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1. Introduction

Fourth order operators arise in the applications in the areas of conformal geometry, thermionic
emission, gas combustion and gauge theory. Prompted by questions in quantum field theory, Paneitz
discovered a fourth order conformally covariant operator in dimension N > 4. Let (M, g) be a Rie-
mannian manifold with dim(M) > 4. Let Ay be the Laplace Beltrami operator, divg the divergence
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operator, d the differential and Sg, Ricg denote the scalar curvature and Ricci tensor of the metric g
respectively. When N = 4, the Paneitz operator P, can be written in the form

2
Py = Ay + divg<§sg - 2Ricg) dy,

where ¢ € C°°(M) (see Paneitz [17], Chang and Yang [6]).
If dim(M) = 4, the analogue of the Gauss curvature for a surface is the so-called Q -curvature
function given as

1 2 f 12
Q= —E(Agsg — Sg 4 3|Ricg|®).

In fact, Paneitz operator was generalized by T. Branson for N > 3 (see [3]).
Let us now consider the question:

Given a smooth function Q on S*, does there exist a metric g conformal to the standard metric go such that

Q = Qg?

If we assume a conformal transformation of the form g = e*" gy, the answer to the above question
is “yes” iff we can solve for w in the equation

Pgw +2Qg, =2Qe* onS*.

It can be checked that Qg, = 3 and that the Paneitz operator on (S*, go) is given by Pgy = Aéo —2Ag,.
Hence, we look to solve for w in the problem

(A2, —2Ag)w+6=2Qe*" onS* (11)

Integrating (1.1) over S*, one obtains that the total Q -curvature of (S%, go) denoted by kgy, which is
a conformal invariant, satisfies

ke, :/Qe4w :/ng =3vol(S?).
54 s

Furthermore, if g is conformal to go, the Weyl tensor of (S%, g) vanishes identically and the fol-
lowing Gauss-Bonnet type formula holds

/Qg:4nzx(S4):8n2 (1.2)
S4

where x is the Euler characteristic. This immediately gives the first obstruction: If Q <0, then (1.1)
has no solution. More subtle obstructions similar to the Kazdan-Warner identities [14] can be shown
in the case of (1.1) as well (see Section 5 for details). The problem (1.1) is variational and the solutions
can be characterized as critical points of the following functional on H?(S*)

_ 1 1 4u
Jw) = —vol(S4) /(ngOu +4u)dug, — 310g<—vol(S4) / Qe dugo).
S4 S#
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However, the functional fails to satisfy Palais Smale condition. Hence, for these reasons, solvability of
(1.1) is not straight forward.

Using ideas similar to the ones used in [4,5,7] to solve Nirenberg's problem on SN, Wei and Xu
[20] proved existence of solutions of (1.1) when Q > O satisfies the non-degeneracy condition

(AQW)* +|vaw|® #0, (13)

and the vector field G : S¥ — RN+! defined by

G =(-AQ(x),VQ©®) (1.4)

has deg(‘g—‘,SN) # 0. Later, in the work [20], they extended their results to very general pseudo-

differential operators on SN which look like (—A)% when N is odd. To our knowledge it seems that
the non-degeneracy condition (1.3) is crucially required in [7,19,20] to obtain a-priori estimates for
the solution of (1.1).

The other approach is via the heat-flow as done in [18,2,15]. In particular, Malchiodi and
Struwe [15], proved existence of a solution to (1.1) assuming that Q is a Morse function (i.e., has
only non-degenerate critical points p) with Morse Index ind(Q, p) such that AQ (p) # 0 and satisfies
the index count

Z (_1)ind(Q,P) #1.

VQ(p)=0.AQ(p)<0

Consider the inverse of the stereographic projection
m:R*—>s*
given by
2 |x2 -1
|—,— .
14 %27 |x|2 +1

The round metric go is given in terms of the stereographic co-ordinate system as

o= 4dx?
°T A+ R
By a direct computation,
1 X 2\4
Pg,®(u) = %Azu forallu e C*(RY)

where
®()(y) = ux) +log(1+ [x|*) —log2, y=TII(x).
Then (1.1) reduces to

A*u =20 xe* inR*where Q =Q o1l. (1.5)
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We would like to study the problem (1.1) by taking Q to be a perturbation of a constant function.
More precisely, we let Q = 3(1 + ¢h) where h is a smooth function on S* and & > 0 is a small
parameter. Using the stereographic projection from S* to R*, we transform (1.1) (with f denoting the
transformed function h) to the following problem

A*u=6(1+ef()e* inR%. (1.6)
Note that the problem (1.6) is a perturbation of the following problem

AU =6eY  inR?,
/e4u <400 (1.7)

R4

whose solutions in the space E (see below for definition of E) are classified by Lin [12] as

Us,y(x) = log with (8, y) e RT x R*. (1.8)

3
82+ x =y

We remark that, if U= Uy solves (1.7), then so does the function w(x) = Ul,o(ﬁ) —2log|x|.

In this work, taking advantage of the fact that we are in a perturbative situation, we show ex-
istence of a solution to (1.6) without assuming that Q (and hence f) satisfies the non-degeneracy
conditions as in (1.3). In particular, we do not assume Q to be a Morse function. What we assume is
something about the “shape” of Q near the critical points (see the definition of the quantity Cg¢ in
Section 8). As in the previous works, the main idea is to define a suitable vector field Vy on Rt x RN
(see (1.14)). A stable zero (see Definition 1.5) (8, y) € Rt x RN of Vy will make the corresponding
Us,y a “bifurcation point” for a continuum of solutions to (1.6) as & — 0. For a precise statement of
this fact see Theorem 1.1 below. If we assume that this zero is “stable” in the more standard sense, we
can show that this “bifurcation” branch from Us  is locally unique; this also leads to an exact multi-
plicity result for (1.6) for all small ¢ > 0. For a precise statement of such uniqueness and multiplicity
see Theorems 1.3 and 1.4 below.

It is not possible to study (1.6) directly in a variational framework as AU ¢ L2(R*). Due to this
fact we will work in a non-variational framework using weighted Sobolev spaces as in [16,10,20] to
perform the Lyapunov-Schmidt reduction.

Let w(x) = (1 + |x|?). We introduce the following weighted Sobolev spaces:

42

Definition 1.1. Let E = {u € W;*(R) | ®®A%u, w™?u € L?(R*)} equipped with the inner product

(U, V)g = [pa @ A2UA?V + [ 0 Huv.

Definition 1.2. Let

H={ueW*(R*) | w?A%u, w|V(Au)

loc

, Au, 07 Vul, 0™ ?u € L2 (RY)}

with the inner product

(u, vy =/a)4A2uA2v+/a)2V(Au)'V(Av)—i-/AuAv
R4 R4 R4

+/w‘2Vu-Vv+/a)_4uv.

R* R4
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Definition 1.3.

H={uel} (RY)|w’ucl?®R?Y)

loc

with the inner product
(u,v) =/a)4uvdx.
R4

Finally,

Definition 1.4. Let w; ,(x) = (8% + |x — y|?). We define E; y, Hs y and H; , by replacing the weight w
by ws,y in the definitions of E, H and H respectively.

Remark 1.1. It is easy to see that Us y € Es,, for all (8, y).

Remark 1.2. We can easily check that the spaces Hs y, Esy and 1:15’}/ are uniformly equivalent as
Hilbert spaces to H, E and H respectively as (3, y) varies over a compact set K ¢ Rt x R%.

Remark 1.3. It is easy to see that Hj y is continuously embedded in Ej y.

We denote the derivatives of Us y as follows (i=1,2,3,4)

Wsy (x—y*—8%

© 0 _

Yoy ® = T T 56T =y (19)
@ OUsy  2(i—Yyi)

Yoy = T T T o )

As noted before, the solutions of (1.7) form a five dimensional manifold which we denote by
M={Usy: (8, y) eRT x R*}.
For any compact K ¢ Rt x R* define
du, Mg)=inf [u—"UsyllH,,-
(8,y)eK
Let the vector field Vg : Rt x R* — R be defined as
S _ 4Us.y (0) d 4Us,y 4) d 110
Vo8, y) = f@eo i ydx, ..., | fx)eT s (x)dx ). (1.10)

R4 R4

We note that V) is a gradient vector field as

Vo8, y)=VJ(8,y) where j(é,y):/f(x)e“”w dx. (111)
]R4

We make the following definition of a stable vector field:
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Definition 1.5. Let £2 C RN be an open set. We call a point P € £2 as a stable zero for a vector field
Vo € C(£2; RN) if Vy(P) = 0 and for any sequence of vector fields V; € C(£2; RN) converging uniformly
to V in a neighborhood of P, there exist a zero Pg of V, with P, — P as € — 0.
We now state the theorems we will prove.

Theorem 1.1 (“Bifurcation” from a stable zero). Let K C Rt x R* be a compact set with a nonempty interior.
Let (8, ¥) € K be a stable zero of the vector field Vy. Then there exists an &9 > 0 depending on K such that (1.6)
admits a solution u, for all € € (0, &9). Moreover, ug = U, y. + ¢e With |¢clln,, = O(&) and (3¢, ye) —
@, y.

Theorem 1.2 (Necessary condition). Let u. be a sequence of solution of (1.6) such that |lus — Us s, — 0.
Then Vy(8, y) =0.

Theorem 1.3 (Local uniqueness). Let K € Rt x R* with a nonempty interior. Let (8, y) € K be a zero of the
vector field Vo(8, y) such that D? J (8, y) is invertible. Furthermore, suppose f satisfies

|VFf|<cC. (112)
If {ue i}, 1 =1, 2 are two sequences of solutions of (1.6) such that
lug —Usyllns, -0 ase—0,
then there exists £o(K) > 0 depending on K such that for all € € (0, £9) we obtain ug 1 = ug 2.

Theorem 1.4 (Exact multiplicity). Let Vg have only finitely many zeroes all of which are stable and contained
in a compact set K ¢ RT x R*. Suppose that at any stable zero of V, the Hessian D? ] is invertible. Then there
exists a po = po(K) > 0 and &9 = &9(pp) > 0 such that for all € € (0, £9), the problem (1.6) has exactly the
same number of solutions u with d(u, M) < pg as the number of stable zeroes of V.

Remark 1.4. The proof of the above theorems are done using Lyapunov-Schmidt reduction carried out
for the nonlinear solution operator (see (2.6)) between the spaces Hs y and Hs, y. The calculations for
this reduction are given in Sections 2 and 3.

Remark 1.5. Consider the problem
A*u=6e* +ew(x,u) inR* (1.13)
where ¥ : R* x R* — R is continuous and twice differentiable in the second variable and satisfies
sup [ | (%, w)] + [ W (%, )] + W (x, ) [] < Ce™;
xeR4
| VW (x, u)| < cet.

An inspection of the proofs of Theorems 1.1-1.4 shows that they hold for the problem (1.13) as well
if we replace the vector field Vy by the following

Vo8, y) = ( /lI/(x, Ua,y)lpg_"y)(x)dx,...,/tp(x, U(;,y)lpgf‘y)(x)dx) (114)

R4 R*
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Remark 1.6. A similar kind of result was obtained by Grossi [9] for single peak solutions of the
subcritical singularly perturbed nonlinear Schrodinger equation

2Au—V®u+uP=0 inRV,
u>0 in RN, (115)
ueHl(]RN).

By exploiting the “shape” of the potential V e C'(RN) near its critical points, the author obtained
exact multiplicity results for (1.15) whenever ¢ > 0 is sufficiently small. In addition, if P is a non-
degenerate critical point of V, the author showed that there is a unique solution concentrating at P.
Remark 1.7. Moreover, Theorems 1.1-1.4 hold for the equation

(=A™= (2m—DI(1+ef(x)e*™ inR>" (116)
where m € N. The construction of solution follows from Wei and Xu [21].
Remark 1.8. The following problem was studied by Felli [8]

N+4
N-—.

Au=(1+ef®)uv= inRN,
u>0 inRN, (117)
u e D*?(RVY),

for N > 5. Existence to the above problem is shown in [8] assuming a suitable “shape” for f near a
critical point. In particular, an expansion of the form

f=Ffm+Y ajly—nlf+o(ly—nlf) asy—n, pe,N)

is assumed at a critical point 7. We remark that the problem (1.17) is variational and can be handled
in the Sobolev space D?2(RN).

2. Preliminaries
Let log™ |x| = max{0, log |x|}.
Lemma 2.1. There exists a positive constant C such that
sup|v(®)| < ClIv[le(1xl +log* x| +1), Vv eE, (21)
R4

sup|v(x)| < Cllv|in(log® x| + 1), VveH. (2.2)
R4

Proof. Note that the fundamental solution of the biharmonic operator in R* is given by

1
F(x,y):gﬂ—zlog TR

For v in E with ||[v||r =1 we set A2v = g. By definition of the space E, the function g € H. Then we
can write v = vg 4+ v where A2vg =0 and v{(x) = fw F(x,y)g(y)dy. We now estimate



2370 S. Prashanth et al. / ]. Differential Equations 255 (2013) 2363-2391

lvi)| = ‘/F(x, y)g(y)dy’

—zf\loglx— yl||g)|dy
R4

1 1
1 lloglx— yII> | \?
<8n2(f(1+lyl ’g(y)’> ( ENDE dy)
R

R4
2 1
Serz U ar = yp)s '
R4

Let

/ |log |yl J
y
A+ x—y?)*

[log|y|l? / |log|y|I?
= S dy + O8Iy
f A+x—y2*? A+x—y2r?

{lyl<1} {ly| =21}
=11+ 1.

Now we estimate

|log |y||? / 2

I = o _dy<C lo dy < +00.

1 / Ayt Y |log|yl|”dy
(Iyi<1) <)

Also for |y| > 2|x|, we have

1
ly —x| =yl — x| > Elyl

and as a result we must have

lo 2 lo 2
I = / | g|y||24dy+ | glyll24
T+1x=yl) T+ x—=y9)
{lyI=13n{ly|=2x]} {lyI=1n{lyl<2x}
2
C(1+ (log™ [x])).
Since @ 2v, w2v are in L%(R*) so is w~2vg and hence v is a tempered distribution in R*. Using

Fourier transform and the fact that w=2vy € L2(R*) we obtain supp4 [vo(x)| < C(1 + |x]) for some
C > 0. Putting together the estimates for Iy, I, and vo we get (2.1). If v € H with ||v]g =1, we
note that the corresponding biharmonic function v € H and hence is uniformly bounded in R*. The
estimate for v; can be obtained as above to get (2.2). O
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Lemma 2.2 (Non-degeneracy). The kernel of the linearized operator

A? —24e4Usy

in Es,y is five dimensional and is generated by

) )

0Us,y oUsy dUsy 0Usy 0Usy
s’ 0Xq 29 0X3 ’ 0X4 '

Proof. Without loss of generality, let § =1 and y = 0. Consider the problem
A%y — 24Uy =0 (2.3)

where € E1 . Then ¢ € Wl‘;’cz (R*) and by a boot-strap argument ¥ € C° (R*). Now we claim that

loc
every ¢ satisfying (2.3) with at most linear growth has to be bounded. Let || < C|x| for |x| > 1.

Then define the Kelvin transform of ¢ be

7 () =¢<ﬁ> in R4\ {0). (2.4)

Then v (x) < C|x|~! near the origin and satisfies

27 1 A i
A w—mw_o inR*\ {0}. (2.5)

But vy € L2 (R%) and hence by regularity v € C°°(R?%). Hence v is bounded near the origin and

loc loc
hence ¢ is bounded at infinity. As a result, we must have || < C for [x| > 1. Hence supga [/ (x)| <

Cllwllg(log™ |x| + 1) and we can apply the method of Lin and Wei [13] in Lemma 2.6 to conclude the
non-degeneracy. O

We want to find solutions to (1.6) of the form u, = Us y + ¢, such that ¢ — 0 as £ — 0 in Hj y.
If we plug this ansatz in (1.6) then we have

A%, = 6eVoy (% — 1) + 66 f (x)eVoyT0e),

This motivates us to introduce the following nonlinear operator Bg’y from a small ball B around the
origin in Hs y into Hs y

Bg’y :BC Hg’y — I:Ig,y
given by
BYY (v) = A%v — 6etVsy (e — 1) — Be f (x)etUsy V), (2.6)

Therefore finding solutions u, of (1.6), bifurcating from Uy, for some (8, y) € R* x R* is equivalent
to proving the following lemma.

Lemma 2.3. There exists a suitable value (8,y) € R* x R* for which one can find ¢, € Hs,, with
e llHs, — 0as e — 0and B2Y (¢s) = 0.
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We now show some basic properties of Bg’y.
Lemma 2.4. Let B, (0) C Hs,y. Then for p > 0 small enough we have
5. -
B (B, (0)) C Hs,y.

Proof. Let ||V n,, < p. Then using (2.1), we have

8v
/((SZ + |X_ y|2)4eg(U5,y+V) < Cl / 64
(824 x—y2)4
R4 R4
eCzIIVHH&.y(lJrIOgJr [x])
<C <400
NG EEEDT
R4

provided p is sufficiently small. Hence, e*Ys.y*¥) e H ,. It follows that B2Y maps B,(0) into Hs y. O
Theorem 2.1. Let B,(0) C Hs,y, with p > 0 small. Then for any € > 0,
B2 € C'(B,(0), Hs ).
Proof. First we prove that
Y € CO(B,(0), Hs,y).

Let v, — v in Hs ) where v,,v € B,(0). This implies that A%v, - A2y in I:Ig,y and v, — Vv in
Cioc(R%). Hence, again by the estimate (2.1) and dominated convergence theorem we obtain

6(1+¢&f()e* oyt  6(1+¢f(x)e* Wyt infj .

Now we prove that Bg‘y is continuously differentiable in B,(0). We claim that its derivative is given
by

(B27) (v),h) = A%h = 24(1 + £ f (0))e* VvV inRA,
heHsy, veBy0).

2.7)

Let A% : Hs y — Hj.y be defined by AS(h) = A%h —24(1 + & f(x))e*Vsy+Vh, Then A? is a continuous
linear map for all v € B,,(0). To see this, let h, — h in Hs . Then A%h, — A2h in Hs,, as well as
hy — h in Cipe(R?). As a result we must have

eSvh2
(824 x—y2)*
2 2
C”hn”HM(l + log™ |x])
e
(82 +|x—y»H4

(82 + Ix— yIP) (1 + & f(0))eBUsrtp2 < C

c1llvilng , (1+log™ |x))

~
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Hence by the dominated convergence theorem, for o > 0 small enough,
et UsytVip, — 4 UsytVp in Hj .
This shows the continuity of A9. Now we claim that
3,y e
(BY) (v) = AS.

We have

BYY (v +h) — BYY (v) — ASh| = 6e*Usy V) (1 4 e f(x)) (e — 1 — 4h)
< CetWUsy+v) pdihlp2

2 + 1y[)2
< Ceft IRl , (1+log™ [x]) ”h”H,g_y(l +log™ |x])
X

(82 + x =yt~

This implies for IVliH,, and [[h]lH,, small
s, s,
|BeY (v +h) = BeY (v) — Af,h”gw < C||h||%,8’y
and hence we obtain the required result. O

Let K = Ker(By”)'(0) and R = Im(B)”)'(0). Then by Lemma 2.2

o dUsy 0Usy 8Us, dUsy 8Us,
Tl 88 7 ax1 T 9xx T 09x3  oxa |

Define
RE={y eHsy: (.5)p,  =0: ¢ R}
We define fori=0,1,2,3,4
(i) -4, (i)
(pﬁ,y = coS,yy”S,y'

Lemma 2.5. R = span{o "), &{!)

(4)
s,y Ps,yree o d%’yk

2373

Proof. Let i € R+. Then by definition we must have (v, (Bg’y)’(O)g)Ha , =0 forall ¢z e CF° (R%). This

implies that in the sense of distribution

A (w5 ) — 24e*Vr of Ly =0.

By the elliptic regularity, ¥ € W,‘;’f (R*) and from the above equation w3 yA2(a)§y JW) € L?(R*). Hence

wg,yw € Es y. Using Lemma 2.2, we obtain wgvyz/f € K. We note that C8°(R4) = H;, y. Conversely, if
¢ € K, we have (¢, A2y — eUsyy) o =0 for all ¢ € C5°(R?). As a result, we must have w;f,d: erRt

for any ¢ € K. Hence ¥ € R if and only if w(‘;‘!yw ek. O
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Now we define the quotient spaces
\/ I 1
M(;,y = H(s’y/’C and M,syy = H(g,y/R .

Then (Bg’y)/(O) :Ms y — 1\715,3, is an isomorphism onto.
Now we are in situation to apply finite dimensional reduction.

3. Solving the reduced operator equation

Let Px-. and P denote the projections

Pyr:Hsy — Ms,y,

PR . I:Ig,y g Mg,y.
For a ball B,(0) C Ms,y for p > 0 small enough, define the reduced solution operator
s, - s, s,
SeY :Bp(0) > Ms,y, asSg¥ (v) = (ProB:Y)(v).

Then by Theorem 2.1, So” € C'(B,,(0), Ms,y) for small p > 0 and for any & > 0.
For any ¢ € B, (0), we write

B (@) =B’ (0) + (B2”) (09 + Q27 (¢),

where

Q27 (¢) = —6(1 +efx)etVor[e* —1 - 4¢].

Applying the projection P on either side of (3.1) we obtain

52 (¢) =527 (0) + Pr((B2”) (0¢) + PR (Q2Y (¢))
=527(0) + (527) 0¢ + P (Q2Y ($)).

Therefore, solving

s> (¢)=o0.

(3.3) reduces to solving

527(0) + (527) ()¢ + PR (Q2Y (¢)) =0.

(3.1)

(3.2)

(3.3)

(3.4)

We note that (Sg‘y)/(O) is invertible and (52*)/(0) — (Sg‘y)/(O) in the operator norm as & — 0.
Therefore, we also obtain the invertibility of (S‘g‘y)/(O) for all small € > 0. Hence, solving (3.4) for

small & > 0 is equivalent to solving

¢ =—((s27) @) '[$27(0) + Pr(Q2Y )]

(3.5)
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Motivated by the above equation, define the map g;” :B,(0) — Ms y by

Ge? (v) =—((527) @) ' [$27 @ + Pr(Q27(v)].

2375

(3.6)

Then solving (3.4) for small ¢ > 0 is equivalent to finding a fixed point of the map g:}y. We do so in

the lemma below, thereby solving the reduced operator equation:

Lemma 3.1. Let K be a compact subset of RT x R* and p > 0 be small. Then there exists g = £9(K, p) > 0
such that for all € € (0, &9) and (8, y) € K, there exists a fixed point ¢‘§*y € B, (0) of the map gi*y. That is,

S3Y @2y =0foralls € (0, g9), (8, y) € K.
Proof. We use Banach fixed point theorem in order to prove the existence of ¢;.
Claim 1. Fix any g9 > 0. Then, for all ¢ € (0, &o) and ¢ € B, (0)
8y 2
[ @) g, , <Cllol,,
and for any ¢1, ¢2 € B, (0)
5, s,
[Qe @0 — Qe @), , < CIllns, + 16211Hs,) 61 = P2lln; -
Proof. We have (see (3.2))

Q27 (9)|° =36[1 +f (x| e8Vsy[e* — 1 — 49|
< C|¢|468(U‘5*3’+|¢|).

Using Lemma 2.1 we have

1+log*
c ||¢||;55‘y(1 +log™ [x|)3eCt 115,y (108" x)

4 8.y 1112
Cl)&y’QS (¢)‘ < (82+|X—y|2)4

which implies (3.7). Furthermore,

Q27 (@) — Q27 @) [* = |1+ £ f (0| B [e® — 2 — 4y — )’
and

1

1
¥ — e —4(¢ — ¢2) =16 f ( / N HI=09) 45ty + (1 - 1)) dr) (@1 — ¢2).
0

0

Using (3.9) and (3.10) we have

s, 8, 2 + 1+log?t
o} Q27 (@1 — QY (@2)]” < Cligr — i, 1 191 oy F1921s OB LD

(1 +log™ |x*

2 2
X oy x =yt el + 192l )

and we get (3.8). O

(3.7)

(3.8)

(3.9)

(3.10)
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Claim 2. For any compact set K ¢ Rt x R* and a ball B,(0) C Ms,y with p > 0 small we can choose

g0 =¢€o(K, p) > 0so that for any € € (0, &9), (8, y) € K, the operator gﬁ’y defined by (3.6) has a unique fixed
point ¢§’y € B, (0) for all € € (0, &9). Moreover,

3,y
=0(¢e). 3.11
(s;l)IZK”% ”H‘” ® ( )

Proof. Let (8, y) € K. For any ¢ € B,(0),

[62Y @y, <1((s2*) @) {27 @15, , + [Pr(Q2Y @) |5, }-

Now by Claim 1, there exists a constant C > 0 depending on K such that

167 @y, <Cle+18l1E,,]. V6.9 ek, (3.12)

If we choose [|§]ln,, < p where p is small enough and let &0 = (p — Cp?)/C, then for all € € (0, &9)

|G @]y, <o whenever $]ln,, < p. V(5. y) € K.

Now we show that gﬁ’y is a contraction

1627 @0 = a2 @y, , < 1((52Y) @) ' [{1(Q27 @) — @2V 2) |7, , )
< C(Ig1llHs, + 1021lH, ,)Id1 — D2y -

Choosing ¢1, ¢ € B,(0) with p small enough, we obtain gﬁ*y : By(0) — B,(0) is a contraction map
for all (8,y) € K and ¢ € (0, &9). Hence by Banach fixed point theorem we obtain a unique fixed
point ¢2. Now, (3.11) follows from (3.12) by taking ¢ = ¢2*. This proves the claim. O

The proof of lemma follows from Claims 1 and 2. O
4. Existence of solution: Proof of Theorem 1.1

First, we have the following technical fact:
Proposition 4.1. Let ¢ € Hs . Define

¢(R) = / (05 40% + w0, 2IVH 2 + [ Ag12 + 02 ,|V(A)|*)d
[x=y|=R$

Then there exist a sequence of real numbers {R,} with R, — oo such that

(i) {(Ry)=0() asn— oo,

(i) l¢p|do =0(R;) asn— oo.

[Xx—y|=Rné
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Proof. We note that [ ¢(r)dr < C||¢||f_,5y < o0. Given any k > 0, let Ay = {r € (0,00): () > k}.
Clearly, k|Ag| < C||¢||f18y. Therefore, by choosing k large enough, we can ensure |Ag| < 1. Let By =
(0, 00) \ Ag. Then, it follows that ¢(r) <k for all r € B;. We claim a stronger version of (ii) holds, viz.,

l¢|do =0o(R7) asn— oo for any sequence {Ry} C By, Rp — <.

[x—y[=Rnd

To prove this, we argue by contradiction i.e., suppose that there exist c, Rgp > 0 such that for all

R € [Rg, o0) N B, we get
|¢|do > cR> > 0.
[x—y|=R$

By Holder’s inequality, we obtain

1 1

2 2
|¢|do<< / a)g‘yydo>< / w{;;‘,|¢|2da>.
[x—y|=Ré |x—y|=Ré |x—y|=Ré

But then, from (4.1) and (4.2),

oo
/w;‘y‘|¢|2dx=a—3/< / w;‘;|¢|2do> dR
0

R4 x—y|=R5
>53 / ( f wgfy*|¢|2do> dR
[Rg,00)NBj  |x—y|=R$

1
=>0(1) f EdR=—|—oo,

[Ro,00)NBy

a contradiction. Hence (i), (ii) hold. O

The lemma below shows we can integrate by parts the functions in Hs y against w(i)

8.y°

Lemma4.1. Let ¢ € Hs y. Then, fori=0,1,...,4,
fwgf)yA2¢:24/e4Ua-y¢§j>y¢.
R4 R4

Proof. We prove the lemma for i =0, the cases i > 1 are similar. As ¢ € Hs , we obtain

fa)(;?,|¢|2dx<+oo and /|A¢|2 < +o0.
R4 R4

(4.1)

(4.2)

Let the sequence {R,} be as in the above proposition. Using (i), (ii) of this proposition, we deduce the

following estimates
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l¢p|do =0o(Ry), (4.3)
|x*y|:Rn5
a¢ l %
2
/ ‘5 do << / w6y|V¢>| da) ( / a)&yda>
|x—y|=Rné [x=y|=Rné |x—y|=Rné
7
< O(R7), (4.4)
1
3 2 3
|A¢|da<o(R,$)< / |A¢|2da> =0(R?), (4.5)
|x—y|=Rnd [x—y|=Rné
1 1
0AQ 2 2 _ 2
/ - do < < / |V(A®)| a)iy d(r) ( / a)syf, da)
[x—y|=Rné [x—y|=Rné [x—y[=Rnd
_1
<O(Ry?). (4.6)

Moreover, since ¢ € Hs y, we obtain
0 i 0

/w()Az / a2

‘X YI<Rnd

and
0) ,4Us.y 4+ _ 1 (0) ,4Us,,
/wasye y(p_n]l)ngo f wa,ye Y.
R4 [x—y|<Rnd

Using integration by parts, the last two equations and the above asymptotic estimates (4.3)-(4.6),
we get

| ulate=aa [ eyl

|x—y|<Rné [x—y|<Rnd
(0)
A oY
WACES
|x—y|=Rnd
)
BAW 3
- ¢———w@)
|x—y|=Rnd
4U (0)
=24 / e ‘”%,ﬂ’
|x—y|<Rné
A AN
+0() <| f|+ —¢)da
R; v

|x—y|=Rné
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wap

+0(R;?) / |¢ldo + 0 (R / v

[x—y|=Rné [x—y[=Rnd

=24 / Uy + 0a(1).
[x=y|<Rnd

This proves the lemma. O

By the previous section, for any compact set K ¢ RT x R*, p > 0 small, there exists &o > 0 such
that for all € € (0, &9) and (8, y) € K, there exists ¢>§’ €B,(0) C M,; y such that Ss y(¢£ Yy = 0. For
notational convenience, hereafter in this section we denote such a qbg simply as ¢x.

Now we show that if (8, y) is chosen carefully to be a stable zero of the vector field Vy, then for
a sequence (8¢, y¢) — (8, y), the function ¢g5’y5 is in fact a zero of the nonlinear operator Bﬁ&ys and
hence

)
ua—USeJ/er(beyg

will solve (1.6).
If ¢ € M5,y solves S2¥(¢e) =0, it follows that B2 (¢¢) € RL. Hence by Lemma 2.5, there exist
constants ¢; ¢ such that forall i=0,1,2,3,4

y@a_zyw¢m

i=0

and hence

(Bg'y(%),lﬁs(l})Lz(th)—Qs/ws y|1ﬂ(') , 1=0,1,2,3,4, (4.7)
R4

holds.

Lemma 4.2. Let K ¢ Rt x R* be a compact set. If ¢, be obtained as in Lemma 3.1, then as & — 0 we obtain
fori=0,1,...,4

S (%00 = 6t (¢4 = 1). 1 ) | = O(e7)

and

4(Us y+de) _ ,4Us, _
<§§'>12,<|(f<X>(e byt etlo), Way)ﬂ(R‘*)’—Os(U-

Proof. Let K c Rt x R* be a compact set and (8, y) € K. By (3.11), since ¢ — 0 in Hs y, we obtain

¢ — 0 in CI%C(R“). Using Lemma 4.1 and Theorem 2.1 we obtain

[T~ getvos (e~ 1)]uy = =6 [ [et —1-a0.Jus,

R4 R4
< Cligelify,, = 0(e?).
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Moreover, again by Theorem 2.1 and the dominated convergence theorem we get

<f(x)(e4(Ua.y+¢e) _ e4U54y)’ ¢§T;>L2(R4) < C/64Ua<y [e¢e _ 1]‘//6(1;/ =o0g(1). O
R4

Define the matrix As y = (Ag'i,)()gi,jgzi by

Lj g ® ) . :
A(g,y—<¢5,ys I//(S,y>L2(R4)’ 0<1’1<4
and the vector

Co,e
Cl,e
Ce=|] C2¢
C3,¢
Ca,¢

We note that Ay y is in fact an invertible diagonal matrix. Let K C Rt x R* be a compact set with
nonempty interior. Define the vector field

&
R4

1 i i
V8(51 y) = <_ /(Az(ps _ 6e4U8,y (64475 _ 1))w§f;/ _ 6/ f(x)e4(U6,y+¢s)w§g,> .
i=0,1,...,4
R* '

Then from Lemma 4.2 we obtain V; (8, y) — 6Vy(8, y) in C(K,RR?). Now (4.7) can be written as

AB,yCe =&Ve(8,y) (4.8)
for (§,y) € K.

Proof of Theorem 1.1. Let (§, y) be a stable zero for the vector field Vy. Since V:(8, y) — 6Vp(8, y)
in C(K,R>), we can find zeroes (8., y¢) of V. such that (8, y¢) — (8, y). Take the solution ¢>25’y5
of sigvyg (¢) =0 given in Lemma 3.1 and write out the corresponding equations (4.7) and (4.8) for
As,.y.. Since As, . is invertible, we have c, =0 for all ¢ > 0. Hence the corresponding ¢ solves
Bﬁm (¢%>Ye) =0 for all such . Defining u, = Us,.y. + ¢§8’y8, we obtain that u, solves (1.6) for all
& > 0 small. That |2 15, = O(e) follows from Claim 2 in Lemma 3.1. O

5. Necessary condition: Proof of Theorem 1.2

In this section we show that if there is a sequence of solutions u, of (1.6) “bifurcating” from
some Us,y, then necessarily Vp(8, y) = 0. The main tool to prove this result is a Pohozaev type identity
for functions belonging to Hs,y. First, we prove the following sharp decay estimates:

Lemma 5.1. Let u. be a sequence of solutions of (1.6) with |lug — Us.y||ln,, — 0 as € — 0 for some (3, y) €
R* x R*. Then, uniformly as € — 0, we have the following decay estimates
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e _ o (5.1)
Ix|—o0 log |X|
lim x-Vug =-2, (5.2)
|X|]—00
lim [x*|Aus(x)| =4, (5.3)
|X]—o00
lim x-V(x-Vug) =0, (5.4)
|X|]—00
lim |x|?x- V(Aug) = 8. (5.5)
|x|]— 00

Proof. Let ¢ = u; — Us,y. First note that ||¢¢ |, , — 0 and hence

[ug — Us,yl 1
=2 el [ 1+ -0 (5.6)
log || log |x|
as |x| — +oo. Using the fact that
U
im 8y _
Ix|—oo log |X|

we obtain (5.1). We use similar arguments in [12] to establish (5.2), (5.3), (5.4) and (5.5). Using (5.1)
we obtain

YO <V <2, 3RW) > 0: ug(x) < (—2+v)logt |x|, V|x| > R). (5.7)

Then, since ¢, € Hs y we can use (4.6) of Lemma 4.1 to conclude that for a suitable sequence R, — oo,

A
0= lim / % 4o = lim A%(ug — Us,y)
Rp— 00 av Rp— 00 ’
9B, (0) Bg, (0)

= lim 6(1+ e f(x))es —6e?Usy

Rp—o0
Br, (0)

= lim 6(1+&f(x))e*s — 1672, (5.8)

Rp—o0
Br, (0)

Hence, we obtain
4u 8
Ve > 0, (1+efx)e = = (5.9)
R4
We define v by

1
Ve(X) = 872 / log(lx — y1)6(1 + & f())e*= ¥ dy.
R4
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It is easy to check that A2vy = —6(1 + & f(x))e* s in R* and using (5.9) we obtain uniformly as
e—0,
Ve(X) 3 du,(
=— [(1+e¢ eteW dy =2, 5.10
IxI>oo log x| 472 ( +ef () Y (5.10)
R4

It can be shown, as in Lemma 2.1, that

sup sup|ve(x)| < C(log™ |x| +1).
O<e<1 R4

Consider the function wg = ug +v,. Then A2w, =0 in R*. Hence Aw, is harmonic and by the mean
value theorem, for any r > 0,

2 d 2 oW d
Awg(Xg) = p) Awg(x)dx = p) or (x)do.
Br(x0) 3B (x0)
Integrating along r we obtain
rzAw (x0) = ! / wedo — we(Xg)
3 e\X0) = 27213 & e\R0)-.
9Br(x0)

From (5.7) and (5.10), it follows that w, and hence the absolute value of the RHS in the above
equation grows at most like logr as r — oco. Hence, we obtain a contradiction if Aw.(xg) # 0 at
any xo. Therefore, Aw, =0 in R*. Further since w, has at most logarithmic growth at infinity, we
conclude that w, = const. in R%. Successively differentiating v, and arguing in a similar way we
obtain the relations (5.2)-(5.5). O

Corollary 5.1. The following uniform estimates hold

(i) limsup [x||Vug (x)| < o0,
[X|—o00

(ii) limsup |x|*|D?u, | < oo.
|x]— 00

Proof. We note that, from (5.1), we have the estimate e*s < C(1 + |x[)*~8 for any v > 0 and all
|| > R = R(v). The conclusions (i) and (ii) follow by differentiating inside the integral sign in the
definition of v;. O

We now develop two kinds of Pohozaev type identities.

Lemma 5.2. Let {u.} be a family of solutions to (1.6) such that ||ug — Us yllns;, — 0 as & — 0 for some
(8, y) e Rt x R%. Then,

3

/f(x)e“”f%:O, i=1,2.3.4, (5.11)
i

]R4
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and
/ f(x)e4”€[(x —y) - Vug + 1] =0. (5.12)
]R4

Proof. In order to prove (5.11) we multiply (1.6) by %ij and integrate by parts on the ball Bg(0) to

get

6 / (l—i—sf(x))e“”g%: / aAuga&dG_ / vmww(aﬂ). (5.13)
0X; 0Xi

; v 0x; i
Br(0) 9BRr(0) Br(0)

By (5.5) and Corollary 5.1(i), we obtain

/ 0AuUg dug
—|do
v 0x;

dBr(0)

=0(R™") asR— oo. (5.14)

Again, by suitable integration by parts and using (5.3) and Corollary 5.1(ii), we get as R — oo,
dug 0 (dug 1 2 1
V(Aug)- V| — | = Au,— | — ) — —xi|Au do=0(R"). 515
| v <ax,-) / { €8v<8x,-) el (). (515)
Br(0) 9B (0)

Hence, from the last two relations,

lim {RHS of (5.13)} =0. (5.16)

R—o0

Again integrating by parts in another way,

dug 1 oug
14 ef)ete —2 = — / xiete do + ¢ / edue £ 517
[awepen =t [ netrdo v [ et (517)
Br(0) dBR(0) Br(0)

Using the asymptotic relation (5.1) and Corollary 5.1(i), we may let R — oo in the above equation to
conclude

B B
lim / (1 + ¢ fretue Lo :e/fe“”sﬁ. (5.18)
R—o0 0X; 0x;
Br(0) R4
Therefore we obtain, using (5.18) and (5.16),
4u, OUs .
6c | f(xe*s— = lim {LHSof (5.13)} =0, (5.19)
oX; R—o0
R4

which proves (5.11). Now we are left to show (5.12). For this, we multiply (1.6) by (x —y) - Vug + 1
on either side and integrate on the ball Bg(y) as before to obtain,

6 / e (1+ef()((x—y)-Vue+1) = / Aue((x—y) - Vi +1). (5.20)
BR(Y) BR(Y)
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Integrating by parts we obtain

R
LHS of (5.20) = 37 / et do + 6¢ / fets ((x—y) - Vug +1). (5.21)

9BR(Y) Br(y)

We denote ré?—r = (x—y)- V. Again integrating by parts suitably,

RHS of (5.20) = / {R<1|Au8|2 + (a& + 1)3(Au8))
2 ar ar

- Augi<r%>}da. (5.22)
r r

We have used the relation (obtained from integrating by parts)

/ Aug(x—y)-V(Aug)zg / (Aug)?do —2 / (Aug)? dx

Br(¥) 0BRr(y) Br(¥)

and the identity

A(x—y) - Vug) =2Aug + (x—y) - V(Aug)

to derive (5.22). Using the asymptotics (5.1)-(5.5), we obtain that

Rlim {LHS of (5.20)} = 6¢ / fets ((x—y) - Vug +1), (5.23)
— 00 R4
and
lim {RHS of (5.20)} =0. (5.24)

R—o0
Hence (5.12) follows. O

Proof of Theorem 1.2. We note that (x — y) - VxUs y + 1 = —(Sa%f;y. Since ug — Us,y in Hs,y, the
asymptotics in Lemma 5.1 allow us to pass to the limit as ¢ goes to 0 in (5.11) and (5.12). This means

that Vp(8,y)=0. O

6. Local uniqueness: Proof of Theorem 1.3

In this section we show that a “strongly” stable zero of the vector field Vo (8, y) “bifurcates” at
most one family of solutions to (1.6).

Proof of Theorem 1.3. We argue by contradiction. Let us suppose that for some sequence &, — 0 there
exist two distinct sequences of solutions {u1 ¢,} and {uz¢,} of (1.6) such that |lujn — Us ylln,, — 0 as
n— oo for i =1, 2. For convenience, we denote u; , = Uj ¢,. Set Wp =15 — Uz 5. Then ||\E/,1||HM -0
as n — oo. Then, we have the following two cases: either

Case (i): for any B > 0, for all large n, there exists x, € R* such that |W,(xy)| > B,
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or

Case (ii): there exists 8 > 0 and a subsequence of {w,}, which we still denote by {wy}, such that
[Wn(x)| < B for all n and all x € R% In this case, let x, € R* be such that |Wwy,(x,)| >

‘l ~
2 Wl oo (r4).-

If Case (i) holds, then we define w, = # and if Case (ii) holds then w, = m Then
nliHg y nlipoor4)

wy, satisfies

1
A?wy =24(1 + &nf (%)) cn X)Wy with ca(x) = / edtuint(=D4Uzn gt (6.1)
0

We note that, from (5.1), we have the estimate
ein <C(1+ |x|)u78 forany v >0, all |x] > R=R(v), and Vn. (6.2)
Using Schauder estimates, we obtain w,; — w in Cﬁ)C(R“) where w satisfies the problem
A’w =24 yw  inR% (6.3)

By non-degeneracy result in Lemma 2.2, w = cg agy + Zl 1Gi BXy for some cijeR,i=0,1,...,4.

We claim that ¢; =0 for all i =0, 1, ..., 4. From the identity (5.11) we get

8 .
/f(x)e““"-"%zo, i=1,2: j=1,2,3,4. (6.4)
j

Using assumptions (1.12) and (6.2) we derive from (6.4)

ad
/ —fe4“rvn =0, i=1,2andj=1,2,3, 4. (6.5)
BXJ'
R4
Therefore,
a ]
/(—fe“”m - —fe““zvn) =0 forj=1,2,3,4, (6.6)
0X;j 0X;j
R4
which can be written as
/—cn(x)wn(x)dx_o forj=1,2,3,4. (6.7)

Using (1.12) we can pass to the limit in (6.7) to obtain,

4
0f vy, (o 2oy aUs., ,

v co o) 20, j=1.2.3.4 6.8

/ax] 28 +§‘ ox; ! (68)

R4
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That is, integrating by parts again,

4
a aUs, aUs, .

/fa—xj(e‘*”w{co aay+zci ax'?]):o, j=1,2,3,4. (6.9)

R4

i=1

Similarly, using (1.12) and (6.2) we deduce from (5.12),
/((x —y), Vf)eHin=0 fori=1,2. (6.10)
R4
Then, arguing as above we get
/((x —y). Vfjerrw=o0.
R4
Hence doing integration by parts we obtain that
av,, 9Us, au
-4 f(x) by —Yw | Fetsy((x—y), Vw)=0. (6.11)
R4

Using the relations

(x=»).Vw)= —<88—W +w>,
38

and

/ fetsy®w =0 (from (6.8)),

R4

we rewrite (6.11) as

—45/f(x)e4”w Us.y yy 5/f(x)e4”w 25 =C

That is,

4
/f(x)%( 4Uay[c0 Us.y Z }):0. (612)
R4

Thus, from (6.9) and (6.12), we deduce D?J(8,y)c =0 where ¢ is the column vector (co,c1,C2,
c3,¢4)T. Since DZJ(S, y) is an invertible matrix, we deduce cg = ¢y = c3 = c3 = c4 = 0. This implies
w =0 in R*. Therefore, w, — 0 in C} (R*) and hence we necessarily have |x;| — occ. Let us use the
Kelvin transform to define
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b0 = V) = wo [ &0 = 2 4
ul,n(X)—ul,n<|x|2), wn(X)—wn(|x|2>, cn(X)—cn<|X|2), xeR™\ {0}.

Xn

Clearly, we have [Wp(j;>

tion

)| = % for all large n. It can be shown that W, satisfies the following equa-

A2, = 22 ¢ (l—i—snf( X ))wn in R4\ {0}. (6.13)

|x|8" |x|2

In Case (i), using the growth estimate (2.1), we get that |Wy(x)| < C(1 — log|x|) for all n and all

x € B1(0). Since w, — 0 in CI‘LC(R“ \ {0}), by dominated convergence theorem we get that w,; — 0
in LP(B1(0)) for all p > 1. In Case (i), we have again, |[W,| <1 and W, — 0 in C (R*\ {0}). Hence

Wy — 0 in LP(B1(0)) for any p > 1. Using the assumption f € L°(R*) and the estimate (6.2) we get

that
ERGIEI)

is a bounded sequence in LP(B1(0)) for any p > 1. Therefore the RHS in Eq. (6.13) converges to 0 in
LP(B1(0)) as n — oo for any p > 1. We recall that w, — 0 in Cl‘:)c(]R4 \ {0}). Using the standard LP
regularity theory (see for example, Corollary 2.23 in [11]) and Sobolev embedding to Eq. (6.13) we
obtain

| Wl Lo (B, 0)) = O.
This gives a contradiction easily in Case (i) and as well in Case (ii) since

. X
wn(—"2> >
| Xn]|

~2

1

[ WallLoo B, (0)) =

for all large n. This proves the theorem. O

7. Exact multiplicity result: Proof of Theorem 1.4

Proof of Theorem 1.4. Since the stable zeroes of 1 are isolated there exists an R > 0 such that zeroes
of V, are contained in the interior of a closed ball K = Bg(0) € RT x R%. Let m be the number of
zeroes of V. By Theorems 1.1, 1.2 and 1.3 we conclude that there exists €1 = £1(K) > 0 such that
for any € € (0, &1) the problem (1.6) has at least m solutions ué and m points (8;, ¥;) € K such that
ul —Us,y, — 0in Hs, y,, i=1,...,m. Let

Sy = {u solves (1.6) for e € (0, u), u—Uy,0 € Hio} \ {”is}o<g<% Iigm®
Define now the quantity
0, = inf d , )
M ulel}gﬂ H1‘o(u MK)

We now claim that

6o =liminfé, > 0.
n—0
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If possible let 6p = 0. Then we find sequences {uy} C S, and {(6;,yn)} C K such that |u, —
Usy,ynlH1 o = 0 as n — oo. Let (8n, yn) — (8,y) € K. This means that {u,} is a sequence of solu-
tions bifurcating from (8, y). By Theorem 1.2, we have that Vy(8, y) = 0. But the uniqueness result in

Theorem 1.3 contradicts the fact that {u,} C Sj,. This proves the claim.

Therefore, we can choose (o > 0 small such that 6, > %" for all u < . By Theorem 1.2, there

exists some C >0 and &3 > 0,

d(ué,MK) <Ce, i=1,...,m, €€(0,&).

The conclusion of the theorem now follows by taking po = %0 and g9 = min{g—%, Mo, €2}.

8. A concrete approach to finding stable zeroes of V),

Throughout this section we assume
(f1) feC (R NL>(RY).

By a change of variable | can be written as

_ f(ox+ &)
J6.6)=16 [ SE
R4

Let Crit(f), Crit(J) denote respectively the set of critical points of f and J. We have

1
J(0,$)=16f(§)lmdx.
R

Since (V f (&), x) is an odd function,

o o [VfE.
D5J(0.8) = lim (D5 ])(5,§) = 16 A+ s ™=
R4

(81)

(8.2)

(8.3)

Therefore we can extend J as an even function of § to R x R*. Without loss of generality we denote

this function by J. Also

Eecrit(f) <« (0,8) eCrit(J).
Lemma 8.1. Assume the following conditions on f:

(f2) there exists p > 0 such that (V f (x), x) < 0 for any |x| > p,
(f3) (VF(x),x) € LIRY), [a(Vf(x),x)dx <O.

Then, there exists R > 0 such that

(V](5,8),(8,6)) <0 whenever|(3,&)| >R.

Proof. See Lemma 3.3 in [1]. O

(8.4)
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We make the following assumption about the “shape” of f near a critical point.

(f4) Given & e Crit(f), suppose that there exists B¢ = 8 > 1 such that:
(i) If B < 4, there exist > 0 and a map Qg : R* — R homogeneous of degree 8, that is Q:(ry) =

A Qe (y) forall y € R4, such that
FN=FE+Qy-5+0(ly-§*") asy—¢.
(i) If B > 4, we assume that f(y) = f(&) + 0(ly —&|P) as y — &.

Lemma 8.2. Let (f4) hold. Then, as § — 0,

8P (Cpe +05(1)) ifB <4,
J(8.8)— J(0,6) =161 6*log $(C4 ¢ +05(1)) ifp =4, (8.5)
84(Cp.e +05(1)) ifp >4,

where

Jo [ Qe(o)do  ifp <4,

a+DT
Cpe =1 Jos Qe(0)do ifg =4, (8.6)

Jea VI fy+8) = f©ldy ifp>4
Proof. Case 1 < B8 < 4: From (f4)(i) we can find a C > 0 and 0 < R < 1 such that

X R
—)‘ <™, Vi< <. (8.7)

f@x+&—fE) - SﬂIXIﬂQs(
|X| I}

We remark that if 8 <4 we can choose 0 < i < u small so that 8 + i < 4. Since R < 1, we see that
(8.7) still holds with fi, which we continue to denote by ©. We now compute

e [fOxFO-F@
J@.6) — J(0.6) =16 | B ERrEIR

_16[ [exro— 1@,
A+ X2

Br (0
8

416 f f@x+8)—F@&)

1+ [x>)4
R4\B g (0)
s
=10 +1). (8.8)
We simply estimate
1
1P| <16 / ——_dx=0(s8%). 8.9
12 8)| Iflloo ENPDL (%) (8.9)

RN\Bg (0)
B
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Using (8.7) in the first integral IV (8) we get

IxIP Qe (%) Bu
‘1“)(5) —168° / —52‘"‘4 dx‘ < caftr L“ X. (8.10)
T+ |x]) (T+1x1%)
B (0) B g (0)
8 8
If B <4 (hence B+ u < 4), the above inequality gives
) 8 rf dr n
1V(8) =168 m/Qg(G)do[l—i-O((S )] (8.11)
0 S3
If B =4, again from (8.10) we get
™ 400( ]
1 (8) =165%log 3 Q:(0)do[1405(1)]. (8.12)
s3

Putting together (8.9), (8.11) and (8.12) we complete the case 8 < 4.
Case B > 4: Using (f4) and dominated convergence theorem,

J,8) — J(0,8) = 1684/ VI (f(y+8&) — f©)dy +os(1).
R4

This shows (8.5)-(8.6) for 8 >1. O

The proof of the following two results is a slight modification of Lemmas 3.6 and Lemma 3.8
respectively in [1].

Corollary 8.1. Let & € Crit(f) be isolated and assume that f satisfies (f1)-(f4). Suppose that Cg ¢ # 0. Then
q = (0, &) is an isolated critical point of | and

Cpe>0 = degic(V].q) =degic(Vf.8),
Cﬁ’é < 0 = degloc(vjv q) = _degloc(vfa %-)

Proposition 8.1. If f has finitely many critical points and satisfies

(i) assumptions (f1)-(f4) and at any & € Crit(f),
(ii) Cg,e # 0 (see (8.6)), and
(i) Y, -0 degioc(V S, &) #1,

then the vector field V ] has a stable zero.

Remark 8.1. We remark that the expression for Cg ¢ when g > 4 depends on global behavior of f, in
contrast to the expressions for Cg ¢ when g < 4 which depend of “shape” of f near £. It is easy to see
that if £ is a point of global maximum (minimum) for f, 8 = B¢ > 4, then Cg ¢ < 0 (respectively > 0).

Remark 8.2. In fact, if Crit(f) C Bgr(0) for some R > 0 and for some & suitably small we have

maxy, x,eBr(0) | f(X1) — f(X2)| < & and mingccrircr) | f(§)] > % then we can ensure that (ii) holds for

all £ e Crit(f) with 8 = B¢ > 4 by letting f decay suitably outside the ball Bg(0).
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Remark 8.3. In the particular case, when g =2, we obtain results similar to Wei and Xu [19,20].

Corollary 8.2. Let us suppose that f is a CIZOC” (R*) function satisfying:

(i) assumptions (f1)-(f4) at any & € Crit(f),
(ii) forany & € Crit(f), Af(&) #0, and
(i) oA fe)<0de8oc(Vf, ) # 1.

Then the vector field V | has a stable zero.
Now we state the existence result for the problem (1.6) in more concrete terms.

Theorem 8.1. Let f satisfy the assumptions (i)-(iii) in Proposition 8.1. Fix a compact set K ¢ Rt x R* with
a nonempty interior. Then there exists €9 = €9(K) > 0 such that (1.6) admits a solution u, for all € € (0, o).
Moreover, ug = Us, y, + ¢ with ¢ — 0in H; y and (6¢, ye) — (8, y) as € — 0. Furthermore, local unique-
ness and exact multiplicity results as in Theorems 1.3, 1.4 hold if (8, y) is a stable zero of | such that the Hessian
D2 ] (8, y) is invertible and V f € L°(RN).
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