider when c1 = c0 = b00 and a1 6= 0. We choose z0 and z1 in such a

way that we get a2 = a3 = 0. Now by simple calculations, we get ZUT5(Fq)(A,B) is a

commutative group of size q6. Thus (A,B) is of regular type R1, and there are q2(q − 1)

branches of this type.

Therefore a matrix of type A2 has q4 branches of type A2, 2q2(q2 − 1) branches of

regular type R1, and q(q2 − 1)2 braches of regular type R2.

�

Proposition 7.4. An upper unitriangular matrix of type A3 has

Branch No. of Branches Branch No. of Branches

A3 q2 R1 q(q2 + q − 1)(q − 1)

A4 q(q2 − 1) R2 q(q2 − 1)(q − 1)

B3 q2(q − 1) R3 q2(q − 1)2

B5 q3(q − 1) UNT1 q2(q − 1).

It has a new type branch, named UNT1, with common centralizer

{( 1 x0 x1 λz0 x3

1 y0 y2
1

1 z0
1

)}

.

Proof. Let A =

















1 a

1

1

1

1

















, a 6= 0 a matrix of type A3. The centralizer ZUT5
(A)

of A is















































1 x0 x1 x2 x3

1 y0 y1 y2

1

1 z0

1

















| , xi, yi, w0 ∈ Fq































. Let X =

















1 x0 x1 x2 x3

1 y0 y1 y2

1

1 w0

1

















be

an element of ZUT5(Fq)(A). Let B =

















1 a0 a1 a2 a3

1 b0 b1 b2

1

1 d0

1

















, and B′ =

















1 a′0 a′1 a′2 a′3
1 b′0 b′1 b′2

1

1 d′0
1

















69



be a conjugate of B by X. Thus equating XB = B′X gives us a′0 = a0, b
′

0 = b0, b
′

1 = b1,

d′0 = d0, and the following equations:

a1 + x0b0 = a0y0 + a′1
a2 + x0b1 = a0y1 + a′2

a3 + x0b2 + x2d0 = a0y2 + a′2z0 + a′3
b2 + y1d0 = z0b1 + b′2

We consider two cases when (a0, b0, b1, d0) = 0 and when (a0, b0, b1, d0) 6= 0.

Case: (a0, b0, b1, d0) = 0. In this case, we get a′1 = a1, a′2 = a2, b′2 = b2, and

a3 + x0b2 = a2z0 + a′3.

If (a2, b2) = 0, then we get b3 = b′3. Therefore ZUT5(Fq)(A,B) = ZUT5(Fq)(A). So

(A,B) is a branch of type A3, and there are q2 branches. Now we consider that a2 6= 0.

In this case, we can choose w0 in such a way that we get a3 = 0. By routine check, we get

ZUT5(Fq)(A,B) is a group of order q7 and (A,B) is the type B3, and there are q2(q − 1)

branches.

If we consider a2 = 0 and b2 6= 0, choose x0 in such a way that we get a3 = 0. By

routine check, we get ZUT5(Fq)(A,B) is a group of order q7 and (A,B) is a branch of type

A4, and there are q(q − 1) branches.

Case: (a0, b0, b1, d0) 6= 0. First we consider that a0 6= 0. In this case, we can choose

y0, y1 and y2 in such a way that we get a1 = a2 = a3 = 0 and b2 +
d0b1
b0

x0 = z0b1 + b′2.

Now if b1 = 0, then we get b2 = b′2. By routine check, we get ZUT5(Fq)(A,B) is a group

of order q5 and (A,B) is a branch of type B5, and there are q3(q − 1) branches. On the

other hand if b1 6= 0, then we choose z0 in such a way that we get b2 = 0 By routine

check, we get ZUT5(Fq)(A,B) is a commutative group of order q4 and (A,B) is a branch

of regular type R3, and there are q2(q − 1)2 branches.

Now we consider that a0 = 0 and b0 6= 0. In this case, we can choose x0 in such a

way that we get a1 = 0 and this implies x0 = 0. Thus we get b2 = b′2 and the following

equalities:
a3 + x2d0 = a2z0 + a′3
b2 + d0y1 = z0b1 + b′2

Now if (d0, a2, b1) = 0, then we get a3 = a′3 and

b2 = b′2. By routine check, we get ZUT5(Fq)(A,B) is a group of order q7 and (A,B) is a

branch of type A4, and there are q2(q − 1) branches. If d0 6= 0, then we choose x2 and

y1 in such a way that we get a3 = b2 = 0. By routine check, we get ZUT5(Fq)(A,B) is a

commutative group of order q5 and (A,B) is a branch of regular type R2, and there are

q2(q − 1)2 branches.

If d0 = 0 and a2 6= 0, then we choose w0 in such a way that we get a3 = 0 and

this implies w0 = 0. Thus we get b2 = b′2. By routine check, we get ZUT5(Fq)(A,B) is a

commutative group of order q6 and (A,B) is a branch of regular type R1, and there are

q2(q − 1)2 branches.
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If d0 = a2 = 0 and b1 6= 0, then we get a3 = a′3 and we choose w0 in such a way that

we get b2 = 0. By routine check, we get ZUT5(Fq)(A,B) is a commutative group of order

q6 and (A,B) is a branch of regular type R1, and there are q(q − 1)2 branches.

Now we consider that a0 = b0 = 0 and b1 6= 0. In this case, we can choose x0 and z0 in

such a way that we get a2 = b2 = 0. In addition to this, if d0 = 0, then we get a3 = a′3.

By routine check, we get ZUT5(Fq)(A,B) is a commutative group of order q6 and (A,B)

is a branch of regular type R3, and there are q2(q − 1) branches. Now if we consider

d0 6= 0, then we can choose x2 in such a way that we get a3 = 0. By routine check, we

get ZUT5(Fq)(A,B) is a commutative group of order q5 and (A,B) is a branch of regular

type R2, and there are q(q − 1)2 branches.

Finally we consider the case when a0 = b0 = b1 = 0 and d0 6= 0, then we get a2 =

a′2, a1 = a′1 and we can choose y1 and x2 in such a way that we get a3 = b2 = 0.

By routine check, we get ZUT5(Fq)(A,B) is a group of order q6, and ZUT5(Fq)(A,B) =
{( 1 x0 x1 λz0 x3

1 y0 y2
1

1 z0
1

)}

. As we have not seen this centralizer before, and This (A,B) is a

branch of new type, which we call UNT1 and there are q2(q − 1) branches. �

Proposition 7.5. An upper unitriangular matrix of type A4 has q4 branches of type A4,

q3(q2 − 1) branches of regular type R1, and q4(q − 1) breaches of regular type R2.

Proof. Let A =

















1

1 a

1

1

1

















, a 6= 0 a matrix of type A4. The centralizer ZUT5
(A)

of A is















































1 x1 x2 x3

1 y0 y1 y2

1

1 w0

1

















| , xi, yi, w0 ∈ Fq































. Let X =

















1 x1 x2 x3

1 y0 y1 y2

1

1 w0

1

















be

an element of ZUT5(Fq)(A). Let B =

















1 a1 a2 a3

1 b0 b1 b2

1

1 d0

1

















, and B′ =

















1 a′1 a′2 a′3
1 b′0 b′1 b′2

1

1 d′0
1

















be a conjugate of B by X. Thus equating XB = B′X gives us a1 = a′1 a,2 = a′2, b0 = b′0,

b1 = b′1, d0 = d′0 and the following equations:

a3 + x2d0 = a′2w0 + a′3
b2 + d0y1 = w0b

′

1 + b′2
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We consider two cases when (a2, b1, d0) = 0 and when (a2, b1, d0) 6= 0.

Case: (a2, b1, d0) = 0. In this case, we get a3 = a′3 and b2 = b′2. Therefore

ZUT5(Fq)(A,B) = ZUT5(Fq)(A). So (A,B) is a branch of type A4, and there are q4

branches.

Case: (a2, b1, d0) 6= 0. First we consider that d0 6= 0. Now we can choose x2 and y1

in such a way that we get a3 = b2 = 0. By routine check, we get ZUT5(Fq)(A,B) is a

commutative group of size q5. Thus (A,B) is of regular type R2, and there are q4(q − 1)

branches of this type.

Now we consider that d0 = 0 and a2 6= 0. In this case, we can choose w0 in such a way

that we get a3 = 0. By routine check, we get ZUT5(Fq)(A,B) is a commutative group of

size q6. Thus (A,B) is of regular type R1, and there are q4(q − 1) branches of this type.

Finaly we consider when d0 = a2 = 0 and b1 6= 0., now we can choose w0 in such a

way that we get b2 = 0. Again, we get ZUT5(Fq)(A,B) is commutative group of size q6.

Thus (A,B) is of regular type R1, and there are q3(q − 1) branches of this type.

Therefore we get that a matrix of type A4 has q4 branches of type A4, q3(q2 − 1)

braches of regular type R1, and q4(q − 1) braches of regular type R2. �

Proposition 7.6. An upper unitriangular matrix of type A5 has:

Branch Type No. of Branches Branch Type No. of Branches

A5 q2 R2 q2(q − 1)

B4 2q(q − 1) R3 q(q − 1)(q2 − 1)

B6 q2(q2 − 1) UNT1 q(q − 1)2.

It has the new branch UNT1 already seen in previous case.

Proof. There are several canonical forms for a matrix in UT5(Fq), of type A5. We prove

this proposition for the canonical form A =

















1 a

1

1

1

1

















, where a 6= 0. We have:

ZU5(Fq)(A) =















































1 a0 a1 a2 a3

1

1 b0 b1

1 c0

1















































. We can rewrite this centralizer subgroup as

















1 a0
t−→b

1

C






|

C ∈ UT3(Fq)
t−→b = (b1 b2 b3)











. Let B =







1 a0
t−→b

1

C






, and B′ =







1 a′0
t−→b

1

C ′






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be a conjugate in UT5 of B. B′ = XBX−1, where X =







1 x0
t−→y

1

Z






. So, equating

XB = B′X gives us a′0 = a0, ZC = C ′Z. So, we may take C to be the representative of

a conjugacy class in UT3(Fq), and we have the equation:

t−→y .C + t−→b = t
−→
b′Z + t−→y

We rewrite this equation slightly to get:

(7.5)
(

y1 y2 y3

)

(C − I3) +
(

b1 b2 b3

)

=
(

b′1 b′2 b′3

)

Z

The cases:

When C = I3. Here Equation 7.5 becomes:
(

b1 b2 b3

)

=
(

b′1 b2 b′3

)







1 z0 z1

1 z2

1






,

which gives us b′1 = b1, and the following equation:

b2 = b′2 + z0b1(7.6)

b3 = b′3 + z1b1 + z2b
′

2(7.7)

We have two subcases here: When b1 = 0 and when b1 6= 0.

When b1 = 0 Equation 7.6 becomes b′2 = b2, and Equation 7.7 becomes b3 = b′3+z2b2.

When b2 = 0, we have b′3 = b3. So B is reduced to

















1 a0 b3

1

1

1

1

















, and

ZU5(Fq)(A,B) = ZU5(Fq)(A). Thus (A,B) is of type A5, and there are q2 such branches.

When b2 6= 0, in Equation 7.6, choose z2 so that b′3 = 0. So, We have B reduced to
















1 a0 b2

1

1

1

1

















, and ZU5(Fq)(A,B) =















































1 x0 y1 y2 y3

1

1 z0 z1

1

1















































. (A,B) is of type

B4 and there are q(q − 1) such branches.

When b1 6= 0: In Equation 7.6, choose z0 such that b′2 = 0, and in Equation 7.6,

choose z1 such that b′3 = 0. So B is reduced to

















1 a0 b1

1

1

1

1

















, and ZU5(Fq)(A,B) =
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













































1 x0 y1 y2 y3

1

1

1 z2

1















































. (A,B) is a branch of type B6, and there are q(q − 1) such

branches.

When C =
(

1 c
1
1

)

, c 6= 0: From Equation 7.5, we have b′1 = b1, and the following

following equations:

b2 = b′2 + z0b1(7.8)

b′3 + cy1 = b′3 + z1b
′

1 + z2b
′

2.(7.9)

As c 6= 0, choose y1 so that b′3 = 0.

Case: b1 = 0

We have b′2 = b2. When b2 = 0, B is reduced to

















1 a0

1

1 c

1

1

















, and ZU5(Fq)(A,B) =















































1 x0 y2 y3

1

1 z0 z1

1 z2

1















































. (A,B) is of type B4, and there are q(q − 1) such branches.

When b2 6= 0, we have B reduced to

















1 a0 a2

1

1 c

1

1

















, and ZU5(Fq)(A,B) =















































1 x0
b2
c
z2 y2 y3

1

1 z0 z1

1 z2

1















































. This centralizer is isomorphic to that of a new type, UNT1,

which we had come across earlier. There are q(q − 1)2 such branches.
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When b1 6= 0. We can choose z0 so that b′2 = 0. Here B is reduced to

















1 a0 a1

1

1 c

1

1

















,

and ZU5(Fq)(A,B) =















































1 x0
b1
c1
z1 y2 y3

1

1 z1

1 z2

1















































. Hence (A,B) is of type B6, and there

are q(q − 1)2 such branches.

When C =
(

1 c
1
1

)

, c 6= 0: Here Z =







1 z0 z1

1

1






. With this, Equation 7.5 becomes:

(

b1 b2 + cy1 b3

)

=
(

b′1 z0b
′

1 + b′2 z1b
′

1 + b′3

)

. Now, as c 6= 0, choose y1 so that

b′2 = 0.

When b1 = 0, we have b′3 = b3. Thus, B is reduced to

















1 a0 b3

1

1 c

1

1

















, and

ZU5(Fq)(A,B) =















































1 x0 y2 y3

1

1 z0 z1

1

1















































. By a routine check, we can see that this

centralizer is commutative, and of size q5. (A,B) is of type R2, and there are q2(q − 1)

such branches.
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When b1 6= 0, choose z1 such that b′3 = 0. Thus, B is reduced to

















1 a0 a1

1

1 c

1

1

















,

and ZU5(Fq)(A,B) =















































1 x0
b1
c
z0 y2 y3

1

1 z0

1

1















































. This centralizer is of size q4, and is

commutative. Thus (A,B) is of type R3, and there are (q − 1)2q such branches.

When C =
(

1
1 c
1

)

, c 6= 0: Here Z =







1 z1

1 z2

1






. Here Equation 7.5 becomes:

(

b1 b2 b3 + cy2

)

=
(

b′1 b′2 b′3 + z1b
′

1 + z2b
′

2

)

.

We have b′1 = b1 and b′2 = b2, and choose y2 so that b′3 = 0. Thus B is reduced

to

















1 a0 b1 b2

1

1

1 c

1

















, and ZU5(Fq)(A,B) =















































1 x0 y1
b1
c
z1 +

b2
c
z2 y3

1

1 z1

1 z2

1















































. This

too is of type B6, and there are q3(q − 1) such branches.

And now we have the last case: When C =
(

1 c
1 d
1

)

, c, d 6= 0: Here Z =







1 z0 z1

1 λz0

1






,

where λ = d
c
. Equation 7.5 becomes:

(

b1 b2 + cy1 b3 + dy2

)

=
(

b′1 b′2 + z0b
′

1 b′3 + z1b
′

1 + λz0b
′

2

)

.

We have b′1 = b1, and choose y1 so that b′2 = 0, and y2 so that b′3 = 0. Hence B is reduce

to

















1 a0 b1

1

1 c

1 d

1

















, and ZU5(Fq)(A,B) =















































1 x0
b1
c
z0

b1
d
z1 y3

1

1 z0 z1

1 λz0

1















































. This cen-

tralizer is 4 dimensional, and commutative. Thus (A,B) is of type R3, and there are

(q − 1)2q2 such branches.

With this, we have no other cases to analyse. So from the calculations, we have:

• q2 branches of type A5.

• q(q − 1) + q(q − 1) = 2q(q − 1) branches of type B4.

• q(q − 1) + q(q − 1)2 + q3(q − 1) = q4 − q2 branches of type B6.
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• q2(q − 1) branches of type R2.

• q(q − 1)2 + q2(q − 1)2 = q(q − 1)(q2 − 1) branches of type R3, and

• q(q − 1)2 branches of the new type UNT1.

�

7.2. Branching of type B. Now we look at the B types and decide its branching.

Proposition 7.7. An upper unitriangular matrix of type B1 has the following branches:

Branch No. of Branches Branch No. of Branches

B1 q2 R3 (q − 1)2(q2 + q + 1)

A2 3q2 − 3q UNT1 (q − 1)2

R1 2q3 − 4q + 2 UNT2 2q2 − 2q

R2 q(q − 1)2(q + 2) UNT3 (q − 1)3.

B6 q2(q − 1)

We have seen UNT1 earlier. There are two more new types here UNT2 with centralizer










1 x1 y1 y2 x2

1 z1 z2 w1

1 λx1

1 x1

1











and UNT3 with centralizer

















1 x1 y1 y2 x2

1 λ1x1 z2 w1

1 λ2x1

λ2
λ1

y1

1 x1

1

















.

Proof. A matrix of type B1 has the canonical form:

















1 a

1 b

1

1

1

















. We may take

a = b = 1. Then ZUT5(Fq)(A) =

















1 t−→b a2

C
−→
d

1






| C ∈ UT3(Fq),

t−→b = (a1 b1 b2)
−→
d =

(

d1
d2
a1

)











. Let

B =







1 t−→b a2

C
−→
d

1






, X =







1 t−→y x2

Z −→w

1






, and B′ =







1 t
−→
b′ a′2

C ′
−→
d′

1






= XBX−1. Then

XB = B′X leads to firstly ZC = C ′Z, so we might as well take C to be a conjugacy

class representative in UT3(Fq), and Z, a centralizer matrix of C. We also get in t
−→
b ,

and
−→
d , a′1 = a1, and the following equations:

(

a1 b1 b2

)

+
(

x1 y1 y2

)

C =
(

a′1 b′1 b′2

)

Z +
(

x1 y1 y2

)

(7.10)

Z







d1

d2

a1






+







w1

w2

x1






=







d′1
d′2
a1






+ C







w1

w2

x1






(7.11)

a2 + x1d1 + y1d2 + y2d1 = a′2 + a1w1 + b′1w2 + b′2x1(7.12)
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We look at two main cases: a1 = 0, and a1 6= 0.

Case a1 = 0: First we look at b1 = b2 = d1 = d2 = 0. Here Equation 7.10 re-

duces to
(

x1 y1 y2

)

C =
(

x1 y1 y2

)

, Equation 7.11 reduces to C
(

w1 w2 x1

)

=
(

w1 w2 x1

)

, and from Equation 7.12, we have a′2 = a2.

When C = I3, Equations 7.10 and 7.11 are void, and we have B =

















1 a2

1

1

1

1

















,

with ZUT5(Fq)(A,B) = ZUT5(Fq)(A). Thus (A,B) is of type B1, and there are q such

branches.

When C =
(

1 c
1
1

)

, c 6= 0, we have from Equation 7.10: cx1 = 0. Hence x1 =

0. With this Equation 7.11 becomes void. So, we have B =

















1 a2

1 c

1

1

1

















, and

ZUT5(Fq)(A,B) =















































1 y1 y2 x2

1 z1 z2 w1

1 z3 w2

1

1















































, which is the centralizer of a canonical form

of type A2. (A,B) is a branch of type A2, and there are q(q − 1) such branches.

When C =
(

1 c
1
1

)

, c 6= 0, we have Z =







1 z1 z2

1

1






. From equation 7.10, with

this C, we get:
(

x1 y1 + cx1 y2

)

=
(

x1 y1 y2

)

, which leaves us with x1 = 0.

Equation 7.11 becomes:







w1

w2






=







w1 + cw2

w2






, thus we have w2 = 0. So we have

B = I5 + cE24 + a2E15, with ZUT5(Fq)(A,B) =















































1 y1 y2 x2

1 z1 z2 w1

1

1

1















































, which is the

centralizer of a matrix of type R1. Thus (A,B) is of type R1, and there are q(q− 1) such

branches.
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When C =
(

1
1 c
1

)

, c 6= 0, Z =







1 z2

1 z3

1






. Equation 7.10 becomes:

(

x1 y1 cy1 + y2

)

=

(

x1 y1 y2

)

, which leaves us with y1 = 0. Equation 7.11 becomes







w1

w2 + cx1

x1






=







w1

w2

x1






, which leads to x1 = 0. So B = I5 + a2E15 + cE34, with ZUT5(Fq)(A,B) =















































1 y2 x2

1 z2 w1

1 z3 w2

1

1















































, which is the centralizer of a matrix of type R1. (A,B) is a

branch of type R1, and there are q(q − 1) such branches.

When C =







1 c

1 d

1






, c1, c2 6= 0, Z =







1 z1 z2

1 d
c
z1

1






. Equation 7.10 becomes

(

x1 cx1 + y1 dy1 + y2

)

=
(

x1 y2 y2

)

, which leaves us with x1 = y1 = 0. Equa-

tion 7.11 becomes







w1 + cw2

w2






=







w1

w2






, which leaves us with w2 = 0. Hence B =

I5+a2E15+cE23+dE34, and ZUT5(Fq)(A,B) =















































1 y2 x2

1 z1 z2 w1

1 d
c
z1

1

1















































, which is the

centralizer of a matrix of type R2. (A,B) is a branch of type R2, and there are q(q− 1)2

branches.

When ((b1, b2), (d1, d2)) 6= (
−→
0 ,

−→
0 ):

We start with C = I3: Thus Equation 7.10 becomes
(

0 b1 b2

)

=
(

0 b′1 b′1z3 + b′2

)

.

We have b′1 = b1, and thus b2 = b′2 + b1z3. First, when b1 6= 0, we choose z3 so that

b′2 = 0. Thus, on replacing b2 by b′2 = 0 in the equation above, we have z3 = 0. So

Equation 7.11 boils down to







d1 + z1d2

d2

0






=







d′1
d′2
0






. So we have d′2 = d2. So, again,

over here, when d2 6= 0, choose z1 such that d′1 = 0. With these, Equation 7.12 be-

comes y1d2 + a2 = a′2 + w2b1. So, choose w2 such that a′2 = 0. So, B is reduced to
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I5 + b1E13 + d2E35, and ZUT5(Fq)(A,B) =















































1 x1 y1 y2 x2

1 z2 w1

1 d2
b1
y1

1 x1

1















































. This central-

izer is isomorphic to that of the new type UNT1 (as seen in Proposition 7.4), via the

isomorphism that maps generators to generators, and extended product-wise.

When b1 6= 0, and d2 = 0, we have d′1 = d1, and Equation 7.12 becomes x1d1+ =

a′2 + b1w2. So, we choose w2 such that a′2 = 0. So B is reduced to

















1 b1

1 d1

1

1

1

















,

and ZUT5(Fq)(A,B) =















































1 x1 y1 y2 x2

1 z1 z2 w1

1 d1
b1
x1

1 x1

1















































. Thus (A,B) is of a new type, which

we call UNT2, and there are q(q − 1) such branches.

When b1 = 0, b′2 = b2. First, when d2 6= 0, we choose z1 so that d′1 = 0, and hence

Equation 7.12 becomes a2+y1d2 = a′2z+b2x1. As d2 6= 0, choose y1 so that a′2 = 0. Hence

B is reduced to

















1 b2

1

1 d2

1

1

















, and ZUT5(Fq)(A,B) =















































1 x1
b2
d2
x1 y2 x2

1 z2 w1

1 z3 w2

1 x1

1















































.

This too is of type UNT2, and there are q(q − 1) such branches.

When d2 = 0, we have d′1 = d1. So Equation 7.12 looks like: a2 + x1d1 = a′2 + x1b2.

When b2 = d1 6= 0, we have a′2 = a2, and B is reduced to

















1 b2 a2

1 b2

1

1

1

















, and

ZUT5(Fq)(A,B) = ZUT5(Fq)(A). Thus (A,B) is of type B1, and there are q(q − 1) such

branches.
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When b2 6= d1, choose an x1 such that a′2 = 0. So, B is boiled down to

















1 b1

1 d2

1

1

1

















,

and ZUT5(Fq)(A,B) =















































1 y1 y2 x2

1 z1 z2 w1

1 z3 w2

1

1















































, which is the centralizer of a matrix of

type A2, and there are q(q − 1) such branches.

When C =
(

1 c
1
1

)

, c 6= 0: Equation 7.10 becomes:
(

0 b1 b2 + cx1

)

=
(

0 b′1 b′1z3 + b′2

)

.

We have b′1 = b1, and as c 6= 0, we can choose x1 so that b′2 = 0. So, on replacing b2 by

0 in the above equation, we have x1 =
b1
c
z3.

Then from Equation 7.11, we have







d1 + d2z1

d2

0






=







d′1 + b1z3

d′2
0






. First, when b1 6= 0,

we choose a z3 so that d′1 = 0. With these, Equation 7.12 becomes: a2+y1d2 = a′2+b1w2.

As b1 6= 0, choose w2 so that a′2 = 0. So B is reduced to

















1 b1

1 c

1 d2

1

1

















. When

d2 6= 0 ZUT5(Fq)(A,B) =















































1 d2
c
z1 y1 y2 x2

1 z1 z2 w1

1 d2
b1
z1

d2
b1
y1

1 d2
c
z1

1















































. This isn’t isomorphic to the

centralizer of any matrix in UT5(Fq), hence (A,B) is of a new type UNT3, and there

are (q − 1)3 such branches. When d2 = 0, ZUT5(Fq)(A,B) =















































1 y1 y2 x2

1 z1 z2 w1

1

1

1















































.

Hence (A,B) is of type R1, and there are (q − 1)2 such branches.

When b1 = 0, we have x1 = b1
c
z3 = 0, we have d′1 = d1 + z1d2. When d2 6= 0, choose

z1 such that d′1 = 0. Equation 7.12 becomes a2 + y1d2 = a′2. Choose y1 so that a′2 = 0.
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So, B is reduced to

















1

1 c

1 d2

1

1

















, and ZUT5(Fq)(A,B) =















































1 y2 x2

1 z2 w1

1 z3 w2

1

1















































.

(A,B) is of type R1, and there are (q − 1)2 such branches.

When b1 = 0, and d2 = 0. Then d′1 = d1, which is 6= 0 Then from Equation 7.12,

we simply have a′2 = a2, and B is reduced to

















1 a2

1 c d1

1

1

1

















. ZUT5(Fq)(A,B) =















































1 y1 y2 x2

1 z1 z2 w1

1 z3 w2

1

1















































. (A,B) is of type A2, and there are q(q − 1) such branches.

When C
(

1 c
1
1

)

, c 6= 0: Z =







1 z1 z2

1

1






. Equation 7.10 becomes

(

0 b1 + cx1 b− 2
)

=

(

0 b′1 b′2

)

. We get that b′2 = b2. We choose x1 so that b′1 = 0. Thus, on replacing

b1 by 0, and equating the above equation, we have x1 = 0. Equation 7.11 becomes






d1 + z1d2

d2

0






=







cw2 + d′1
d′2
0






. Again, over here, we choose w2 such that d′1 = 0. Now, on

substituting b1 with 0, we have w2 =
d1
c
z1. So, Equation 7.12 becomes a2 + y1d2 = a′2.

When d2 6= 0, choose y1 such that a′2 =. So B is reduced to

















1 b2

1 c

1 d2

1

1

















, and

ZUT5(Fq)(A,B) =















































1 y2 x2

1 z1 z2 w1

1 d2
c
z1

1

1















































. (A,B) is therefore of type R2, and there

are q(q − 1)2 such branches.
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When d2 = 0, and b2 6= 0. Then Equation 7.12 becomes a′2 = a2. So, B is reduced to
















1 b2 a2

1 c

1

1

1

















. ZUT5(Fq)(A,B) =















































1 y1 y2 x2

1 z1 z2 w1

1

1

1















































. So (A,B) is of type

R1, and there are q(q − 1)2 branches of this type.

When C
(

1
1 c
1

)

, c 6= 0: Z =







1 z2

1 z3

1






. Equation 7.10 becomes

(

0 b1 b2 + cy1

)

=

(

0 b′1 b′1z3 + b′2

)

. b′1 = b1. Choose y1 such that b′2 = 0. So, on substituting b2 with

0, we have y1 = b1
c
z3. Equation 7.11 becomes







d1 + d2z1

d2

0






=







d′1
d′2 + cx1

0






. Choose x1

such that d′2 = 0. So d′1 = d1. Hence, on replacing d2 by 0, we get x1 = 0. Hence,

Equation 7.12 becomes a2 = a′2+ b1w2. When b1 6= 0, choose w2 such that a′2 = 0. Thus,

B is reduced to

















1 b1

1

1 c d2

1

1

















, and ZUT5(Fq)(A,B) =















































1 b1
c
z3 y2 x2

1 z2 w1

1 z3

1

1















































.

So (A,B) is of type R2, and there are q(q − 1)2 such branches.

When b1 = 0, and d′1 = d1, we get from Equation 7.12, we get a′2 = a2. Hence B is

reduced to

















1 a2

1

1 c d2

1

1

















, and ZUT5(Fq)(A,B) =















































1 y2 x2

1 z2 w1

1 z3 w2

1

1















































. (A,B)

is of type R1, and there are q(q − 1)2 such branches.

When C
(

1 c
1 d
1

)

, c, d 6= 0: Here Z =







1 z1 z2

1 d
c
z1

1






. Equation 7.10 becomes

(

0 b1 + cx1 b2 + dy1

)

=
(

0 b′1 b′2 +
d
c
z1b1

)

. Choose x1 such that b′1 = 0, and then

choose y1 such that b′2 = 0. So, on substituting b1 with 0, we get x1 = 0. Then,

on substituting b2 with 0, we get y1 = 0. Equation 7.11 becomes







d1 + d2z1

d2

0






=
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





d′1 + cw2

d′2
0






. We have d′2 = d2 6= 0, choose w2 such that d′1 = 0. Thus, with these

Equation 7.12 becomes a′2 = a2. So B becomes

















1 a2

1 c

1 d d2

1

1

















. ZUT5(Fq)(A,B) =















































1 y2 x2

1 d
c
z1 z2 w1

1 z1
d2
c
z1

1

1















































. (A,B) is of type R2. There are q(q − 1)3 such branches.

When a1 6= 0: We now look at the branches, where the entry a1 6= 0.

When C = I3: Equation 7.10 becomes
(

a1 b1 b2

)

=
(

a1 a1z1 + b′1 a1z2 + b′1z3 + b′2

)

.

As a1 6= 0, choose z1 such that b′1 = 0. Then choose z2 such that b′2 = 0. Now, when we

replace b1 and b2 by 0 in the above equation, we get z1 = z2 = 0. Then Equation 7.11

becomes







d1

d2 + a1z3

a1






=







d′1
d′2
a1






. Choose z3 such that d′2 = 0. Equation 7.12 becomes

a2 + x1d1 + a1y2 = a′2 + a1w1. Choose w1 such that a′2 = 0. So, B is boiled down to
















1 a1

1 d1

1

1 a1

1

















, and ZUT5(Fq)(A,B) =















































1 x1 y1 y2 x2

1 y2 +
d1
a1
x1

1 w2

1 x1

1















































. Now, we

see that this centralizer is of size q5, hence we expect it to be a commutative one. But

it isn’t. We also know that no matrix in UT5(Fq) has a non-commutative centralizer of

size q5, and it is isomorphic to that of the type B6. Thus, (A,B) is of type B6, and there

are q(q − 1) such branches.

When C =
(

1 c
1
1

)

, c 6= 0: Equation 7.10 in this case is

(

a1 b1 b2 + cx1

)

=
(

a1 a1z1 + b′1 a1z2 + b′1z3 + b′2

)

.

Choose z1 so that b′1 = 0. Then, we choose z2 so that b′2 = 0. Thus, on substituting b1 and

b2 with 0, we get z1 = 0, and z2 = c
a1
x1. Then Equation 7.11 becomes







d1

d2 + z3a1

a1






=
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





d′1
d′2
a1






. Choose z3 such that d′2 = 0. Equation 7.12 becomes a2 + x1d1 + a1y2 = a′2 +

a1w1. Choose w1 such that a′2 = 0. So B boils down to

















1 a1

1 c d1

1

1 a1

1

















, and

ZUT5(Fq)(A,B) =















































1 x1 y1 y2 x2

1 c
a1
x1

d1
a1
x1 + y2

1 w2

1 x1

1















































. This too is a branch of type B6,

and there are q(q − 1)2 such branches.

When C =
(

1 c
1
1

)

, c 6= 0: Here Z =







1 z1 z2

1

1






. Equation 7.10 in this case is

(

a1 b1 + cx1 b2

)

=
(

a1 a1z1 + b′1 a1z2 + b′2

)

.

Choose z1 so that b′1 = 0, and choose z2 so that b′2 = 0. Thus, on substituting b1 and b2

with 0, we get z1 = c
a1
x1, and z2 = 0. Then Equation 7.11 becomes







d1 +
c
a1
x1d2

d2

a1






=







d′1 + cw2

d′2
a1






. So d′2 = d2, and we choose w2 such that d′1 = 0. Equation 7.12 becomes

a2 + y1d2 + a1y2 = a′2 + a1w1. Choose w1 such that a′2 = 0. So B boils down to
















1 a1

1 c

1 d2

1 a1

1

















, and ZUT5(Fq)(A,B) =















































1 x1 y1 y2 x2

1 c
a1
x1

d2
a1
y1 + y2

1 d2
a1
x1

1 x1

1















































. This

is a branch of type R3, and there are q(q − 1)2 such branches.

When C =
(

1
1 c
1

)

, c 6= 0: Here Z =







1 z2

1 z3

1






. Equation 7.10 in this case is

(

a1 b1 b2 + cy1

)

=
(

a1 b′1 a1z2 + b′1z3 + b′2

)

.
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We get b′1 = b1. Choose y1 so that b′2 = 0. Thus, on substituting b2 with 0, we get

y1 = a1
c
z2 +

b1
c
z3. Then Equation 7.11 becomes







d1 + a1z2

d2 + a1z3

a1






=







d′1
d′2 + cx1

a1






. Choose

z2 such that d′1 = 0, and z3 such that d′2 = 0. Equation 7.12 becomes a2 + a1y2 =

a′2+b1w2+a1w1. Choose w1 such that a′2 = 0. So B boils down to

















1 a1 b1

1

1 c

1 a1

1

















,

and ZUT5(Fq)(A,B) =















































1 x1
b1
a1
x1 y2 x2

1 y2 −
b1
a1
w2

1 c
a1
x1 w2

1 x1

1















































. This is a branch of type

R3, and there are q(q − 1)2 such branches.

And, lastly:

When C =
(

1 c
1 d
1

)

, c, d 6= 0: Here Z =







1 z1 z2

1 d
c
z1

1






. Equation 7.10 in this case is

(

a1 b1 + cx1 b2 + dy1

)

=
(

a1 a1z1 + b′1 a1z2 +
d
c
b′1z1 + b′2

)

.

Choose x1 so that b′1 = 0, and choose y1 so that b′2 = 0. Thus, on substituting

b1 and b2 with 0, we get x1 = a1
c
z1, and y1 = a1

d
z2. Then Equation 7.11 becomes







d1 + z1d2 + z2a1

d2

a1






=







d′1 + cw2

d′2
a1






. So d′2 = d2, and we choose w2 such that d′1 = 0.

Equation 7.12 becomes a2+
a1
d
z2d2+a1y2 = a′2+a1w1. Choose w1 such that a′2 = 0. So B

boils down to

















1 a1

1 c

1 d d2

1 a1

1

















, and ZUT5(Fq)(A,B) =















































1 a1
c
z1

a1
d
z2 y2 x2

1 z1 z2
d2
d
z2 + y2

1 d2
c
z1 +

a1
c
z2

1 a1
c
x1

1















































.

This is a branch of type R3, and there are q(q − 1)3 such branches.

�

Proposition 7.8. An upper unitriangular matrix of type B2 has
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Branch No. of Branches Branch No. of Branches

B2 q2 R3 (q − 1)2q2

A4 q3 − q UNT1 q(q − 1)2

B4 q2 − q UNT2 q3 − q2

R1 (q2 − q)(q2 + q − 1) B6 q4 − q3.

R2 (q − 1)(q3 − q)

Proof. We may take A =

















1 1

1 1

1

1

1

















. The first of the two canonical forms men-

tioned for a matrix of type B2. For this A, we have ZUT5(Fq)(A) =















































1 c1 c2 b1 d1

1 c3 b2 d2

1 c1

1 a

1















































.

We rewrite such a matrix as











C

−→
b

−→
d

0 c1

1 a

1











, where C ∈ UT3(Fq), and c1 is the (1, 2)th

entry of C, and
−→
b =

(

b1

b2

)

, and
−→
d =

(

d1

d2

)

Let B =











C

−→
b

−→
d

0 c1

1 a

1











, and B′ =











C ′

−→
b′

−→
d′

0 c′1
1 a′

1











be a conjugate of B by X =











Z
−→y −→w

0 z1

1 x

1











Then from XB = B′X, we have ZC = C ′Z. Thus, we can C to be

a conjugacy class representative in UT3(Fq), and Z ∈ ZUT3(Fq)(C), and we also have

a′ = a. With this, we have the following equations

Z

(−→
b

0

)

= (C − I3)

(

−→y

0

)

+

(−→
b′

0

)

(7.13)

Z

(−→
d

c1

)

+

(

a−→y

0

)

= (C − I3)

(

−→w

z1

)

+

(

x
−→
b

0

)

+

(−→
d′

c1

)

(7.14)
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We first look at the case
−→
b =

−→
0 :

When a = 0: Here, Equation 7.13 becomes (C − I3)

(

−→y

0

)

=







0

0

0






.

When C = I3: Here Equation 7.13 becomes void, and Equation 7.14 becomes






d1 + z1d2

d2

0






=







d′1
d′2
0






.

When d2 = 0, we have d′1 = d1. Thus B =

















1 d1

1

1

1

1

















, and ZUT5(Fq)(A,B) =

ZUT5(Fq)(A). So (A,B) is a branch of type B2, and there are q such branches.

When d2 6= 0, choose z1 so that d′1 = 0. Then B is reduced to

















1

1 d2

1

1

1

















.

Hence ZUT5(Fq)(A,B) =















































1 z2 y1 w1

1 z3 y2 w2

1

1 x

1















































, which is the centralizer of a matrix

of type A4. So (A,B) is of type A4, and there are (q − 1) such branches.

When C =
(

1 c
1
1

)

, c 6= 0: Here too, Equation 7.13 stays void. So, we directly look

at Equation 7.14, which boils down to:







d1 + z1d2

d2

0






=







d′1 + cz1

d′2
0






. We have d′2 = d2.

We look at two cases here:

When d2 = c, we get d′1 = d1, and thus B is reduced to

















1 c d1

1

1

1

1

















, and

ZUT5(Fq)(A,B) = ZUT5(Fq)(A). (A,B) is of type B2, and there are q(q−1) such branches.
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When d2 6= c, choose z1 such that d′1 = 0. Thus B boils down to

















1 c

1 d2

1

1

1

















,

and ZUT5(Fq)(A,B) =















































1 z2 y1 w1

1 z3 y2 w2

1

1 x

1















































. (A,B) is of type A4, and there are

(q − 1)2 such branches.

When C =
(

1 c
1
1

)

, c 6= 0: Here Z =







1 z1 z2

1

1






. From Equation 7.13 we have







0 c 0












y1

y2






=

−→
0 . We have cy2 = 0, thus y2 = 0. Equation 7.14 becomes:







d1 + z1d2 + z2c

d2

c






=







d′1 + cw2

d′2
c






. Choose w2 such that d′1 = 0. Thus B is reduced to

















1 c

1 d2

1 c

1

1

















, and ZUT5(Fq)(A,B) =















































1 z1 z2 y1 w1

1 z2 +
d2
c
z1

1 z1

1 x

1















































. (A,B) is

of type B6, and there are (q − 1)q such branches.

When C =
(

1
1 c
1

)

, c 6= 0: Here Z =







1 z2

1 z3

1






. In this case, Equation 7.13

stays void. So we directly jump to Equation 7.14. We have







d1

d2






=







d′1
d′2






. So we have

B =

















1 d1

1 c d2

1

1

1

















, and ZUT5(Fq)(A,B) =















































1 z2 y1 w1

1 z3 y2 w2

1

1 x

1















































. Hence (A,B)

is of type A4, and there are q2(q − 1) such branches.
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When C =
(

1
1 c
1

)

, c, d 6= 0: Here Z =







1 z1 z2

1 d
c
z1

1






. Equation 7.13 becomes







cy2

0

0






=

−→
0 . Thus y2 = 0. From Equation 7.14 we have







d1 + z1d2 + cz2

d2 + z1d

c






=

(

d′1 + cw2

d′2 + dz1

)

. Hence d′2 = d2, and choose w2 such that d′1 = 0. So B boils down to

















1 c

1 d d2

1 c

1

1

















, and ZUT5(Fq)(A,B) =















































1 z1 z2 y1 w1

1 d
c
z1 z2 +

d2
c
z1

1 z1

1 x

1















































. (A,B) is

of type B6 and there are (q − 1)2q such branches.

bfseries a 6= 0: We are still dealing with
−→
b =

−→
0 here. So Equation 7.13 becomes

(C − I3)







y1

y2

0






=







0

0

0






. And Equation 7.14 becomes: Z







d1

d2

c1






+ a







y1

y2

0






=







d′1
d′2
c1






+

(C − I3)







w1

w2

z1







When C = I3: Equation 7.13 becomes void, and from Equation 7.14, we have






d1 + z1d2 + ay1

d2 + ay2

0






=







d′1
d′2
0






. Choose y2 and y1 such that, d′2 and d′1 become 0. Hence,

B =

















1

1

1

1 a

1

















, and ZUT5(Fq)(a, b) =















































1 z1 z2 w1

1 z3 w2

1 z1

1 x

1















































. (A,B) is of

type B4, and there are q − 1 such branches.

When C =
(

1 c
1
1

)

, c 6= 0: Here also, Equation 7.13 remains void. Equation 7.14 be-

comes:







d1 + z2d2 + ay1

d2 + ay2

0






=







d′1 + cz1

d′2
0






. Choose y2 and y1 so that d′2 = d′1 = 0. Thus,
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B is reduced to

















1 c

1

1

1 a

1

















, and ZUT5(Fq)(A,B) =















































1 z1 z2
c
a
z1 w1

1 z3 w2

1 z1

1 x

1















































.

(A,B) is of type B4, and there are (q − 1)2 such branches.

When C =
(

1 c
1
1

)

, c 6= 0: From Equation 7.13, like we saw before, y2 = 0. Thus

Equation 7.14 boils down to







d1 + z1d2 + z1c+ ay1

d2

c






=







d′1 + cw2

d2

c






. We see that

d′2 = d2. Choose w2 such that d′1 = 0. So B is reduced to

















1 c

1 d2

1 c

1 a1

1

















, and

ZUT5(Fq)(A,B) =















































1 z1 z2 y1 w1

1 z2 +
d2
c
z1 +

a
c
y1

1 z1

1 x

1















































. (A,B) is of type B6, and

there are (q − 1)2q such branches.

When C =
(

1
1 c
1

)

, c 6= 0: Here, Equation 7.13 stays void, and Equation 7.14

becomes







d1 + ay1

d2 + ay2

0






=







d′1
d′2
0






. Choose y1, y2 such that d′1 = d′2 = 0. SO B is reduced to

















1

1 c

1

1 a

1

















, and ZUT5(Fq)(A,B) =















































1 z2 w1

1 z3 w2

1

1 x

1















































. (A,B) is therefore

of type R2, and there are (q − 1)2 such branches.

When C =
(

1 c
1 d
1

)

, c, d 6= 0: Here, like earlier, from Equation 7.13, we get y2 = 0.

Hence Equation 7.14 boils down to







d1 + z1d2 + z2c+ ay1

d2 + z1d

c






=







d′1 + cw2

d′2 + dz1

c






. This leaves

us with d′2 = d2, and choose y1 such that d′1 = 0. So we have B boiling down to
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















1 c

1 d d2

1 c

1 a

1

















and ZUT5(Fq)(A,B) =















































1 z1 z2
c
a
w2 −

c
a
z2 −

d2
a
z1 w1

1 d
c
z1 w2

1 z1

1 x

1















































.

(A,B) is thus, of type B6, and there are q(q − 1)3 such branches.

Now we look at what happens, when
−→
b 6=

−→
0 .

When C = I3: Subcase a = 0: From Equation 7.13 we have







b1 + z1b2

b2

0






=







b′1
b′2
0






.

When b2 6= 0, we choose z1 such that b′1 = 0. Thus replacing b1 by 0 in the above

equation, we obtain z1 = 0. Hence, Equation 7.14 boils down to







d1

d2

0






=







d′1
d′2 + xb2

0






.

We have d′1 = d1. Choose x such that d′2 = 0. So B boils down to

















1 d1

b2

1

1

1

















,

and ZUT5(Fq)(A,B) =















































1 z2 y1 w1

1 z3 y2 w2

1

1

1















































. (A,B) is of type R1, and there are

q(q − 1) such branches.

When b2 = 0, we have to look at b1 6= 0, and we have b′1 = b1. Equation 7.14 becomes






d1 + z1d2

d2

0






=







d′1 + xb1

d′2
0






. So d′2 = d2, and choose x such that d′1 = 0. Hence

B =

















1 b1

1 d2

1

1

1

















, and ZUT5(Fq)(A,B) =















































1 z1 z2 y1 w1

1 z3 y2 w2

1 z1

1 d2
b1
z1

1















































. Thus

(A,B) is of the new type UNT2, and there are (q − 1)q such branches.
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Subcase a 6= 0, and b2 6= 0: In Equation 7.13, we choose z1 to get rid of b′1, and like

before z1 = 0. Equation 7.14 becomes:







d1 + ay1

d2 + ay2

0






=







d′1
d′2 + xb2

0






. Choose y1 such

that d′1 = 0, and x such that d′2 = 0. So B =

















1

1 b2

1

1 a

1

















, and ZUT5(Fq)(A,B) =















































1 z2 w1

1 z3 y2 w2

1

1 a
b2
y2

1















































. Thus (A,B) is of type R2, and there are (q − 1)2 such

branches.

Subcase a 6= 0 and b2 = 0. Here we have b′1 = b1 6= 0. From Equation 7.14

we have







d1 + z1d2 + ay1

d2 + ay2

0






=







d′1 + b1x

d′2
0






. Choose y2 such that d′2 = 0, and x

such that d′1 = 0. Thus B is reduced to

















1 b1

1

1

1 a

1

















, and ZUT5(Fq)(A,B) =















































1 z1 z2 y1 w1

1 z3 w2

1 z1

1 a
b1
y1

1















































. (A,B) is of new type UNT1, and there are (q − 1)2 such

branches.

When C =
(

1 c
1
1

)

, c 6= 0: Here Equation 7.13 stays as it was in the previous case,

i.e.,







b1 + z1b2

b2

0






=







b′1
b′2
0






.
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When b2 6= 0, choose z1 so that b′1 = 0, and on replacing b1 with b′1 = 0 in the above

equation, we get z1 = 0. Hence, Equation 7.14 becomes:







d1 + ay1

d2 + ay2

0






=







d′1
d′2 + xb2

0






.

We can choose x such that d′2 = 0.

Subcase a = 0. We have in this d′1 = d1. B reduces to

















1 c d1

1 b2

1

1

1

















, with

ZUT5(Fq)(A,B) =















































1 z2 y1 w1

1 z3 y2 w2

1

1

1















































. So, (A,B) is of type R1, and there are

q(q − 1)2 such branches.

Subcase a 6= 0. Here, in addition to getting rid of d′2, we choose y1 such that d′1 = 0.

So, B reduces to

















1 c

1 b2

1

1 a

1

















, with ZUT5(Fq)(A,B) =















































1 z2 w1

1 z3 y2 w2

1

1 a
b2
y2

1















































.

So (A,B) is of type R2, and there are (q − 1)3 such branches.

When b2 = 0, here b′1 = b1 6= 0. Equation 7.14 becomes







d1 + z1d2 + ay1

d2

0






=







d′1 + b1x+ cz1

d′2
0






. Choose x so that d′1 = 0.
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Subcase a = 0. Here d′2 = d2, and B thus reduces to

















1 c b1

1 d2

1

1

1

















, with

ZUT5(Fq)(A,B) =















































1 z1 z2 y1 w1

1 z3 y2 w2

1 z1

1 d2−c
b1

z1

1















































. Hence (A,B) is of the new type UNT2,

and there are (q − 1)2q such branches.

Subcase a 6= 0. Here, choose y2 such that d′2 = 0. Hence B is reduced to

















1 c b1

1

1

1 a

1

















,

with ZUT5(Fq)(A,B) =















































1 z1 z2 y1 w1

1 z3 w2

1 z1

1 a
b1
y1 −

c
b1
z1

1















































. Hence (A,B) is of type

UNT1, and there are (q − 1)3 such branches.

When C =
(

1 c
1
1

)

, c 6= 0 : Here Equation 7.13 becomes







b1 + z1b2

b2

0






=







b′1 + cy2

b′2
0






.

Choose y2 such that b′1 = 0. We have b′2 = b2 6= 0. On replacing b1 with 0 in the above

equation, we get y2 = b2
c
z1. Equation 7.14 thus becomes







d1 + z1d2 + cz2 + ay1

d2 +
ab2
c
z1

c






=







d′1 + cw2

d′2 + xb2

c






. Choose w2 such that d′1 = 0, and x such that d′2 = 0. Hence B is reduced to

















1 c

1 b2

1 c

1 a

1

















, with ZUT5(Fq)(A,B) =















































1 z1 z2 y1 w1

1 b2
c
z1

a
c
y1 + z2

1 z1

1 a
c
z1

1















































. (A,B) is

of type R3, and there are (q − 1)2q such branches.
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When C =
(

1
1 c
1

)

, c 6= 0 : Here Equation 7.13 becomes







b1

b2

0






=







b′1
b′2
0






. We have

b′1 = b1, and b′2 = b2 Equation 7.14 thus becomes







d1 + ay1

d2 + ay2

0






=







d′1 + xb1

d′2 + xb2

0






.

Subcase a = 0: When b1 6= 0, choose x such that d′1 = 0. Thus, on replacing d1 with

d′1 = 0, we get x = 0, and thus d′2 = d2. Hence B is reduced to

















1 b1

1 c b2 d2

1

1

1

















,

with ZUT5(Fq)(A,B) =















































1 z2 y1 w1

1 z3 y2 w2

1

1

1















































. (A,B) is of type R1, and there are

(q − 1)2q2 such branches.

When b1 = 0, we work with b2 6= 0. Choose x such that d′2 = 0, and with this on

replacing d2 with d′2 = 0, we have x = 0, which leaves us with d′1 = d1. B is reduced

to

















1 d1

1 c b2

1

1

1

















, and ZUT5(Fq)(A,B) =















































1 z2 y1 w1

1 z3 y2 w2

1

1

1















































. Hence we have

another branch of type R1, and these are (q − 1)2q in number.

Subcase a 6= 0. We just choose y1, y2 such that d′1 = d′2 = 0. Here (b1, b2) 6= (0, 0).

So, B =

















1 b1

1 c b2

1

1 a

1

















, and ZUT5(Fq)(A,B) =















































1 z2
b1
a
x w1

1 z3
b2
a
x w2

1

1 x

1















































. Thus

(A,B) is of type R2, and there are (q − 1)2(q2 − 1) such branches (as (b1, b2) 6= (0, 0)).

When C =
(

1 c
1 d
1

)

, c, d 6= 0 : Here Equation 7.13 becomes







b1 + z1b2

b2

0






=







b′1 + cy2

b′2
0






.

Choose y2 such that b′1 = 0. We have b′2 = b2 6= 0. On replacing b1 with 0 in the above
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equation, we get y2 = b2
c
z1. Equation 7.14 thus becomes







d1 + z1d2 + cz2 + ay1

d2 +
ab2
c
z1 + dz1

c






=







d′1 + cw2

d′2 + xb2 + dz1

c






. Choose w2 such that d′1 = 0, and x such that d′2 = 0. Hence B is re-

duced to

















1 c

1 d b2

1 c

1 a

1

















, with ZUT5(Fq)(A,B) =















































1 z1 z2 y1 w1

1 d
c
z1

b2
c
z1

a
c
y1 + z2

1 z1

1 a
c
z1

1















































.

(A,B) is of type R3, and there are (q − 1)3q such branches. �

Proposition 7.9. An upper unitriangular matrix of type B3 has q3 branches of type B3,

q2(q2 + q + 1)(q − 1) branches of regular type R1, and q3(q − 1) branches of regular type

R3.

Proof. Let A =

















1 a

1 b

1

1

1

















, a, b 6= 0 a matrix of type B3. The centralizer

ZUT5
(A) of A is















































1 x0 x1 x2 x3

1 y0 y1 y2

1 λx0

1

1

















| λ = b
a
, xi, yi ∈ Fq































. Let X =

















1 x0 x1 x2 x3

1 y0 y1 y2

1 λx0

1

1

















be an element of ZUT5(Fq)(A). Let B =

















1 a0 a1 a2 a3

1 b0 b1 b2

1 λa0

1

1

















, and B′ =

















1 a′0 a′1 a′2 a′3
1 b′0 b′1 b′2

1 λa′0
1

1

















be a conjugate of B by X. Thus equating XB = B′X gives us a0 = a′0, b0 = b′0, b2 = b′2,

and the following equations:

a1 + b0x0 = a′0y0 + a′1
a2 + x0b1 + λx1a0 = a′0y1 + λx0a

′

1 + a′2
a3 + x0b2 = a′3 + a′0y2

b1 + λa0y0 = λx0b
′

0 + b′1
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We look at three cases, the first case is when λa1 = b1 and (a0, b0, b2) = 0. The second

case is when λa1 6= b1 and (a0, b0, b2) = 0. The third case is when (a0, b0, b2) 6= 0.

Case: λa1 = b1 and (a0, b0, b2) = 0. In this case, we get a2 = a′2. Therefore

ZUT5(Fq)(A,B) = ZUT5(Fq)(A). So (A,B) is a branch of type B3, and there are q3

branches.

Case: λa1 6= b1 and (a0, b0, b2) = 0. In this case, we can choose x0 in such a way that

we get a2 = 0. By routine check, we get ZUT5(Fq)(A,B) is a commutative group of size

q6. Thus (A,B) is of regular type R1, and there are q2(q − 1) branches of this type.

Case: (a0, b0, b2) 6= 0. We first consider that a0 6= 0, then we can choose y0, y1 and

y2 in such a way that we get a1 = a2 = a3 = 0 and b1 = b′1. By simple calculations, we

get that ZUT5(Fq)(A,B) is a commutative group of size q4. Thus (A,B) is of regular type

R3, and there are q3(q − 1) branches of this type.

Next we consider the case when a0 = 0 and b0 6= 0. Here we can choose x0 in such a

way that we get a1 = 0. By routine check, we get ZUT5(Fq)(A,B) is commutative group

of size q6. Thus (A,B) is of regular type R1, and there are q4(q − 1) branches of this

type.

Finaly we consider the case when a0 = b0 = 0 and b2 6= 0., now we can choose x0 in

such a way that we get a3 = 0. Again, we get ZUT5(Fq)(A,B) is commutative group of

size q6. Thus (A,B) is of regular type R1, and there are q3(q − 1) branches of this type.

Therefore we get that a matrix of type B3 has q3 branches of type B3, q
2(q2+q+1)(q−1)

braches of regular type R1, and q3(q − 1) braches of regular type R3.

�

Proposition 7.10. An upper unitriangular matrix of type B4 has q3 branches of type

B4, q
2(q2 − 1) branches of regular type R2, and q3(q − 1) branches of regular type R3.

Proof. Let A =

















1 a

1 b

1

1

1

















, a, b 6= 0 a matrix of type B4. The centralizer

ZUT5
(A) of A is















































1 x0 x1 x2 x3

1 λx0

1 z0 z1

1

1

















| λ = b
a
, xi, zi ∈ Fq































.
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Let X =

















1 x0 x1 x2 x3

1 λx0

1 z0 z1

1

1

















be an element of ZUT5(Fq)(A). Let B =

















1 a0 a1 a2 a3

1 λa0

1 c0 c1

1

1

















,

and B′ =

















1 a′0 a′1 a′2 a′3
1 λa′0

1 c′0 c′1
1

1

















be a conjugate of B by X. Thus equating XB = B′X

gives us a0 = a′0, a1 = a′1, c0 = c′0, c1 = c′1, and the following equations:

x1c1 + a3 = z1a1 + a′3
x1c0 + a2 = z0a1 + a′2

We look at two cases, when (a1, c0, c1) = 0 and (a1, c0, c1) 6= bf0.

Case: (a1, c0, c1) = 0: In this case, we get a2 = a′2 and a3 = a′3. Therefore ZUT5(Fq)(A,B) =

ZUT5(Fq)(A). So (A,B) is a branch of type B4, and there are q3 branches.

Case: (a1, c0, c1) 6= 0: When a1 6= 0, then we choose z0 and z1 in such a way that we

get a2 = a3 = 0. By routine check, we get that ZUT5(Fq)(A,B) is commutative group of

size q4. Thus (A,B) is of the regular type R3, and there are q3(q − 1) branches of this

type.

When a1 = 0 and one of c0 and c1 is non-zero. We can choose x1 in such a way that

we get either a2 = 0 or a3 = 0. Again by simple calculations, we get ZUT5(Fq)(A,B)

is commutative group of size q5. Thus (A,B) is of the regular type R2, and there are

q2(q2 − 1) branches of this type. �

Proposition 7.11. An upper unitriangular matrix of type B5 has q2 branches of type

B5, (q
5 − q) branches of regular type B6.

Proof. Let A =

















1 a

1

1

1 b

1

















, a, b 6= 0 a matrix of type B5. The centralizer ZUT5
(A)

of A is















































1 x0 x1 x2 x3

1 λx2

1 z1

1 w0

1

















| λ = b
a
, xi, z1, w0 ∈ Fq































. Let X =

















1 x0 x1 x2 x3

1 λx2

1 z1

1 w0

1
















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be an element of ZUT5(Fq)(A). Let B =

















1 a0 a1 a2 a3

1 λa2

1 c1

1 d0

1

















, and B′ =

















1 a′0 a′1 a′2 a′3
1 λa′2

1 c′1
1 d′0

1

















be a conjugate of B by X. Thus equating XB = B′X gives us a0 = a′0
a1 = a′1, a2 = a′2, c1 = c′1, d0 = d′0, and the following equation:

x2d0 + c1x1 + λa2x0 + a3 = λx2a
′

0 + z1a
′

1 +w0a
′

2 + a′3

We look at three cases, the first case is when λa0 = d0 and (a1, a2, c1) = 0. The second

case is when λa0 6= d0 and the third case is when λa0 = d0 but (a1, a2, c1) 6= 0.

Case: λa0 = d0 and (a1, a2, c1) = 0. In this case, we get a3 = a′3. Therefore

ZUT5(Fq)(A,B) = ZUT5(Fq)(A). So (A,B) is a branch of type B5, and there are q2

branches.

Case: λa0 6= d0 In this case, we can choose x2 in such a way that we get a3 = 0. By

routine check, we get ZUT5(Fq)(A,B) is group of size q5 isomorphic to centralizer of one

of the type B6. Thus (A,B) is of type B6, and there are q4(q − 1) branches of this type.

Case: λa0 = d0 and (a1, a2, c1) 6= 0. In this case, one of a1, a2 and c1 is non-zero

and depending on this, we can choose one of z1, w0 or x1 suitably in such a way that we

get a3 = 0. By routine check, we get ZUT5(Fq)(A,B) is group of size q5 isomorphic to

centralizer of one of the type B6. Thus (A,B) is of type B6, and there are q(q−1)(q2+q+1)

branches of this type.

Therefore a matrix of type B5 has q2 branches of type B5 and total q(q4 − 1) braches

of type B6. �

Proposition 7.12. An upper unitriangular matrix of type B6 has q3 branches of type

B6, and q2(q2 − 1) branches of regular type R3.

Proof. Let A =

















1 a

1 b

1

1

1

















, a, b 6= 0 a matrix of type B6. The centralizer

ZUT5
(A) of A is















































1 x0 x1 x2 x3

1 λx0

1

1 w0

1

















| λ = b
a
, xi, w0 ∈ Fq































. Let X =

















1 x0 x1 x2 x3

1 λx0

1

1 w0

1
















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be an element of ZUT5(Fq)(A). Let B =

















1 a0 a1 a2 a3

1 λa0

1

1 d0

1

















, and B′ =

















1 a′0 a′1 a′2 a′3
1 λa′0

1

1 d′0
1

















be a conjugate of B by X. Thus equating XB = B′X gives us a0 = a′0, a1 = a′1, a2 = a′2,

d0 = d′0, and the following equation:

x2d0 + a3 = w0a
′

2 + a′3

We look at two cases, when (a2, d0) = (0, 0) and (a2, d0) 6= (0, 0).

Case: (a2, d0) = (0, 0) In this case, we get a3 = a′3. Therefore ZUT5(Fq)(A,B) =

ZUT5(Fq)(A). So (A,B) is a branch of type B6, and there are q branches.

Case: (a2, d0) 6= (0, 0) In this case, one of d0 and a2 is non-zero. We can choose

x2 or w0 in such a way that we get a3 = 0. By routine check, we get ZUT5(Fq)(A,B)

is commutative group of size q4. Thus (A,B) is of the regular type R3, and there are

q2(q2 − 1) branches of this type. �

7.3. Branching of type D. Now we look at the branching for type D.

Proposition 7.13. An upper unitriangular matrix of type D1 has the following branches:

Branch No. of Branches Branch No. of Branches

D1 q2 R2 q2(q − 1)

B4 2q(q − 1) R3 q2(q2 − 1).

UNT3 q(q − 1)2

Proof. An upper unitriangular matrix of type D1 has the canonical form A =

















1 c1

1 c2

1 c3

1

1

















,

where a, b, c 6= 0. ZUT5(Fq)(A) =















































1 a1 a2 b1 d1

1 a3 b2 d2

1 c2
c1
a1

c3
c1
a2

1 c3
c2
a3

1















































, which we rewrite as:

ZUT5(Fq)(A) =

















C
−→
b

−→
d

1 c3
c2
C23

1






| C ∈ UT3(Fq),

−→
b =

(

b1
b2

c2
c1

C12

)

,
−→
d =

(

d1
d2

c3
c1

C13

)











.
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Let B =







C
−→
b

−→
d

1 c3
c2
C23

1






, and B′ =







C ′
−→
b′

−→
d′

1 c3
c2
C ′

23

1






be a conjugate of B by a

member X =







Z −→y −→w

1 c3
c2
Z23

1






∈ ZUT5(Fq)(A), with −→y =

( y1
y2

c2
c1

Z12

)

, and −→w =

(

w1

w2
c3
c1

Z13

)

.

We thus have XB = B′X. First thing we see is that ZC = C ′Z. So we can take C to be

a conjugacy class representative in UT3(Fq), and we thus have the following equations:

Z
−→
b +−→y = C−→y +

−→
b′(7.15)

Z
−→
d +

c3
c2
C23

−→y +−→w = C ′−→w +
c3
c2
Z23

−→
b′ +

−→
d′(7.16)

When C = I3: In this case C12 = C13 = C23 = 0. We have Z =







1 z1 z2

1 z3

1






.

Equation 7.15 becomes:







b1 + z1b2

b2

0






=







b′1
b′2
0






. We look at two cases here: When

b2 6= 0, and when b2 = 0.

When b2 = 0, We have b′1 = b1, and Equation 7.16 becomes:







d1 + z1d2

d2

0






=







d′1 +
c3
c2
z3b1

d′2 +
c3z3
c2

b′2
0







We have d′2 = d2.

When b2 = b1 = d2 = 0: We have d′1 = d1. Thus B is reduced to

















1 d1

1

1

1

1

















.

So ZUT5(Fq)(A,B) = ZUT5(Fq)(A). Hence (A,B) is a branch of type D1, and there are q

such branches.

When b2 = b1 = 0, and d2 6= 0, we can choose z1 such that d1 = 0. Thus, B is reduced

to

















1

1 d2

1

1

1

















, and ZUT5(Fq)(A,B) =















































1 z2 y1 w1

1 z3 y2 w2

1 c3
c1
z2

1 c3
c2
z3

1















































, which is of

type . So (A,B) is a branch of type B4, as ZUT5(Fq)(A,B) can be conjugated by the
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elementary matrix that swaps rows and columns 1 and 2 to get the centralizer subgroup

of one of the canonical matrices of type B4, and there are (q − 1) branches of this type.

When b1 6= 0, in Equation 7.16, we choose z3 so that d1 = 0. Thus B is reduced to
















1 b1

1 d2

1

1

1

















, and ZUT5(Fq)(A,B) =















































1 z1 z2 y1 w1

1 c2d2
c3b1

z1 y2 w2

1 c2
c1
z1

c3
c1
z2

1 d2
b1
z1

1















































. Again,

we have 2 cases here:

When d2 = 0, B =

















1 b1

1

1

1

1

















. Here ZUT5(Fq)(A,B) =















































1 z1 z2 y1 w1

1 y2 w2

1 c2
c1
z1

c3
c1
z2

1

1















































.

On conjugating by an elementary matrix, which swaps rows and columns 2 and 3 of each

element of ZUT5(Fq)(A,B), we get the centralizer of one of the canonical matrices of the

type B4. Thus there are q − 1 branches of type B4.

When d2 6= 0, we have ZUT5(Fq)(A,B) =















































1 z1 z2 y1 w1

1 c2d2
c3b1

z1 y2 w2

1 c2
c1
z1

c3
c1
z2

1 d2
b1
z1

1















































. Thus

this branch is of the new type UNT3, and there are (q − 1)2 such branches.

When b2 6= 0, choose z1 such that b′1 = 0. Thus equating Equation 7.15 with b1 replaced

by 0, we get that z1 = 0. Thus with b1 = 0 and z1 = 0, we get from Equation 7.16,

d′1 = d1, and with a nice choice of z3, we can reduce d′2 to 0. Hence, B is reduced to
















1 d1

1 b2

1

1

1

















, and ZUT5(Fq) =















































1 z2 y1 w1

1 y2 w2

1 c3
c1
z2

1

1















































, which is a centralizer

of type R2. Thus (A,B) is a branch of type R2, and there are q(q − 1) such branches.

When C =
(

1 c
1
1

)

, c 6= 0 : Here Equation 7.15 becomes:







b1 + z1b2

b2

0






=







b′1 +
c3c
c2

z1

b′2
0






.

So we have b′2 = b2. We see 2 cases here: b2 =
c2
c1
c, and b2 6=

c2
c1
c.

When b2 6= c2
c1
c. In the above equation, we choose z1 such that b′1 = 0. Thus, with

substituting b1 with b′1 = 0 in the above equation, we get z1 = 0. Thus, with this,
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Equation 7.16 becomes







d1

d2 +
c3
c1
cz3

c3
c1
c






=







d′1
d′2 +

c3
c2
b2z3

c3
c1
c






. As b2 6= c2

c1
c, we can choose a

z3 so that d′2 = 0, and we have d′1 = d1. So B boils down to

















1 c d1

1 b2

1 c3
c1
c

1

1

















, with

ZUT5(Fq)(A,B) =















































1 z2 y1 w1

1 y2 w2

1 c3
c1
z2

1

1















































. Thus (A,B) too is a branch of type R2,

and there are q(q − 1)2 such branches.

When b2 = c2
c1
c, we get from Equation 7.15, b′1 = b1. Equation 7.16 boils down to:







d1 + z1d2

d2

0






=







d′1 +
c3
c2
z3b1

d′2
0






. So we have d′2 = d2. We look first at b1 = d2 = 0. B is

reduced to

















1 c d1

1 c2
c1
c

1 c3
c1
c

1

1

















, and ZUT5(Fq)(A,B) = ZUT5(Fq)(A). Thus (A,B) is a

branch of type D1, and there are q(q − 1) such branches.

When b1 6= 0 choose z3 such that d′1 = 0. So, B becomes:

















1 c b1

1 c2
c1
c d2

1 c3
c1
c

1

1

















. We

have two cases here:
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When d2 = 0, we have B =

















1 c b1

1 c2
c1
c

1 c3
c1
c

1

1

















and

ZUT5(Fq)(A,B) =















































1 z1 z2 y1 w1

1 y2 w2

1 c2
c1
z1

c3
c1
z2

1

1















































,

thus (A,B) is of a type B4, and there are (q − 1)2 such branches.

When d2 6= 0, B =

















1 c b1

1 c2
c1
c d2

1 c3
c1
c

1

1

















, and

ZUT5(Fq)(A,B) =















































1 z1 z2 y1 w1

1 c2d2
c3b1

z1 y2 w2

1 c2
c1
z1

c3
c1
z2

1 d2
b1
z1

1















































,

so, this branch too is of the type UNT3. Thus there are (q − 1)3 branches of this new

type.

When b1 = 0, and d2 6= 0. We choose z1 so that d′1 = 0. Thus B is reduced to
















1 c

1 c2
c1
c d2

1 c3
c1
c

1

1

















, and ZUT5(Fq) =















































1 z2 y1 w1

1 z3 y2 w2

1 c3
c1
z2

1 c3
c2
z3

1















































. This is of type B4.

(A,B) is a branch of type B4, and there are (q − 1)2 such branches.

When C =
(

1 c
1
1

)

, c 6= 0: Here, Z =







1 z1 z2

1

1






. Equation 7.15 boils down to







b1 + b2z1 +
c2
c1
cz2

b2
c2
c1
c






=







cy2 + b′1
b′2
c2
c1
c






. So b′2 = b2. As c 6= 0, we choose y2 such that
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b′1 = 0. Equation 7.16 becomes:







d1 + d2z1

d2

0






=







cw2 + d′1
d′2
0






. We have d′2 = d2.

Take w2 such that d′1 = 0. So B is reduced to

















1 c

1 b2 d2

1 c2
c1
c

1

1

















, and therefore

ZUT5(Fq)(A,B) =















































1 z1 z2 y1 y2

1 b2
c
z1 +

c2
c1
z2

d2
c
z1

1 c2
c1
z1

c3
c1
z2

1

1















































, which is of size q4. It is routine

to check that this centralizer is commutative. Thus this is a centralzier of type R3. Thus

(A,B) is a branch of type R3, and there are q2(q − 1) such branches.

When C =
(

1
1 c
1

)

, c 6= 0: In this case Z =







1 z2

1 z3

1






. With this, Equation 7.15

becomes







b1

b2

0






=







b′1
b′2
0






. So, our focus thus is solely on Equation 7.16. The equation is

reduced to







d1 +
c3
c2
cy1

d2 +
c3
c2
cy2

0






=







d′1 +
c3
c2
b1z3

d′2 +
c3
c1
cz2 +

c3
c2
b2z3

0







As c3
c2
c 6= 0, choose y1, y2 so that d′1 = d′2 = 0. Thus B is reduced to

















1 b1

1 c b2

1

1 c3
c2
c

1

















,

and ZUT5(Fq)(A,B) =















































1 z2
b1
c
z3 w1

1 z3
c2
c1
z2 +

b2
c
z3 w2

1 c3
c1
z2

1 c3
c2
z3

1















































. This is of size q4, and with

a routine check we see that it is commutative. This is a centralizer of type R3, hence

(A,B) is a branch of type R3, and there are q2(q − 1) such branches.
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When C =
( 1 c0

1 d0
1

)

, c0, d0 6= 0: Here Z =







1 z1 z2

1 λ0z1

1






, where λ0 = d0

c0
. Equa-

tion 7.15 becomes:







b1 + z1b2 + z2
c2
c1
c0

b2 +
c2
c1
d0z1

0






=







c0y2 + b′1
c2
c1
d0z1 + b′2

0






. As c0 and d0 are non-

zero, we have b′2 = b2. We choose y2 such that b′1 = 0. Hence, on replacing b1 with

0 in the above equation we get y2 = b2
c0
z1 + c2

c1
z2. With these, Equation 7.16 boils

down to







d1 + z1d2 +
c3
c2
d0y1

d2

0






=







c0w2 + d′1
d′2
0






. So d′2 = d2, and choose w2 such

that d′1 = 0. Hence, B is reduced to

















1 c0

1 d0 b2 d2

1 c2
c1
c0

1 c3
c2
d0

1

















, with ZUT5(Fq)(A,B) =















































1 z1 z2 y1 w1

1 d0
c0
z1

b2
c0
z1 +

c2
c1
z2

c3
c2c0

y1 +
d2c0
d0

z1

1 c2
c1
z1

c3
c1
z2

1 c3d0
c2c0

z1

1















































. This too is of type R3. So (A,B) is

a brach of type R3, and there are q2(q − 1)2 such branches.

So, on adding up the branches of each of the types, we have

• q2 branches of type D1,

• 2q(q − 1) branches of type B4,

• q2(q − 1) branches of type R2,

• q2(q2 − 1) branches of type R3, and

• q(q − 1)2 branches of type UNT3.

These match with the estimations done for q = 3 in GAP. �

Proposition 7.14. An upper unitriangular matrix of type D2 has q3 branches of type

D2, and q2(q2 − 1) branches of regular type R3.
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Proof. Let A =

















1 a

1 b

1 c

1

1

















, a, b, c 6= 0 a matrix of type D2. The centralizer

ZUT5
(A) of A is















































1 x0 x1 x2 x3

1 λ1x0 λ2x1

1 λ2x0

1 w0

1

















| λ1 =
b
a
, λ2 =

c
a
, xi, w0 ∈ Fq































.

Let X =

















1 x0 x1 x2 x3

1 λ1x0 λ2x1

1 λ2x0

1 w0

1

















be an element of ZUT5(Fq)(A). Let B =

















1 a0 a1 a2 a3

1 λ1a0 λ2a1

1 λ2a0

1 d0

1

















,

and B′ =

















1 a′0 a′1 a′2 a′3
1 λ1a

′

0 λ2a
′

1

1 λ2a
′

0

1 d′0
1

















= XBX−1. Thus equating XB = B′X gives us

a0 = a′0, a1 = a′1, a2 = a′2, d0 = d′0, and the following equation:

x2d0 + a3 = w0a
′

2 + a′3

We look at two cases, when (a2, d0) = (0, 0) and (a2, d0) 6= (0, 0).

Case: (a2, d0) = (0, 0) In this case, we get a3 = a′3. Therefore ZUT5(Fq)(A,B) =

ZUT5(Fq)(A). So (A,B) is a branch of type D2, and there are q branches.

Case: (a2, d0) 6= (0, 0) In this case, one of d0 and a2 is non-zero. We can choose

x2 or w0 in such a way that we get a3 = 0. By routine check, we get ZUT5(Fq)(A,B)

is commutative group of size q4. Thus (A,B) is of the regular type R3, and there are

q2(q2 − 1) branches of this type. �

Proposition 7.15. A matrix of the R1 type has q6 branches of type R1, a matrix of the

R2 type has q5 branches of type R2, and a matrix of the R3 type has q4 branches of type

R3.

Proof. The type R1, R2 and R3 are Regular types, hence the centralizer of matrices of

such a type is a commutative. �

7.4. Branching Rules for the New Types. While determining the branching rules

for the types in UT5(Fq), we observed that there are some commuting pairs of elements of
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UT5(Fq), which are not isomorphic to the centralizers of any of the elements in UT5(Fq).

Thus, giving rise to what we call “new types”. The new types, we have seen so far are

UNT1 (first observed in Proposition 7.4), UNT2 (observed in Proposition 7.7) and UNT3

(observed in Propositions 7.7). Now, we compute the branching for these cases and we

see that no further new types occur.

Proposition 7.16. The new type UNT1 has q3 branches of type UNT1, q2(q2 − 1)

branches of type R2, and q4 − q3 branches of type R3.

Proof. For some pair (A,B) of commuting elements in UT5(Fq), of type UNT1, the

centralizer subgroup is ZUT5(Fq)(A,B) =

{( 1 x0 x1 λz0 x3

1 y0 y2
1

1 z0
1

)}

, where λ 6= 0 is fixed. Let

C =

















1 a0 a1 λc0 a3

1 b0 b2

1

1 c0

1

















, and let C ′ =

















1 a′0 a′1 λc′0 a′3
1 b′0 b′2

1

1 c0

1

















= XCX−1, where

X =

















1 x0 x1 λz0 x3

1 y0 y2

1

1 z0

1

















. On equation XC = CX, we get a′0 = a0, b
′

0 = b0, b
′

2 = b2,

c′0 = c0, and the following equations:

a1 + x0b0 = a′1 + a0y0(7.17)

a3 + x0b2 = a′3 + y2a0(7.18)

We look at two main cases: (a0, b2) = (0, 0), and (a0, b2) 6= (0, 0).

When a0 = b2 = 0: Equation 7.18 becomes a′3 = a3, Equation 7.17 becomes a′1 =

a1 + x0b0. We have two subcases here:

When b0 = 0, then we get a′1 = a1. Thus C boils down to

















1 a1 λc0 a3

1

1

1 c0

1

















, and

ZUT5(Fq)(A,B,C) = ZUT5(Fq)(A,B). (A,B,C) is therefore of type UNT1, and there are

q3 such branches.
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When b0 6= 0, in Equation 7.17, we can choose x0 such that a′1 = 0. Hence C is reduced

to

















1 λc0 a3

1 b0

1

1 c0

1

















, and ZUT5(Fq)(A,B,C) =















































1 x1 λz0 x3

1 y0 y2

1

1 z0

1















































. Easy to

see that this is a commutative group of size q5. (A,B,C) is a branch of type R2, and

there are q2(q − 1) such branches.

When (a0, b2) 6= (0, 0): When a0 6= 0, in Equation 7.17, we choose y0 such that a′1 = 0.

Thus, on replacing a1 with a′1 = 0 in that equation, we get y0 = b0
a0
x0. In Equa-

tion 7.18 choose y2 so that a′3 = 0. Thus C is reduced to

















1 a0 λc0

1 b0 b2

1

1 c0

1

















, and

thus ZUT5(Fq)(A,B,C) =















































1 x0 x1 λz0 x3

1 b0
a0
x0

b2
a0
x0

1 y1

1 z0

1















































. Easy to see that this sub-

group is a commutative one of size q4. Thus (A,B,C) is a branch of type R3, and there

are (q − 1)q3 = q4 − q3 such branches.

When a0 = 0, and b2 6= 0. Equation 7.18 becomes a3+x0b2 = a′3, and Choose x0 such

that a′3 = 0. Then, on replacing a3 with a′3 = 0 in Equation 7.18, we get x0 = 0. With

these, Equation 7.17 becomes a′1 = a1. C thus boils down to

















1 a1 λc0

1 b0 b2

1

1 c0

1

















,

and ZUT5(Fq)(A,B,C) =















































1 x1 λz0 x3

1 y0 y2

1

1 z0

1















































. This branch too is of type R2, and

there are q3(q − 1) such branches. So, in total there are q3(q − 1) + q2(q − 1) = q4 − q2

branches of type R2. �

Proposition 7.17. The new type UNT2 has q3 branches of type UNT2, q
5−q2 branches

of type R1, and q4 − q3 branches of type R3.
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Proof. A commuting pair (A,B) of type UNT2 has the centralizer















































1 x1 y1 y2 x2

1 z1 z2 w1

1 λx1

1 x1

1















































.

Let C =

















1 a1 b1 b2 a2

1 c1 c2 d1

1 λa1

1 a1

1

















, C ′ =

















1 a′1 b′1 b′2 a′2
1 c′1 c′2 d1

1 λa′1
1 a′1

1

















be a conjugate of C,

and let X =

















1 x1 y1 y2 x2

1 z1 z2 w1

1 λx1

1 x1

1

















such that XC = C ′X. Equating XC = C ′X gives

us a′1 = a1, c
′

1 = c1 and c′2 = c2, and the following bunch of equations:
(

a1 b1 + x1c1 b2 + x1c2

)

=
(

a1 b′1 + a1z1 b′2 + a1z2

)

(7.19)

d1 + (λz1 + z2)a1 = d′1 + (λc1 + c2)x1(7.20)

a2 + x1d1 + (λy1 + y2)a1 = a′2 + (λb′1 + b′2)x1 + w1a1(7.21)

There are two main cases here:

Case: a1 = 0

When c1 = c2 = 0, Equation 7.19 leads us to b′1 = b1, b
′

2 = b2, and from Equation 7.20

d′1 = d1. With these, Equation 7.21 becomes a2 + x1d1 = a′2 + (λb1 + b2)x1.

When d1 = λb1+b2, we get a′2 = a2. Thus C is reduced to

















1 b1 b2 a2

1 λb1 + b2

1

1

1

















,

and ZUTA,B,C(Fq) = ZUT5(Fq)(A,B). Thus, (A,B,C) is of type UNT2, and there are q3

such branches.

When d1 6= λb1 + b2, we can choose x1 such that a′2 = 0. Thus C is reduced to
















1 b1 b2

1 d1

1

1

1

















, and ZUT5(Fq)(A,B,C) =

















1 y1 y2 x2

1 z1 z2 w1

1

1

1

















. Thus (A,B,C) is

of type R1, and there are q2(q − 1) such branches.
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When c1 6= 0, in Equation 7.19, we can choose x1 so that b′1 = 0. Thus on replacing

b1 with b′1 = 0, we get x1 = 0, and thus b′2 = b2. And Equation 7.20 reduces to d′1 = d1,

and Equation 7.21 boils down to a′2 = a2. C is reduced to

















1 b2 a2

1 c1 c2 d1

1

1

1

















, and

ZUT5(Fq)(A,B,C) =

















1 y1 y2 x2

1 z1 z2 w1

1

1

1

















. (A,B,C) is thus of type R2, and there are

(q − 1)q4 such branches.

When c1 = 0, and c2 6= 0. In Equation 7.19, we get b′1 = b1, and choose x1 such

that b′2 = 0. Hence on substituting b2 with b′2 = 0 and equating Equation 7.19, we get

x1 = 0. With this Equation 7.20 boils down to d′1 = d1, and Equation 7.21 boils down to

a′2 = a2. C is reduced to

















1 b1 a2

1 c2 d1

1

1

1

















, and Z(A,B,C) =

















1 y1 y2 x2

1 z1 z2 w1

1

1

1

















.

(A,B,C) is a branch of type R1, and there are q3(q − 1) such branches.

Case a1 6= 0: In this case, in Equation 7.19, we choose z1 and z2 such that b′1 = 0 and

b′2 = 0 respectively. Thus, on replacing b1 by b′1 = 0, and b2 by b′2 = 0 in Equation 7.19,

and equating, we get z1 = c1
a1
x1 and z2 = c2

a1
x1. Putting these in Equation 7.20 leads us

to d1 +
(

λ c1
a1
x1 +

c2
a1
x1

)

a1 = d′2 + (λc1 + c2)x1. Thus d′1 = d1.

With all this, Equation 7.21 boils down to a2 + x1d1 + (λy1 + y2)a1 = a′2 + w1a1.

Choose w1 so that a′2 = 0. Hence C is reduced to

















1 a1

1 c1 c2 d1

1 λa1

1 a1

1

















, and

ZUT5(Fq)(A,B) =

















1 x1 y1 y2 x2

1 c1
a1
x1

c2
a1
x1 λy1 + y2 +

d1
a1
x1

1 λx1

1 x1

1

















.
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Easy to check that the above centralizer subgroup is a commutative one, of size q4. Thus

(A,B,C) is of type R3, and there are (q − 1)q3 such branches.

Adding up all the branches of type R1 gives us q2(q−1)+q3(q−1)+q4(q−1) = q5−q2

branches of type R1. �

Proposition 7.18. The new type UNT3 has q3 branches of type UNT3, q
4−q2 branches

of type R2, and q4 − q3 branches of type R3.

Proof. A commuting pair (A,B) of matrices in UT5(Fq) of type UNT3 has as its central-

izer:















































1 x1 y1 y2 x2

1 λ1x1 z2 w1

1 λ2x1
λ2

λ1
y1

1 x1

1















































.

Let C =

















1 a1 b1 b2 a2

1 λ1a1 c2 d1

1 λ2a1
λ2

λ1
b1

1 a1

1

















, and C ′ =

















1 a′1 b′1 b′2 a′2
1 λ1a

′

1 c′2 d′1
1 λ2a

′

1
λ2

λ1
b′1

1 a′1
1

















=

XCX−1, where X =

















1 x1 y1 y2 x2

1 λ1x1 z2 w1

1 λ2x1
λ2

λ1
y1

1 x1

1

















. From XC = C ′X, we get a′1 = a1,

b′1 = b1, c
′

2 = c2, and the following equations:

b2 + x1c2 + λ2y1a1 = b′2 + z2a1 + λ2x1b1(7.22)

d1 + λ2x1b1 + z2a1 = d′1 + λ2y1a1 + x1c2(7.23)

a2 + x1d1 + y2a1 = a′2 + w1a1 + x1b
′

2.(7.24)

Case a1 = 0: Equation 7.22 becomes b1+x1c2 = b′1+x1λ2b1. When c2 = λ2b1, then b′2 =

b2, and similarly in Equation 7.23, d′1 = d1. Here, if b2 = d1, we get from Equation 7.24,

a′2 = a2. Hence C is reduced to

















1 b1 b2 a2

1 λ2b1 b2

1 λ2

λ1
b1

1

1

















, and ZUT5(Fq)(A,B,C) =

ZUT5(Fq)(A,B). (A,B,C) is a branch of type UNT3, and there are q3 such branches.
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When b2 6= d1, choose x1 such that a′2 = 0. C is reduced to

















1 b1 b2

1 λ2b1 d1

1 λ2

λ1
b1

1

1

















,

and ZUT5(Fq)(A,B,C) =















































1 y1 y2 x2

1 z2 w1

1 λ2

λ1
y1

1

1















































. (A,B,C) is thus of type R2, and

there are q2(q − 1) such branches.

When c2 6= λ2b1. In this case, in equation 7.22 itself, we choose x1 such that b′2 = 0.

And on substituting b2 with 0 in this equation and equating, we get x1 = 0. Thus, Equa-

tion 7.23 becomes d′1 = d1, and from Equation 7.24, we get a′2 = a2. Thus C is reduced

to

















1 b1 a2

1 c2 d1

1 λ2

λ1
b1

1

1

















, and ZUT5(Fq)(A,B,C) =















































1 y1 y2 x2

1 z2 w1

1 λ2

λ1
y1

1

1















































. This

too is a branch of type R2, and there are q3(q − 1).

Case a1 6= 0: In Equation 7.22 choose z2 such that b′2 = 0. Thus, substituting b2 with

b′2 = 0 in this equation, leads us to z2 = λ2y1 +
(c2−λ2b1)

a1
x1. With these Equation 7.23

becomes d′1 = d1. Thus Equation 7.24 becomes a2 + x1d1 + y2a1 = a′2 + w1a1. Choose

w1 such that a′2 = 0. Thus C is reduced to

















1 a1 b1

1 λ1a1 c2 d1

1 λ2a1
λ2

λ1
b1

1 a1

1

















, and

ZUT5(Fq)(A,B,C) =















































1 x1 y1 y2 x2

1 λ1x1 λ2y1 +
(c2−λ2b1)

a1
x1 y2 +

d1
a1
x1

1 λ2x1
λ2

λ1
y1

1 x1

1















































.

By a routine check, one can see that this centralizer group is commutative. Thus we have

a branch of type R3, and there are (q − 1)q3 such branches.

Adding up the branches of type R2, there is a total of q2(q − 1) + q3(q − 1) = q4 − q2

branches of type R2. �
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8. Commuting Probabilities

The number of simultaneous conjugacy classes of commuting k-tuples in UTn(Fq) is de-

noted by cUT (n, k, q) and the same for GTn(Fq) is denoted by cGT (n, k, q). From Lemma

7.1 [SS], it follows that cGT (n, k, q) = 1.Bk
GTn(Fq)

.e1 and cUT (n, k, q) = 1.Bk
UTn(Fq)

.e1

where 1 =
(

1 1 · · · 1
)

, and e1 = t
(

1 0 0 · · · 0
)

. We note that all of the

branching matrices computed in this paper for triangular and unitriangular groups have

entries polynomial in q with integer coefficients. Thus, cUT (n, k, q) for n = 3, 4, 5 and

cGT (n, k, q) for n = 2, 3, 4 are polynomials in q with integer coefficients.

From Theorem 1.1 in [SS], for k ≥ 2, and any finite group G, the probability that a

k-tuple commutes is cpk(G) =
cG(k − 1)

|G|k−1
=

1Bk−1
G .e1

|G|k−1
. Now, that we have determined

the branching matrix for the groups GTi(Fq) for i = 2, 3, 4, and UTj(Fq) for j = 3, 4, 5,

for each of the groups, we will mention the commuting probabilities for k ≤ 5. This

computation is done using Sage [SA].

For the triangular groups we have:

k cpk(GT2(Fq)) k cpk(GT2(Fq))

2 1
q−1 4 q2−2q+4

q5−3q4+3q3−q2

3 q2−q+2
q4−2q3+q2

5 q4−3q3+7q2−3q+2
q8−4q7+6q6−4q5+q4

k cpk(GT3(Fq)) k cpk(GT3(Fq))

2 q2+q−1
q3(q−1)2

4 q5−3q4+7q3−5q2+11q+4
q8(q−1)6

3 q3−q2+q+5
q5(q−1)4

5 q7−5q6+17q5−32q4+54q3−34q2+25q+2
q11(q−1)8

k cpk(GT4(Fq))

2 q3+3q2−2q−1
q10(q−1)3

3 12q5−52q4+116q3−97q2+63q−37
q20(q−1)6

4 6q8−16q7+3q6+195q5−593q4+1105q3−1129q2+912q−477
q30(q−1)9

5 7q11−32q10+122q9−192q8+342q7−714q6+2038q5−3954q4+6136q3−6304q2+4596q−2213
q40(q−1)12

In the case of unitriangular group we have:
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k cpk(UT3(Fq)) k cpk(UT3(Fq))

2 q2+q−1
q3

3 q3+q2−1
q5

4 q4+q3−1
q7

5 q5+q4−1
q9

.

k cpk(UT4(Fq)) k cpk(UT4(Fq))

2 2q3−1
q6

4 q7+3q6−3q5+5q4−4q3−3q+2
q15

3 2q4+3q3−2q2−3q+1
q10

5 q10+2q9−2q8+3q7−q6+q4−3q3−2q+2
q20

k cpk(UT5(Fq))

2 5q4−4q3+9q2−14q+5
q10

3 11q8−7q7+23q6−41q5+5q4+11q3+3q2−7q+3
q20

4 2q13+3q12+5q11+10q10−6q9−20q8+8q7−27q6+42q5−24q4+9q3+q2−5q+3
q29

5

(

2q18+5q16−5q15+23q14−25q13+28q12−41q11+23q10−17q9+
10q8−25q7+18q6+23q5−26q4+7q3+3q2−5q+3

)

q38

Appendix A. Conjugacy classes of GT4(Fq)

The conjugacy classes for upper triangular group can be algorathmically computed

following Belitskii’s algorithm as described in [Ko] and in the appendix of [Bh]. We list

them here for the convenience of reader and also to set the notation for types.

Class Representatives Number of
Classes

Order of
Centralizer

Name of
Type

a0I4, a0 6= 0 (q − 1) (q − 1)4q6 C
(

a 1
a
a
a

)

,

(

a
a
a 1
a

)

a 6= 0
2(q − 1) (q − 1)3q4 A1

(

a
a 1
a
a

)

a 6= 0
q − 1 (q − 1)3q4 A′

1

(

a 1
a
a
a

)

,

(

a
a 1
a
a

)

a 6= 0
2(q − 1) (q − 1)3q5 A2

(

a 1
a
a
a

)

a 6= 0
q − 1 (q − 1)3q6 A3
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(

a 1
a
a 1
a

)

a 6= 0
q − 1 (q − 1)2q4 A4

(

a 1
a 1
a
a

)

a 6= 0
q − 1 (q − 1)2q4 A5

(

a 1
a 1
a
a

)

a 6= 0
q − 1 (q − 1)2q5 A6

(

a 1
a 1
a
a

)

,

(

a
a 1
a 1
a

)

a 6= 0
2(q − 1) (q − 1)2q3 A7

(

a 1
a 1
a
a

)

,

(

a 1
a
a 1
a

)

a 6= 0
q − 1 (q − 1)2q4 A8

(

a 1 1
a
a 1
a

)

a 6= 0
q − 1 q(q − 1)q4 A9

(

a
a
b
b

)

,

(

a
b
a
b

)

(

a
b
b
a

)

; a 6= b
3(q − 1)(q − 2) (q − 1)4q2 B1

(

a
a
a
b

)

,

(

a
a
b
a

)

(

a
b
a
a

)

,

(

b
a
a
a

)

; a 6= b
4(q − 1)(q − 2) (q − 1)4q3 B2

(

a 1
a
a
b

)

, and 3 more
(

a
a 1
a
b

)

, and 3 more;

a 6= b

8(q − 1)(q − 2) (q − 1)3q2 B3

(

a 1
a
a
b

)

,

(

a 1
a
b
a

)

(

a 1
b
a
a

)

,

(

b
a 1
a
a

)

; a 6= b
4(q − 1)(q − 2) (q − 1)3q3 B4

(

a 1
a
b
b

)

, and 5 more;

a 6= b
6(q − 1)(q − 2) (q − 1)3q2 B5

(

a
a
b
c

)

, and 5 more;

a 6= b 6= c 6= a
6(q − 1)(q − 2)(q − 3) (q − 1)4q B6

The Regular types
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(

a 1
a 1
a 1
a

)

,

a 6= 0
q − 1 (q − 1)q3 R1

(

a 1
a 1
a
b

)

, and 3 more;

a 6= b
4(q − 1)(q − 2) (q − 1)2q2 R2

(

a 1
a
b 1
b

)

,

(

a 1
b 1
a
b

)

(

a 1
b 1
b
a

)

; a 6= b
3(q − 1)(q − 2) (q − 1)2q2 R3

(

a 1
a
b
c

)

, and 5 others;

a 6= b 6= c 6= a
6(q − 1)(q − 2)(q − 3) (q − 1)3q R4

(

a
b
c
d

)

,

a 6= b 6= c 6= a

a, b, c 6= d

(q−1).(q−2).
(q−3).q−4) (q − 1)4 R5

Appendix B. Conjugacy classes of UT4(Fq) and UT5(Fq)

Understanding conjugacy classes in unitriangular group is a challenging problem. We

refer a reader to [VA1, VA2] for the reference. We list down the same for UT4(Fq) and

UT5(Fq), what we need for our purpose.

Class Representatives Number of Classes Centralizer size Name of Type

in UT4(Fq)
(

1 a
1
1
1

)

, a ∈ Fq q q6 C
(

1 a
1
1
1

)

,

(

1
1 a
1
1

)

,

a ∈ F
∗

q

(q − 1), (q − 1) q5 A1

(

1 a
1 b
1
1

)

, a, b ∈ F
∗

q (q − 1)2 q5 A2
(

1 a
1
1
1

)

,

(

1
1
1 a
1

)

,
(

1 a
1
1 b
1

)

,

(

1 a
1 b
1
1

)

,
(

1 a
1
1 b
1

)

,

(

1 a b
1
1 c
1

)

,

a, b, c ∈ F
∗

q

(q − 1), (q − 1),

(q − 1)2, (q − 1)2,

(q − 1)2, (q − 1)3
q4 A3
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(

1
1 a
1
1

)

,

(

1 b
1 a
1
1

)

,

a, b ∈ F
∗

q

(q − 1), (q − 1)2 q4 R1

(

1 a
1 b
1
1

)

,

(

1
1 b
1 a
1

)

,
(

1 a
1 b
1 c
1

)

, a, b, c ∈ F
∗

q

(q − 1)2, (q − 1)2,

(q − 1)3
q3 R2

Class Representatives
Number of

Classes

Order of

Centralizer in UT5(Fq)

Name of

Type
(

1 a
1
1
1
1

)

, a ∈ Fq q q10 C

(

1 a
1
1
1
1

)

,

(

1
1 a
1
1
1

)

a ∈ F
∗

q

(q − 1), (q − 1) q9 A1

(

1
1 a
1
1
1

)

,

(

1 b
1 a
1
1
1

)

a, b ∈ F
∗

q

(q − 1), (q − 1)2 q8 A2

(

1 a
1
1
1
1

)

,

(

1
1
1 a
1
1

)

,

a, b ∈ F
∗

q

(q − 1), (q − 1)2,

(q − 1), (q − 1)2
q8 A3

(

1
1 a
1
1
1

)

,

(

1 b
1 a
1
1
1

)

,

(

1
1
1 a
1
1

)

,

(

1 b
1
1 a
1
1

)

a, b ∈ F
∗

q

(q − 1), (q − 1)2,

(q − 1), (q − 1)2
q7 A4

(

1 a
1
1
1
1

)

,

(

1 a
1 b
1
1
1

)

,

(

1 a
1
1 b
1
1

)

,

(

1 a
1
1 b
1
1

)

,

(

1 a c
1
1 b
1
1

)

,

(

1
1
1
1 a
1

)

,

(

1 b
1
1
1 a
1

)

,

(

1 b
1
1
1 a
1

)

,

(

1 b c
1
1
1 a
1

)

, a, b, c ∈ F
∗

q

(q − 1), (q − 1)2,

(q − 1)2, (q − 1)2,

(q − 1)3, (q − 1),

(q − 1)2, (q − 1)2,

(q − 1)3

q7 A5
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(

1 a
1 b
1
1
1

)

, a, b ∈ F
∗

q (q − 1)2 q9 B1

(

1 a
1 b
1
1
1

)

,

(

1 b
1
1 a
1
1

)

a, b ∈ F
∗

q

(q − 1), (q − 1)2,

(q − 1), (q − 1)2
q8 B2

(

1 a
1 b
1
1
1

)

,

(

1
1 a
1 b
1
1

)

,

a, b ∈ F
∗

q

(q − 1)2, (q − 1)2 q7 B3

(

1 a
1 b
1
1
1

)

,

(

1 a
1 b
1 c
1
1

)

,

(

1
1 a
1 b
1
1

)

,

(

1 c
1 a
1 b
1
1

)

,

(

1 b
1
1 a
1
1

)

,

(

1 b
1
1 a
1
1

)

,

(

1 b c
1
1 a
1
1

)

,

(

1 b
1 c
1 a
1
1

)

,

(

1 b
1 c
1 a
1
1

)

,

(

1 b c
1 d
1 a
1
1

)

,

(

1
1 b
1
1 a
1

)

,

(

1 c
1 b
1
1 a
1

)

,

(

1
1 b
1
1 a
1

)

,

(

1 c
1 b
1
1 a
1

)

,

(

1
1 b c
1
1 a
1

)

,

(

1 d
1 b c
1
1 a
1

)

a, b, c, d ∈ F
∗

q

(q − 1)2, (q − 1)3,

(q − 1)2, (q − 1)3,

(q − 1)2, (q − 1)2,

(q − 1)3, (q − 1)3,

(q − 1)3, (q − 1)4

(q − 1)2, (q − 1)3,

(q − 1)2, (q − 1)3,

(q − 1)3, (q − 1)4

q6 B4

(

1 b
1
1
1 a
1

)

,

(

1 b c
1
1
1 a
1

)

a, b, c ∈ F
∗

q

(q − 1)2, (q − 1)3 q6 B5

(

1 a
1 b
1
1
1

)

,

(

1 a
1 b
1
1 c
1

)

,

(

1
1
1 a
1 b
1

)

,

(

1 c
1
1 a
1 b
1

)

a, b, c ∈ F
∗

q

(q − 1)2, (q − 1)3,

(q − 1)2, (q − 1)3
q5 B6

(

1 a
1 b
1 c
1
1

)

, a, b, c ∈ F
∗

q (q − 1)3 q7 D1
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(

1 a
1 b
1 c
1
1

)

,

(

1 a
1 b
1
1 c
1

)

,

(

1 a
1 b c
1
1 d
1

)

,

(

1 a
1
1 b
1 c
1

)

,

(

1 a b
1
1 c
1 d
1

)

, a, b, c, d ∈ F
∗

q

(q − 1)3, (q − 1)3,

(q − 1)4, (q − 1)3

(q − 1)4
q5 D2

(

1 a
1 b
1
1
1

)

,

(

1
1 a
1 b
1
1

)

,

a, b ∈ F
∗

q

(q − 1)2, (q − 1)2 q6 R1

(

1
1 a
1 b
1
1

)

,

(

1 c
1 a
1 b
1
1

)

a, b, c ∈ F
∗

q

(q − 1)2, (q − 1)3 q5 R2

(

1 a
1 b
1 c
1
1

)

,

(

1
1 a
1 b
1 c
1

)

,

(

1 a
1 b
1 c
1 d
1

)

, a, b, c, d ∈ F
∗

q

(q − 1)3, (q − 1)3

(q − 1)4
q4 R3
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