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Let g0 denote the standard metric on S
4 and P g0 = �2

g0
− 2�g0

denote the corresponding Paneitz operator. In this work, we

study the following fourth order elliptic problem with exponential

nonlinearity

P g0u + 6 = 2Q (x)e4u on S
4.

Here Q is a prescribed smooth function on S
4 which is assumed to

be a perturbation of a constant. We prove existence results to the

above problem under assumptions only on the “shape” of Q near

its critical points. These are more general than the non-degeneracy

conditions assumed so far. We also show local uniqueness and

exact multiplicity results for this problem. The main tool used is

the Lyapunov–Schmidt reduction.

Crown Copyright  2013 Published by Elsevier Inc.

All rights reserved.

1. Introduction

Fourth order operators arise in the applications in the areas of conformal geometry, thermionic

emission, gas combustion and gauge theory. Prompted by questions in quantum field theory, Paneitz

discovered a fourth order conformally covariant operator in dimension N � 4. Let (M, g) be a Rie-

mannian manifold with dim(M) � 4. Let �g be the Laplace Beltrami operator, divg the divergence
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operator, d the differential and S g , Ricg denote the scalar curvature and Ricci tensor of the metric g

respectively. When N = 4, the Paneitz operator P g can be written in the form

P gψ = �2
gψ + divg

(

2

3
S g − 2Ricg

)

dψ,

where ψ ∈ C∞(M) (see Paneitz [17], Chang and Yang [6]).

If dim(M) = 4, the analogue of the Gauss curvature for a surface is the so-called Q -curvature

function given as

Q g = −
1

12

(

�g S g − S2g + 3|Ricg |
2
)

.

In fact, Paneitz operator was generalized by T. Branson for N � 3 (see [3]).

Let us now consider the question:

Given a smooth function Q on S4 , does there exist a metric g conformal to the standard metric g0 such that

Q = Q g?

If we assume a conformal transformation of the form g = e4w g0 , the answer to the above question

is “yes” iff we can solve for w in the equation

P g0w + 2Q g0 = 2Q e4w on S
4.

It can be checked that Q g0 ≡ 3 and that the Paneitz operator on (S4, g0) is given by P g0 = �2
g0

−2�g0 .

Hence, we look to solve for w in the problem

(

�2
g0

− 2�g0

)

w + 6 = 2Q e4w on S
4. (1.1)

Integrating (1.1) over S
4 , one obtains that the total Q -curvature of (S4, g0) denoted by kg0 , which is

a conformal invariant, satisfies

kg0 =

∫

S4

Q e4w =

∫

S4

Q g0 = 3vol
(

S
4
)

.

Furthermore, if g is conformal to g0 , the Weyl tensor of (S4, g) vanishes identically and the fol-

lowing Gauss–Bonnet type formula holds

∫

S4

Q g = 4π2χ
(

S
4
)

= 8π2 (1.2)

where χ is the Euler characteristic. This immediately gives the first obstruction: If Q � 0, then (1.1)

has no solution. More subtle obstructions similar to the Kazdan–Warner identities [14] can be shown

in the case of (1.1) as well (see Section 5 for details). The problem (1.1) is variational and the solutions

can be characterized as critical points of the following functional on H2(S4)

J (u) =
1

vol(S4)

∫

S4

(uP g0u + 4u)dμg0 − 3 log

(

1

vol(S4)

∫

S4

Q e4u dμg0

)

.
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However, the functional fails to satisfy Palais Smale condition. Hence, for these reasons, solvability of

(1.1) is not straight forward.

Using ideas similar to the ones used in [4,5,7] to solve Nirenberg’s problem on S
N , Wei and Xu

[20] proved existence of solutions of (1.1) when Q > 0 satisfies the non-degeneracy condition

(

�Q (x)
)2

+
∣

∣∇Q (x)
∣

∣

2
�= 0, (1.3)

and the vector field G : SN →R
N+1 defined by

G(x) =
(

−�Q (x),∇Q (x)
)

(1.4)

has deg( G
|G| ,S

N ) �= 0. Later, in the work [20], they extended their results to very general pseudo-

differential operators on S
N which look like (−�)

N
2 when N is odd. To our knowledge it seems that

the non-degeneracy condition (1.3) is crucially required in [7,19,20] to obtain a-priori estimates for

the solution of (1.1).

The other approach is via the heat-flow as done in [18,2,15]. In particular, Malchiodi and

Struwe [15], proved existence of a solution to (1.1) assuming that Q is a Morse function (i.e., has

only non-degenerate critical points p) with Morse Index ind(Q , p) such that �Q (p) �= 0 and satisfies

the index count

∑

∇Q (p)=0, �Q (p)<0

(−1)ind(Q ,p) �= 1.

Consider the inverse of the stereographic projection

Π :R4 → S
4

given by

x 	→

(

2x

1+ |x|2
,
|x|2 − 1

|x|2 + 1

)

.

The round metric g0 is given in terms of the stereographic co-ordinate system as

g0 =
4dx2

(1+ |x|2)2
.

By a direct computation,

P g0Φ(u) =
(1+ |x|2)4

16
�2u for all u ∈ C∞

(

R
4
)

where

Φ(u)(y) = u(x) + log
(

1+ |x|2
)

− log2, y = Π(x).

Then (1.1) reduces to

�2u = 2Q̃ (x)e4u in R
4 where Q̃ = Q ◦ Π. (1.5)
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We would like to study the problem (1.1) by taking Q to be a perturbation of a constant function.

More precisely, we let Q = 3(1 + εh) where h is a smooth function on S
4 and ε > 0 is a small

parameter. Using the stereographic projection from S
4 to R

4 , we transform (1.1) (with f denoting the

transformed function h) to the following problem

�2u = 6
(

1+ ε f (x)
)

e4u in R
4. (1.6)

Note that the problem (1.6) is a perturbation of the following problem

⎧

⎪

⎨

⎪

⎩

�2U = 6e4U in R
4,

∫

R4

e4U < +∞ (1.7)

whose solutions in the space E (see below for definition of E) are classified by Lin [12] as

Uδ,y(x) = log
2δ

δ2 + |x− y|2
, with (δ, y) ∈R

+ ×R
4. (1.8)

We remark that, if U = U1,0 solves (1.7), then so does the function w(x) = U1,0(
x

|x|2
) − 2 log |x|.

In this work, taking advantage of the fact that we are in a perturbative situation, we show ex-

istence of a solution to (1.6) without assuming that Q (and hence f ) satisfies the non-degeneracy

conditions as in (1.3). In particular, we do not assume Q to be a Morse function. What we assume is

something about the “shape” of Q near the critical points (see the definition of the quantity Cβ,ξ in

Section 8). As in the previous works, the main idea is to define a suitable vector field V0 on R
+ ×R

N

(see (1.14)). A stable zero (see Definition 1.5) (δ, y) ∈ R
+ × R

N of V0 will make the corresponding

Uδ,y a “bifurcation point” for a continuum of solutions to (1.6) as ε → 0. For a precise statement of

this fact see Theorem 1.1 below. If we assume that this zero is “stable” in the more standard sense, we

can show that this “bifurcation” branch from Uδ,y is locally unique; this also leads to an exact multi-

plicity result for (1.6) for all small ε > 0. For a precise statement of such uniqueness and multiplicity

see Theorems 1.3 and 1.4 below.

It is not possible to study (1.6) directly in a variational framework as �U /∈ L2(R4). Due to this

fact we will work in a non-variational framework using weighted Sobolev spaces as in [16,10,20] to

perform the Lyapunov–Schmidt reduction.

Let ω(x) = (1+ |x|2). We introduce the following weighted Sobolev spaces:

Definition 1.1. Let E = {u ∈ W
4,2
loc

(R4) | ω2�2u,ω−2u ∈ L2(R4)} equipped with the inner product

〈u, v〉E =
∫

R4 ω4�2u�2v +
∫

R4 ω−4uv .

Definition 1.2. Let

H =
{

u ∈ W
4,2
loc

(

R
4
) ∣

∣ω2�2u,ω
∣

∣∇(�u)
∣

∣,�u,ω−1|∇u|,ω−2u ∈ L2
(

R
4
)}

with the inner product

〈u, v〉H =

∫

R4

ω4�2u�2v +

∫

R4

ω2∇(�u) · ∇(�v) +

∫

R4

�u�v

+

∫

R4

ω−2∇u · ∇v +

∫

R4

ω−4uv.
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Definition 1.3.

H̃ =
{

u ∈ L2loc
(

R
4
) ∣

∣ω2u ∈ L2
(

R
4
)}

with the inner product

〈u, v〉H̃ =

∫

R4

ω4uv dx.

Finally,

Definition 1.4. Let ωδ,y(x) = (δ2 + |x− y|2). We define Eδ,y , Hδ,y and H̃δ,y by replacing the weight ω

by ωδ,y in the definitions of E , H and H̃ respectively.

Remark 1.1. It is easy to see that Uδ,y ∈ Eδ,y for all (δ, y).

Remark 1.2. We can easily check that the spaces Hδ,y , Eδ,y and H̃δ,y are uniformly equivalent as

Hilbert spaces to H , E and H̃ respectively as (δ, y) varies over a compact set K ⊂R
+ ×R

4 .

Remark 1.3. It is easy to see that Hδ,y is continuously embedded in Eδ,y .

We denote the derivatives of Uδ,y as follows (i = 1,2,3,4)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ψ
(0)
δ,y(x) =

∂Uδ,y

∂δ
=

(|x − y|2 − δ2)

δ(δ2 + |x− y|2)
,

ψ
(i)
δ,y(x) =

∂Uδ,y

∂xi
= −

2(xi − yi)

(δ2 + |x− y|2)
.

(1.9)

As noted before, the solutions of (1.7) form a five dimensional manifold which we denote by

M =
{

Uδ,y: (δ, y) ∈R
+ ×R

4
}

.

For any compact K ⊂R
+ ×R

4 define

d(u,MK ) = inf
(δ,y)∈K

‖u − Uδ,y‖H1,0 .

Let the vector field V0 :R+ ×R
4 → R be defined as

V0(δ, y) =

( ∫

R4

f (x)e4Uδ,yψ
(0)
δ,y(x)dx, . . . ,

∫

R4

f (x)e4Uδ,yψ
(4)
δ,y(x)dx

)

. (1.10)

We note that V0 is a gradient vector field as

V0(δ, y) = ∇ J (δ, y) where J (δ, y) =

∫

R4

f (x)e4Uδ,y dx. (1.11)

We make the following definition of a stable vector field:
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Definition 1.5. Let Ω ⊂ R
N be an open set. We call a point P ∈ Ω as a stable zero for a vector field

V0 ∈ C(Ω;RN ) if V0(P ) = 0 and for any sequence of vector fields Vε ∈ C(Ω;RN ) converging uniformly

to V in a neighborhood of P , there exist a zero Pε of Vε with Pε → P as ε → 0.

We now state the theorems we will prove.

Theorem 1.1 (“Bifurcation” from a stable zero). Let K ⊂ R
+ ×R

4 be a compact set with a nonempty interior.

Let (δ, y) ∈ K be a stable zero of the vector field V0 . Then there exists an ε0 > 0 depending on K such that (1.6)

admits a solution uε for all ε ∈ (0,ε0). Moreover, uε = Uδε ,yε + φε with ‖φε‖Hδ,y = O (ε) and (δε, yε) →

(δ, y).

Theorem 1.2 (Necessary condition). Let uε be a sequence of solution of (1.6) such that ‖uε − Uδ,y‖Hδ,y → 0.

Then V0(δ, y) = 0.

Theorem 1.3 (Local uniqueness). Let K ⊂ R
+ × R

4 with a nonempty interior. Let (δ, y) ∈ K be a zero of the

vector field V0(δ, y) such that D2 J (δ, y) is invertible. Furthermore, suppose f satisfies

∣

∣∇ f (x)
∣

∣� C . (1.12)

If {uε,i}, i = 1,2 are two sequences of solutions of (1.6) such that

‖uε − Uδ,y‖Hδ,y → 0 as ε → 0,

then there exists ε0(K ) > 0 depending on K such that for all ε ∈ (0,ε0) we obtain uε,1 ≡ uε,2 .

Theorem 1.4 (Exact multiplicity). Let V0 have only finitely many zeroes all of which are stable and contained

in a compact set K ⊂ R
+ ×R

4 . Suppose that at any stable zero of V0 the Hessian D2 J is invertible. Then there

exists a ρ0 = ρ0(K ) > 0 and ε0 = ε0(ρ0) > 0 such that for all ε ∈ (0,ε0), the problem (1.6) has exactly the

same number of solutions u with d(u,MK ) < ρ0 as the number of stable zeroes of V0 .

Remark 1.4. The proof of the above theorems are done using Lyapunov–Schmidt reduction carried out

for the nonlinear solution operator (see (2.6)) between the spaces Hδ,y and H̃δ,y . The calculations for

this reduction are given in Sections 2 and 3.

Remark 1.5. Consider the problem

�2u = 6e4u + εΨ (x,u) in R
4 (1.13)

where Ψ :R4 ×R
+ → R is continuous and twice differentiable in the second variable and satisfies

sup
x∈R4

[∣

∣Ψ (x,u)
∣

∣+
∣

∣Ψu(x,u)
∣

∣+
∣

∣Ψuu(x,u)
∣

∣

]

� Ce4u;

∣

∣∇xΨ (x,u)
∣

∣� Ce4u.

An inspection of the proofs of Theorems 1.1–1.4 shows that they hold for the problem (1.13) as well

if we replace the vector field V0 by the following

Ṽ0(δ, y) =

( ∫

R4

Ψ (x,Uδ,y)ψ
(0)
δ,y(x)dx, . . . ,

∫

R4

Ψ (x,Uδ,y)ψ
(4)
δ,y(x)dx

)

. (1.14)
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Remark 1.6. A similar kind of result was obtained by Grossi [9] for single peak solutions of the

subcritical singularly perturbed nonlinear Schrödinger equation

⎧

⎪

⎨

⎪

⎩

ε2�u − V (x)u + up = 0 in R
N ,

u > 0 in R
N ,

u ∈ H1
(

R
N
)

.

(1.15)

By exploiting the “shape” of the potential V ∈ C1(RN ) near its critical points, the author obtained

exact multiplicity results for (1.15) whenever ε > 0 is sufficiently small. In addition, if P is a non-

degenerate critical point of V , the author showed that there is a unique solution concentrating at P .

Remark 1.7. Moreover, Theorems 1.1–1.4 hold for the equation

(−�)mu = (2m − 1)!
(

1+ ε f (x)
)

e2mu in R
2m (1.16)

where m ∈ N. The construction of solution follows from Wei and Xu [21].

Remark 1.8. The following problem was studied by Felli [8]

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�2u =
(

1+ ε f (x)
)

u
N+4
N−4 in R

N ,

u > 0 in R
N ,

u ∈ D
2,2
(

R
N
)

,

(1.17)

for N � 5. Existence to the above problem is shown in [8] assuming a suitable “shape” for f near a

critical point. In particular, an expansion of the form

f (x) = f (η) +
∑

a j|y − η|β + o
(

|y − η|β
)

as y → η, β ∈ (1,N)

is assumed at a critical point η. We remark that the problem (1.17) is variational and can be handled

in the Sobolev space D2,2(RN ).

2. Preliminaries

Let log+ |x| = max{0, log |x|}.

Lemma 2.1. There exists a positive constant C such that

sup
R4

∣

∣v(x)
∣

∣� C‖v‖E

(

|x| + log+ |x| + 1
)

, ∀v ∈ E, (2.1)

sup
R4

∣

∣v(x)
∣

∣� C‖v‖H

(

log+ |x| + 1
)

, ∀v ∈ H . (2.2)

Proof. Note that the fundamental solution of the biharmonic operator in R
4 is given by

F (x, y) =
1

8π2
log

1

|x− y|
.

For v in E with ‖v‖E = 1 we set �2v = g . By definition of the space E , the function g ∈ H̃ . Then we

can write v = v0 + v1 where �2v0 = 0 and v1(x) =
∫

R4 F (x, y)g(y)dy. We now estimate
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∣

∣v1(x)
∣

∣=

∣

∣

∣

∣

∫

R4

F (x, y)g(y)dy

∣

∣

∣

∣

�
1

8π2

∫

R4

∣

∣log |x− y|
∣

∣

∣

∣g(y)
∣

∣dy

�
1

8π2

( ∫

R4

(

1+ |y|2
)4∣
∣g(y)

∣

∣

2
)

1
2
( ∫

R4

| log |x− y||2

(1+ |y|2)4
dy

)
1
2

�
1

8π2
‖v‖E

( ∫

R4

| log |y||2

(1 + |x− y|2)4
dy

)
1
2

.

Let

I : =

∫

R4

| log |y||2

(1+ |x− y|2)4
dy

=

∫

{|y|�1}

| log |y||2

(1+ |x− y|2)4
dy +

∫

{|y|�1}

| log |y||2

(1+ |x− y|2)4
dy

= I1 + I2.

Now we estimate

I1 =

∫

{|y|�1}

| log |y||2

(1 + |x− y|2)4
dy � C

∫

{|y|�1}

∣

∣log |y|
∣

∣

2
dy < +∞.

Also for |y|� 2|x|, we have

|y − x| � |y| − |x| �
1

2
|y|

and as a result we must have

I2 =

∫

{|y|�1}∩{|y|�2|x|}

| log |y||2

(1 + |x− y|2)4
dy +

∫

{|y|�1}∩{|y|<2|x|}

| log |y||2

(1+ |x− y|2)4
dy

� C
(

1+
(

log+ |x|
)2)

.

Since ω−2v , ω−2v1 are in L2(R4) so is ω−2v0 and hence v0 is a tempered distribution in R
4 . Using

Fourier transform and the fact that ω−2v0 ∈ L2(R4) we obtain supR4 |v0(x)| � C(1 + |x|) for some

C > 0. Putting together the estimates for I1 , I2 and v0 we get (2.1). If v ∈ H with ‖v‖H = 1, we

note that the corresponding biharmonic function v0 ∈ H and hence is uniformly bounded in R
4 . The

estimate for v1 can be obtained as above to get (2.2). ✷
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Lemma 2.2 (Non-degeneracy). The kernel of the linearized operator

�2 − 24e4Uδ,y

in Eδ,y is five dimensional and is generated by

{

∂Uδ,y

∂δ
,
∂Uδ,y

∂x1
,
∂Uδ,y

∂x2
,
∂Uδ,y

∂x3
,
∂Uδ,y

∂x4

}

.

Proof. Without loss of generality, let δ = 1 and y = 0. Consider the problem

�2ψ − 24e4Uψ = 0 (2.3)

where ψ ∈ E1,0 . Then ψ ∈ W
4,2
loc

(R4) and by a boot-strap argument ψ ∈ C∞
loc

(R4). Now we claim that

every ψ satisfying (2.3) with at most linear growth has to be bounded. Let |ψ | � C |x| for |x| ≫ 1.

Then define the Kelvin transform of ψ be

ψ̂(x) = ψ

(

x

|x|2

)

in R
4 \ {0}. (2.4)

Then ψ̂(x) � C |x|−1 near the origin and satisfies

�2ψ̂ −
1

(1+ |x|2)4
ψ̂ = 0 in R

4 \ {0}. (2.5)

But ψ̂ ∈ L2
loc

(R4) and hence by regularity ψ̂ ∈ C∞
loc

(R4). Hence ψ̂ is bounded near the origin and

hence ψ is bounded at infinity. As a result, we must have |ψ | � C for |x| ≫ 1. Hence supR4 |ψ(x)| �

C‖ψ‖E (log
+ |x| + 1) and we can apply the method of Lin and Wei [13] in Lemma 2.6 to conclude the

non-degeneracy. ✷

We want to find solutions to (1.6) of the form uε = Uδ,y + ϕε such that ϕε → 0 as ε → 0 in Hδ,y .

If we plug this ansatz in (1.6) then we have

�2ϕε = 6e4Uδ,y
(

e4ϕε − 1
)

+ 6ε f (x)e4(Uδ,y+ϕε).

This motivates us to introduce the following nonlinear operator B
δ,y
ε from a small ball B around the

origin in Hδ,y into H̃δ,y

B
δ,y
ε : B ⊂ Hδ,y 	→ H̃δ,y

given by

B
δ,y
ε (v) = �2v − 6e4Uδ,y

(

e4v − 1
)

− 6ε f (x)e4(Uδ,y+v). (2.6)

Therefore finding solutions uε of (1.6), bifurcating from Uδ,y for some (δ, y) ∈ R
+ ×R

4 is equivalent

to proving the following lemma.

Lemma 2.3. There exists a suitable value (δ, y) ∈ R
+ × R

4 for which one can find ϕε ∈ Hδ,y with

‖ϕε‖Hδ,y → 0 as ε → 0 and B
δ,y
ε (ϕε) = 0.
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We now show some basic properties of B
δ,y
ε .

Lemma 2.4. Let Bρ(0) ⊂ Hδ,y . Then for ρ > 0 small enough we have

B
δ,y
ε

(

Bρ(0)
)

⊂ H̃δ,y .

Proof. Let ‖v‖Hδ,y < ρ . Then using (2.1), we have

∫

R4

(

δ2 + |x− y|2
)4
e8(Uδ,y+v)

� C1

∫

R4

e8v

(δ2 + |x− y|2)4

� C1

∫

R4

e
c2‖v‖Hδ,y

(1+log+ |x|)

(δ2 + |x− y|2)4
< +∞

provided ρ is sufficiently small. Hence, e4(Uδ,y+v)∈ H̃δ,y . It follows that B
δ,y
ε maps Bρ(0) into H̃δ,y . ✷

Theorem 2.1. Let Bρ(0) ⊂ Hδ,y , with ρ > 0 small. Then for any ε > 0,

B
δ,y
ε ∈ C1

(

Bρ(0), H̃δ,y

)

.

Proof. First we prove that

B
δ,y
ε ∈ C0

(

Bρ(0), H̃δ,y

)

.

Let vn → v in Hδ,y where vn, v ∈ Bρ(0). This implies that �2vn → �2v in H̃δ,y and vn → v in

C loc(R
4). Hence, again by the estimate (2.1) and dominated convergence theorem we obtain

6
(

1+ ε f (x)
)

e4(Uδ,y+vn) → 6
(

1+ ε f (x)
)

e4(Uδ,y+v) in H̃δ,y .

Now we prove that B
δ,y
ε is continuously differentiable in Bρ(0). We claim that its derivative is given

by

{

〈(

B
δ,y
ε

)′
(v),h

〉

= �2h − 24
(

1+ ε f (x)
)

e4(Uδ,y+v)h in R
4,

h ∈ Hδ,y, v ∈ Bρ(0).
(2.7)

Let Aε
v : Hδ,y → H̃δ,y be defined by Aε

v(h) = �2h − 24(1 + ε f (x))e4(Uδ,y+v)h. Then Aε
v is a continuous

linear map for all v ∈ Bρ(0). To see this, let hn → h in Hδ,y . Then �2hn → �2h in H̃δ,y as well as

hn → h in C loc(R
4). As a result we must have

(

δ2 + |x− y|2
)4(

1+ ε f (x)
)2
e8(Uδ,y+v)h2n � C

e8vh2n

(δ2 + |x− y|2)4

�
C‖hn‖

2
Hδ,y

(1 + log+ |x|)2

(δ2 + |x− y|2)4
e
c1‖v‖Hδ,y

(1+log+ |x|)
.
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Hence by the dominated convergence theorem, for ρ > 0 small enough,

e4(Uδ,y+v)hn → e4(Uδ,y+v)h in H̃δ,y .

This shows the continuity of Aε
v . Now we claim that

(

B
δ,y
ε

)′
(v) = Aε

v .

We have

∣

∣B
δ,y
ε (v + h) − B

δ,y
ε (v) − Aε

vh
∣

∣= 6e4(Uδ,y+v)
(

1 + ε f (x)
)(

e4h − 1− 4h
)

� Ce4(Uδ,y+v)e4|h|h2

� Ce
c1‖h‖Hδ,y

(1+log+ |x|)
‖h‖2Hδ,y

(1 + log+ |x|)2

(δ2 + |x− y|2)
4−c2‖v‖Hδ,y

.

This implies for ‖v‖Hδ,y and ‖h‖Hδ,y small

∥

∥B
δ,y
ε (v + h) − B

δ,y
ε (v) − Aε

vh
∥

∥

H̃δ,y
� C‖h‖2Hδ,y

and hence we obtain the required result. ✷

Let K = Ker(B
δ,y
0 )′(0) and R= Im(B

δ,y
0 )′(0). Then by Lemma 2.2

K =

{

∂Uδ,y

∂δ
,
∂Uδ,y

∂x1
,
∂Uδ,y

∂x2
,
∂Uδ,y

∂x3
,
∂Uδ,y

∂x4

}

.

Define

R
⊥ =
{

ψ ∈ H̃δ,y: 〈ψ,ζ 〉H̃δ,y
= 0; ζ ∈ R

}

.

We define for i = 0,1,2,3,4

Φ
(i)
δ,y = ω−4

δ,yψ
(i)
δ,y .

Lemma 2.5.R⊥ = span{Φ
(0)
δ,y,Φ

(1)
δ,y, . . . ,Φ

(4)
δ,y}.

Proof. Let ψ ∈R⊥ . Then by definition we must have 〈ψ, (B
δ,y
0 )′(0)ζ 〉H̃δ,y

= 0, for all ζ ∈ C∞
0 (R4). This

implies that in the sense of distribution

�2
(

ω4
δ,yψ
)

− 24e4Uδ,yω4
δ,yψ = 0.

By the elliptic regularity, ψ ∈ W
4,2
loc

(R4) and from the above equation ω2
δ,y�

2(ω4
δ,yψ) ∈ L2(R4). Hence

ω4
δ,yψ ∈ Eδ,y . Using Lemma 2.2, we obtain ω4

δ,yψ ∈ K. We note that C∞
0 (R4) = Hδ,y . Conversely, if

φ ∈ K, we have 〈φ,�2ψ − e4Uδ,yψ〉L2 = 0 for all ψ ∈ C∞
0 (R4). As a result, we must have ω−4

δ,yφ ∈ R⊥

for any φ ∈K. Hence ψ ∈R⊥ if and only if ω4
δ,yψ ∈K. ✷
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Now we define the quotient spaces

Mδ,y = Hδ,y/K and M̃δ,y = H̃δ,y/R
⊥.

Then (B
δ,y
0 )′(0) : Mδ,y → M̃δ,y is an isomorphism onto.

Now we are in situation to apply finite dimensional reduction.

3. Solving the reduced operator equation

Let PK⊥ and PR denote the projections

PK⊥ : Hδ,y → Mδ,y,

PR : H̃δ,y → M̃δ,y .

For a ball Bρ(0) ⊂ Mδ,y for ρ > 0 small enough, define the reduced solution operator

S
δ,y
ε : Bρ(0) → M̃δ,y as S

δ,y
ε (v) =

(

PR ◦ B
δ,y
ε

)

(v).

Then by Theorem 2.1, S
δ,y
ε ∈ C1(Bρ(0), M̃δ,y) for small ρ > 0 and for any ε > 0.

For any φ ∈ Bρ(0), we write

B
δ,y
ε (φ) = B

δ,y
ε (0) +

(

B
δ,y
ε

)′
(0)φ + Q

δ,y
ε (φ), (3.1)

where

Q
δ,y
ε (φ) = −6

(

1+ ε f (x)
)

e4Uδ,y
[

e4φ − 1− 4φ
]

. (3.2)

Applying the projection PR on either side of (3.1) we obtain

S
δ,y
ε (φ) = S

δ,y
ε (0) + PR

((

B
δ,y
ε

)′
(0)φ
)

+ PR
(

Q
δ,y
ε (φ)

)

= S
δ,y
ε (0) +

(

S
δ,y
ε

)′
(0)φ + PR

(

Q
δ,y
ε (φ)

)

. (3.3)

Therefore, solving

S
δ,y
ε (φ) = 0. (3.4)

(3.3) reduces to solving

S
δ,y
ε (0) +

(

S
δ,y
ε

)′
(0)φ + PR

(

Q
δ,y
ε (φ)

)

= 0.

We note that (S
δ,y
0 )′(0) is invertible and (S

δ,y
ε )′(0) → (S

δ,y
0 )′(0) in the operator norm as ε → 0.

Therefore, we also obtain the invertibility of (S
δ,y
ε )′(0) for all small ε > 0. Hence, solving (3.4) for

small ε > 0 is equivalent to solving

φ = −
((

S
δ,y
ε

)′
(0)
)−1[

S
δ,y
ε (0) + PR

(

Q
δ,y
ε (φ)

)]

. (3.5)
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Motivated by the above equation, define the map G
δ,y
ε : Bρ(0) → Mδ,y by

G
δ,y
ε (v) = −

((

S
δ,y
ε

)′
(0)
)−1[

S
δ,y
ε (0) + PR

(

Q
δ,y
ε (v)

)]

. (3.6)

Then solving (3.4) for small ε > 0 is equivalent to finding a fixed point of the map G
δ,y
ε . We do so in

the lemma below, thereby solving the reduced operator equation:

Lemma 3.1. Let K be a compact subset of R+ ×R
4 and ρ > 0 be small. Then there exists ε0 = ε0(K ,ρ) > 0

such that for all ε ∈ (0,ε0) and (δ, y) ∈ K , there exists a fixed point φ
δ,y
ε ∈ Bρ(0) of the map G

δ,y
ε . That is,

S
δ,y
ε (φ

δ,y
ε ) = 0 for all ε ∈ (0,ε0), (δ, y) ∈ K .

Proof. We use Banach fixed point theorem in order to prove the existence of φε .

Claim 1. Fix any ε0 > 0. Then, for all ε ∈ (0,ε0) and φ ∈ Bρ(0)

∥

∥Q
δ,y
ε (φ)

∥

∥

H̃δ,y
� C‖φ‖2Hδ,y

(3.7)

and for any φ1, φ2 ∈ Bρ(0)

∥

∥Q
δ,y
ε (φ1) − Q

δ,y
ε (φ2)

∥

∥

H̃δ,y
� C
(

‖φ1‖Hδ,y + ‖φ2‖Hδ,y

)

‖φ1 − φ2‖Hδ,y . (3.8)

Proof. We have (see (3.2))

∣

∣Q
δ,y
ε (φ)

∣

∣

2
= 36
∣

∣1+ ε f (x)
∣

∣

2
e8Uδ,y

∣

∣e4φ − 1− 4φ
∣

∣

2

� C |φ|4e8(Uδ,y+|φ|).

Using Lemma 2.1 we have

ω4
δ,y

∣

∣Q
δ,y
ε (φ)

∣

∣

2
� C

‖φ‖4Hδ,y
(1+ log+ |x|)4e

c1‖φ‖Hδ,y
(1+log+ |x|)

(δ2 + |x− y|2)4

which implies (3.7). Furthermore,

∣

∣Q
δ,y
ε (φ1) − Q

δ,y
ε (φ2)

∣

∣

2
=
∣

∣1+ ε f (x)
∣

∣

2
e8Uδ,y

∣

∣e4φ1 − e4φ2 − 4(φ1 − φ2)
∣

∣

2
(3.9)

and

e4φ1 − e4φ2 − 4(φ1 − φ2) = 16

1
∫

0

( 1
∫

0

e4s(tφ1+(1−t)φ2) ds
(

tφ1 + (1 − t)φ2

)

dt

)

(φ1 − φ2). (3.10)

Using (3.9) and (3.10) we have

ω4
δ,y

∣

∣Q
δ,y
ε (φ1) − Q

δ,y
ε (φ2)

∣

∣

2
� C‖φ1 − φ2‖

2
Hδ,y

e
c1(‖φ1‖Hδ,y

+‖φ2‖Hδ,y
)(1+log+ |x|)

×
(1+ log+ |x|)4

(δ2 + |x− y|2)4

(

‖φ1‖
2
Hδ,y

+ ‖φ2‖
2
Hδ,y

)

and we get (3.8). ✷
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Claim 2. For any compact set K ⊂ R
+ × R

4 and a ball Bρ(0) ⊂ Mδ,y with ρ > 0 small we can choose

ε0 = ε0(K ,ρ) > 0 so that for any ε ∈ (0,ε0), (δ, y) ∈ K , the operator G
δ,y
ε defined by (3.6) has a unique fixed

point φ
δ,y
ε ∈ Bρ(0) for all ε ∈ (0,ε0). Moreover,

sup
(δ,y)∈K

∥

∥φ
δ,y
ε

∥

∥

Hδ,y
= O (ε). (3.11)

Proof. Let (δ, y) ∈ K . For any φ ∈ Bρ(0),

∥

∥G
δ,y
ε (φ)

∥

∥

Hδ,y
�
∥

∥

((

S
δ,y
ε

)′
(0)
)−1∥
∥

{∥

∥S
δ,y
ε (0)

∥

∥

H̃δ,y
+
∥

∥PR
(

Q
δ,y
ε (φ)

)∥

∥

H̃δ,y

}

.

Now by Claim 1, there exists a constant C > 0 depending on K such that

∥

∥G
δ,y
ε (φ)

∥

∥

Hδ,y
� C
[

ε + ‖φ‖2Hδ,y

]

, ∀(δ, y) ∈ K . (3.12)

If we choose ‖φ‖Hδ,y � ρ where ρ is small enough and let ε0 = (ρ − Cρ2)/C , then for all ε ∈ (0,ε0)

∥

∥G
δ,y
ε (φ)

∥

∥

Hδ,y
� ρ whenever ‖φ‖Hδ,y � ρ, ∀(δ, y) ∈ K .

Now we show that G
δ,y
ε is a contraction

∥

∥G
δ,y
ε (φ1) − G

δ,y
ε (φ2)

∥

∥

Hδ,y
�
∥

∥

((

S
δ,y
ε

)′
(0)
)−1∥
∥

{∥

∥

(

Q
δ,y
ε (φ1) − Q

δ,y
ε (φ2)

)∥

∥

H̃δ,y

}

� C
(

‖φ1‖Hδ,y + ‖φ2‖Hδ,y

)

‖φ1 − φ2‖Hδ,y .

Choosing φ1, φ2 ∈ Bρ(0) with ρ small enough, we obtain G
δ,y
ε : Bρ(0) → Bρ(0) is a contraction map

for all (δ, y) ∈ K and ε ∈ (0,ε0). Hence by Banach fixed point theorem we obtain a unique fixed

point φ
δ,y
ε . Now, (3.11) follows from (3.12) by taking φ = φ

δ,y
ε . This proves the claim. ✷

The proof of lemma follows from Claims 1 and 2. ✷

4. Existence of solution: Proof of Theorem 1.1

First, we have the following technical fact:

Proposition 4.1. Let φ ∈ Hδ,y . Define

ζ(R) =

∫

|x−y|=Rδ

(

ω−4
δ,yφ

2 + ω−2
δ,y|∇φ|2 + |�φ|2 + ω2

δ,y

∣

∣∇(�φ)
∣

∣

2)
dσ .

Then there exist a sequence of real numbers {Rn} with Rn → ∞ such that

(i) ζ(Rn) = O (1) as n → ∞,

(ii)

∫

|x−y|=Rnδ

|φ|dσ = o
(

R5
n

)

as n → ∞.
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Proof. We note that
∫∞
0 ζ(r)dr � C‖φ‖2Hδ,y

< ∞. Given any k > 0, let Ak = {r ∈ (0,∞): ζ(r) > k}.

Clearly, k|Ak| � C‖φ‖2Hδ,y
. Therefore, by choosing k large enough, we can ensure |Ak| � 1. Let Bk =

(0,∞) \ Ak . Then, it follows that ζ(r) � k for all r ∈ Bk . We claim a stronger version of (ii) holds, viz.,

∫

|x−y|=Rnδ

|φ|dσ = o
(

R5
n

)

as n → ∞ for any sequence {Rn} ⊂ Bk, Rn → ∞.

To prove this, we argue by contradiction i.e., suppose that there exist c, R0 > 0 such that for all

R ∈ [R0,∞) ∩ Bk we get

∫

|x−y|=Rδ

|φ|dσ � cR5 > 0. (4.1)

By Hölder’s inequality, we obtain

∫

|x−y|=Rδ

|φ|dσ �

( ∫

|x−y|=Rδ

ω4
δ,y dσ

)
1
2
( ∫

|x−y|=Rδ

ω−4
δ,y|φ|2 dσ

)
1
2

. (4.2)

But then, from (4.1) and (4.2),

∫

R4

ω−4
δ,y|φ|2 dx = δ−3

∞
∫

0

( ∫

|x−y|=Rδ

ω−4
δ,y|φ|2 dσ

)

dR

� δ−3

∫

[R0,∞)∩Bk

( ∫

|x−y|=Rδ

ω−4
δ,y|φ|2 dσ

)

dR

� O (1)

∫

[R0,∞)∩Bk

1

R
dR = +∞,

a contradiction. Hence (i), (ii) hold. ✷

The lemma below shows we can integrate by parts the functions in Hδ,y against ψ
(i)
δ,y .

Lemma 4.1. Let φ ∈ Hδ,y . Then, for i = 0,1, . . . ,4,

∫

R4

ψ
(i)
δ,y�

2φ = 24

∫

R4

e4Uδ,yψ
(i)
δ,yφ.

Proof. We prove the lemma for i = 0, the cases i � 1 are similar. As φ ∈ Hδ,y we obtain

∫

R4

ω−4
δ,y|φ|2 dx < +∞ and

∫

R4

|�φ|2 < +∞.

Let the sequence {Rn} be as in the above proposition. Using (i), (ii) of this proposition, we deduce the

following estimates
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∫

|x−y|=Rnδ

|φ|dσ = o
(

R5
n

)

, (4.3)

∫

|x−y|=Rnδ

∣

∣

∣

∣

∂φ

∂ν

∣

∣

∣

∣

dσ �

( ∫

|x−y|=Rnδ

ω−2
δ,y|∇φ|2 dσ

)
1
2
( ∫

|x−y|=Rnδ

ω2
δ,y dσ

)
1
2

� O
(

R
7
2
n

)

, (4.4)

∫

|x−y|=Rnδ

|�φ|dσ � O
(

R
3
2
n

)

( ∫

|x−y|=Rnδ

|�φ|2 dσ

)
1
2

= O
(

R
3
2
n

)

, (4.5)

∫

|x−y|=Rnδ

∣

∣

∣

∣

∂�φ

∂ν

∣

∣

∣

∣

dσ �

( ∫

|x−y|=Rnδ

∣

∣∇(�φ)
∣

∣

2
ω2

δ,y dσ

)
1
2
( ∫

|x−y|=Rnδ

ω−2
δ,y dσ

)
1
2

� O
(

R
− 1

2
n

)

. (4.6)

Moreover, since φ ∈ Hδ,y , we obtain

∫

R4

ψ
(0)
δ,y�

2φ = lim
n→∞

∫

|x−y|�Rnδ

ψ
(0)
δ,y�

2φ

and

∫

R4

ψ
(0)
δ,ye

4Uδ,yφ = lim
n→∞

∫

|x−y|�Rnδ

ψ
(0)
δ,ye

4Uδ,yφ.

Using integration by parts, the last two equations and the above asymptotic estimates (4.3)–(4.6),

we get

∫

|x−y|�Rnδ

ψ
(0)
δ,y�

2φ = 24

∫

|x−y|�Rnδ

e4Uδ,yψ
(0)
δ,yφ

+

∫

|x−y|=Rnδ

(

∂�φ

∂ν
ψ

(0)
δ,y −

∂ψ
(0)
δ,y

∂ν
�φ

)

dσ

−

∫

|x−y|=Rnδ

(

∂�ψ
(0)
δ,y

∂ν
φ −

∂φ

∂ν
�ψ

(0)
δ,y

)

dσ

= 24

∫

|x−y|�Rnδ

e4Uδ,yψ
(0)
δ,yφ

+ O (1)

∫

|x−y|=Rnδ

(

|�φ|

R3
n

+

∣

∣

∣

∣

∂�φ

∂ν

∣

∣

∣

∣

)

dσ
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+ O
(

R−5
n

)

∫

|x−y|=Rnδ

|φ|dσ + O
(

R−4
n

)

∫

|x−y|=Rnδ

∣

∣

∣

∣

∂φ

∂ν

∣

∣

∣

∣

dσ

= 24

∫

|x−y|�Rnδ

eUδ,yψ
(0)
δ,yφ + on(1).

This proves the lemma. ✷

By the previous section, for any compact set K ⊂ R
+ × R

4 , ρ > 0 small, there exists ε0 > 0 such

that for all ε ∈ (0,ε0) and (δ, y) ∈ K , there exists φ
δ,y
ε ∈ Bρ(0) ⊂ Mδ,y such that S

δ,y
ε (φ

δ,y
ε ) = 0. For

notational convenience, hereafter in this section we denote such a φ
δ,y
ε simply as φε .

Now we show that if (δ, y) is chosen carefully to be a stable zero of the vector field V0 , then for

a sequence (δε, yε) → (δ, y), the function φ
δε,yε
ε is in fact a zero of the nonlinear operator B

δε ,yε
ε and

hence

uε = Uδε,yε + φ
δε,yε
ε

will solve (1.6).

If φε ∈ Mδ,y solves S
δ,y
ε (φε) = 0, it follows that B

δ,y
ε (φε) ∈ R⊥ . Hence by Lemma 2.5, there exist

constants ci,ε such that for all i = 0,1,2,3,4

B
δ,y
ε (φε) =

4
∑

i=0

ci,εΦ
(i)
δ,y

and hence

〈

B
δ,y
ε (φε),ψ

(i)
δ,y

〉

L2(R4)
= ci,ε

∫

R4

ω−4
δ,y

∣

∣ψ
(i)
δ,y

∣

∣

2
, i = 0,1,2,3,4, (4.7)

holds.

Lemma 4.2. Let K ⊂ R
+ ×R

4 be a compact set. If φε be obtained as in Lemma 3.1, then as ε → 0 we obtain

for i = 0,1, . . . ,4

sup
(δ,y)∈K

∣

∣

〈

�2φε − 6e4Uδ,y
(

e4φε − 1
)

,ψ
(i)
δ,y

〉

L2(R4)

∣

∣= O
(

ε2
)

and

sup
(δ,y)∈K

∣

∣

〈

f (x)
(

e4(Uδ,y+φε) − e4Uδ,y
)

,ψ
(i)
δ,y

〉

L2(R4)

∣

∣= oε(1).

Proof. Let K ⊂ R
+ ×R

4 be a compact set and (δ, y) ∈ K . By (3.11), since φε → 0 in Hδ,y , we obtain

φε → 0 in C0
loc

(R4). Using Lemma 4.1 and Theorem 2.1 we obtain

∫

R4

[

�2φε − 6e4Uδ,y
(

e4φε − 1
)]

ψ
(i)
δ,y = −6

∫

R4

e4Uδ,y
[

e4φε − 1− 4φε

]

ψ
(i)
δ,y

� C‖φε‖
2
Hδ,y

= O
(

ε2
)

.
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Moreover, again by Theorem 2.1 and the dominated convergence theorem we get

〈

f (x)
(

e4(Uδ,y+φε) − e4Uδ,y
)

,ψ
(i)
δ,y

〉

L2(R4)
� C

∫

R4

e4Uδ,y
[

eφε − 1
]

ψ
(i)
δ,y = oε(1). ✷

Define the matrix Aδ,y = (A
i, j
δ,y)0�i, j�4 by

A
i, j
δ,y =

〈

Φ
(i)
δ,y,ψ

( j)
δ,y

〉

L2(R4)
; 0� i, j � 4

and the vector

cε =

⎛

⎜

⎜

⎜

⎝

c0,ε
c1,ε
c2,ε
c3,ε
c4,ε

⎞

⎟

⎟

⎟

⎠

.

We note that Aδ,y is in fact an invertible diagonal matrix. Let K ⊂ R
+ × R

4 be a compact set with

nonempty interior. Define the vector field

Vε(δ, y) =

(

1

ε

∫

R4

(

�2φε − 6e4Uδ,y
(

e4φε − 1
))

ψ
(i)
δ,y − 6

∫

R4

f (x)e4(Uδ,y+φε)ψ
(i)
δ,y

)

i=0,1,...,4

.

Then from Lemma 4.2 we obtain Vε(δ, y) → 6V0(δ, y) in C(K ,R5). Now (4.7) can be written as

Aδ,ycε = εVε(δ, y) (4.8)

for (δ, y) ∈ K .

Proof of Theorem 1.1. Let (δ, y) be a stable zero for the vector field V0 . Since Vε(δ, y) → 6V0(δ, y)

in C(K ,R5), we can find zeroes (δε, yε) of Vε such that (δε, yε) → (δ, y). Take the solution φ
δε,yε
ε

of S
δε,yε
ε (φ) = 0 given in Lemma 3.1 and write out the corresponding equations (4.7) and (4.8) for

Aδε ,yε . Since Aδε ,yε is invertible, we have cε = 0 for all ε > 0. Hence the corresponding φ
δε,yε
ε solves

B
δε ,yε
ε (φδε,yε ) = 0 for all such ε. Defining uε = Uδε ,yε + φ

δε,yε
ε , we obtain that uε solves (1.6) for all

ε > 0 small. That ‖φ
δε,yε
ε ‖Hδ,y = O (ε) follows from Claim 2 in Lemma 3.1. ✷

5. Necessary condition: Proof of Theorem 1.2

In this section we show that if there is a sequence of solutions uε of (1.6) “bifurcating” from

some Uδ,y , then necessarily V0(δ, y) = 0. The main tool to prove this result is a Pohozaev type identity

for functions belonging to Hδ,y . First, we prove the following sharp decay estimates:

Lemma 5.1. Let uε be a sequence of solutions of (1.6) with ‖uε − Uδ,y‖Hδ,y → 0 as ε → 0 for some (δ, y) ∈

R
+ ×R

4 . Then, uniformly as ε → 0, we have the following decay estimates
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lim
|x|→∞

uε(x)

log |x|
= −2, (5.1)

lim
|x|→∞

x · ∇uε = −2, (5.2)

lim
|x|→∞

|x|2
∣

∣�uε(x)
∣

∣= 4, (5.3)

lim
|x|→∞

x · ∇(x · ∇uε) = 0, (5.4)

lim
|x|→∞

|x|2x · ∇(�uε) = 8. (5.5)

Proof. Let φε = uε − Uδ,y . First note that ‖φε‖Hδ,y → 0 and hence

|uε − Uδ,y|

log |x|
� C‖φε‖Hδ,y

(

1+
1

log |x|

)

→ 0 (5.6)

as |x| → +∞. Using the fact that

lim
|x|→∞

Uδ,y

log |x|
= −2,

we obtain (5.1). We use similar arguments in [12] to establish (5.2), (5.3), (5.4) and (5.5). Using (5.1)

we obtain

∀0 < ν < 2, ∃R(ν) > 0: uε(x) � (−2+ ν) log+ |x|, ∀|x| > R(ν). (5.7)

Then, since φε ∈ Hδ,y we can use (4.6) of Lemma 4.1 to conclude that for a suitable sequence Rn → ∞,

0 = lim
Rn→∞

∫

∂BRn (0)

∂�φε

∂ν
dσ = lim

Rn→∞

∫

BRn (0)

�2(uε − Uδ,y)

= lim
Rn→∞

∫

BRn (0)

6
(

1+ ε f (x)
)

e4uε − 6e4Uδ,y

= lim
Rn→∞

∫

BRn (0)

6
(

1+ ε f (x)
)

e4uε − 16π2. (5.8)

Hence, we obtain

∀ε > 0,

∫

R4

(

1+ ε f (x)
)

e4uε =
8π2

3
. (5.9)

We define vε by

vε(x) =
1

8π2

∫

R4

log
(

|x− y|
)

6
(

1+ ε f (y)
)

e4uε(y) dy.
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It is easy to check that �2vε = −6(1 + ε f (x))e4uε in R
4 and using (5.9) we obtain uniformly as

ε → 0,

lim
|x|→∞

vε(x)

log |x|
=

3

4π2

∫

R4

(

1+ ε f (y)
)

e4uε(y) dy = 2. (5.10)

It can be shown, as in Lemma 2.1, that

sup
0<ε<1

sup
R4

∣

∣vε(x)
∣

∣� C
(

log+ |x| + 1
)

.

Consider the function wε = uε + vε . Then �2wε = 0 in R
4 . Hence �wε is harmonic and by the mean

value theorem, for any r > 0,

�wε(x0) =
2

π2r4

∫

Br(x0)

�wε(x)dx =
2

π2r4

∫

∂Br(x0)

∂wε

∂r
(x)dσ .

Integrating along r we obtain

r2

8
�wε(x0) =

1

2π2r3

∫

∂Br(x0)

wε dσ − wε(x0).

From (5.7) and (5.10), it follows that wε and hence the absolute value of the RHS in the above

equation grows at most like log r as r → ∞. Hence, we obtain a contradiction if �wε(x0) �= 0 at

any x0 . Therefore, �wε = 0 in R
4 . Further since wε has at most logarithmic growth at infinity, we

conclude that wε ≡ const. in R
4 . Successively differentiating vε and arguing in a similar way we

obtain the relations (5.2)–(5.5). ✷

Corollary 5.1. The following uniform estimates hold

(i) limsup
|x|→∞

|x|
∣

∣∇uε(x)
∣

∣< ∞,

(ii) limsup
|x|→∞

|x|2
∣

∣D2uε

∣

∣< ∞.

Proof. We note that, from (5.1), we have the estimate e4uε � C(1 + |x|)ν−8 for any ν > 0 and all

|x| � R = R(ν). The conclusions (i) and (ii) follow by differentiating inside the integral sign in the

definition of vε . ✷

We now develop two kinds of Pohozaev type identities.

Lemma 5.2. Let {uε} be a family of solutions to (1.6) such that ‖uε − Uδ,y‖Hδ,y → 0 as ε → 0 for some

(δ, y) ∈R
+ ×R

4 . Then,

∫

R4

f (x)e4uε
∂uε

∂xi
= 0, i = 1,2,3,4, (5.11)
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and

∫

R4

f (x)e4uε
[

(x− y) · ∇uε + 1
]

= 0. (5.12)

Proof. In order to prove (5.11) we multiply (1.6) by ∂uε
∂xi

and integrate by parts on the ball BR(0) to

get

6

∫

BR (0)

(

1+ ε f (x)
)

e4uε
∂uε

∂xi
=

∫

∂BR (0)

∂�uε

∂ν

∂uε

∂xi
dσ −

∫

BR (0)

∇(�uε) · ∇

(

∂uε

∂xi

)

. (5.13)

By (5.5) and Corollary 5.1(i), we obtain

∫

∂BR (0)

∣

∣

∣

∣

∂�uε

∂ν

∂uε

∂xi

∣

∣

∣

∣

dσ = O
(

R−1
)

as R → ∞. (5.14)

Again, by suitable integration by parts and using (5.3) and Corollary 5.1(ii), we get as R → ∞,

∫

BR (0)

∇(�uε) · ∇

(

∂uε

∂xi

)

=

∫

∂BR (0)

{

�uε
∂

∂ν

(

∂uε

∂xi

)

−
1

2R
xi |�uε|

2

}

dσ = O
(

R−1
)

. (5.15)

Hence, from the last two relations,

lim
R→∞

{

RHS of (5.13)
}

= 0. (5.16)

Again integrating by parts in another way,

∫

BR (0)

(1+ ε f )e4uε
∂uε

∂xi
=

1

4R

∫

∂BR (0)

xie
4uε dσ + ε

∫

BR (0)

f e4uε
∂uε

∂xi
. (5.17)

Using the asymptotic relation (5.1) and Corollary 5.1(i), we may let R → ∞ in the above equation to

conclude

lim
R→∞

∫

BR (0)

(1+ ε f )e4uε
∂uε

∂xi
= ε

∫

R4

f e4uε
∂uε

∂xi
. (5.18)

Therefore we obtain, using (5.18) and (5.16),

6ε

∫

R4

f (x)e4uε
∂uε

∂xi
= lim

R→∞

{

LHS of (5.13)
}

= 0, (5.19)

which proves (5.11). Now we are left to show (5.12). For this, we multiply (1.6) by (x − y) · ∇uε + 1

on either side and integrate on the ball BR(y) as before to obtain,

6

∫

BR (y)

e4uε
(

1+ ε f (x)
)(

(x− y) · ∇uε + 1
)

=

∫

BR (y)

�2uε

(

(x− y) · ∇uε + 1
)

. (5.20)
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Integrating by parts we obtain

LHS of (5.20) =
3R

2

∫

∂BR (y)

e4uε dσ + 6ε

∫

BR (y)

f e4uε
(

(x− y) · ∇uε + 1
)

. (5.21)

We denote r ∂
∂r

= (x− y) · ∇ . Again integrating by parts suitably,

RHS of (5.20) =

∫

∂BR (y)

{

R

(

1

2
|�uε|

2 +

(

∂uε

∂r
+ 1

)

∂

∂r
(�uε)

)

− �uε
∂

∂r

(

r
∂uε

∂r

)}

dσ . (5.22)

We have used the relation (obtained from integrating by parts)

∫

BR (y)

�uε(x− y) · ∇(�uε) =
R

2

∫

∂BR (y)

(�uε)
2 dσ − 2

∫

BR (y)

(�uε)
2 dx

and the identity

�
(

(x− y) · ∇uε

)

= 2�uε + (x− y) · ∇(�uε)

to derive (5.22). Using the asymptotics (5.1)–(5.5), we obtain that

lim
R→∞

{

LHS of (5.20)
}

= 6ε

∫

R4

f (x)e4uε
(

(x− y) · ∇uε + 1
)

, (5.23)

and

lim
R→∞

{

RHS of (5.20)
}

= 0. (5.24)

Hence (5.12) follows. ✷

Proof of Theorem 1.2. We note that (x − y) · ∇xUδ,y + 1 = −δ
∂Uδ,y

∂δ
. Since uε → Uδ,y in Hδ,y , the

asymptotics in Lemma 5.1 allow us to pass to the limit as ε goes to 0 in (5.11) and (5.12). This means

that V0(δ, y) = 0. ✷

6. Local uniqueness: Proof of Theorem 1.3

In this section we show that a “strongly” stable zero of the vector field V0(δ, y) “bifurcates” at

most one family of solutions to (1.6).

Proof of Theorem1.3. We argue by contradiction. Let us suppose that for some sequence εn → 0 there

exist two distinct sequences of solutions {u1,εn } and {u2,εn } of (1.6) such that ‖ui,n −Uδ,y‖Hδ,y → 0 as

n → ∞ for i = 1,2. For convenience, we denote ui,n = ui,εn . Set w̃n = u1,n − u2,n . Then ‖w̃n‖Hδ,y → 0

as n → ∞. Then, we have the following two cases: either

Case (i): for any β > 0, for all large n, there exists xn ∈ R
4 such that |w̃n(xn)| � β ,
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or

Case (ii): there exists β > 0 and a subsequence of {w̃n}, which we still denote by {w̃n}, such that

|w̃n(x)| < β for all n and all x ∈ R
4 . In this case, let xn ∈ R

4 be such that |w̃n(xn)| �
1
2
‖w̃n‖L∞(R4) .

If Case (i) holds, then we define wn = w̃n

‖w̃n‖Hδ,y

, and if Case (ii) holds then wn = w̃n

‖w̃n‖L∞(R4)

. Then

wn satisfies

�2wn = 24
(

1+ εn f (x)
)

cn(x)wn with cn(x) =

1
∫

0

e4tu1,n+(1−t)4u2,n dt. (6.1)

We note that, from (5.1), we have the estimate

e4ui,n � C
(

1+ |x|
)ν−8

for any ν > 0, all |x| � R = R(ν), and ∀n. (6.2)

Using Schauder estimates, we obtain wn → w in C4
loc

(R4) where w satisfies the problem

�2w = 24e4Uδ,y w in R
4. (6.3)

By non-degeneracy result in Lemma 2.2, w = c0
∂Uδ,y

∂δ
+
∑4

i=1 ci
∂Uδ,y

∂xi
for some ci ∈ R, i = 0,1, . . . ,4.

We claim that ci = 0 for all i = 0,1, . . . ,4. From the identity (5.11) we get

∫

R4

f (x)e4ui,n
∂ui,n

∂x j

= 0, i = 1,2; j = 1,2,3,4. (6.4)

Using assumptions (1.12) and (6.2) we derive from (6.4)

∫

R4

∂ f

∂x j

e4ui,n = 0, i = 1,2 and j = 1,2,3,4. (6.5)

Therefore,

∫

R4

(

∂ f

∂x j

e4u1,n −
∂ f

∂x j

e4u2,n

)

= 0 for j = 1,2,3,4, (6.6)

which can be written as

∫

R4

∂ f

∂x j

cn(x)wn(x)dx = 0 for j = 1,2,3,4. (6.7)

Using (1.12) we can pass to the limit in (6.7) to obtain,

∫

R4

∂ f

∂x j

e4Uδ,y

(

c0
∂Uδ,y

∂δ
+

4
∑

i=1

ci
∂Uδ,y

∂xi

)

= 0, j = 1,2,3,4. (6.8)
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That is, integrating by parts again,

∫

R4

f
∂

∂x j

(

e4Uδ,y

{

c0
∂Uδ,y

∂δ
+

4
∑

i=1

ci
∂Uδ,y

∂xi

})

= 0, j = 1,2,3,4. (6.9)

Similarly, using (1.12) and (6.2) we deduce from (5.12),

∫

R4

〈

(x− y),∇ f
〉

e4ui,n = 0 for i = 1,2. (6.10)

Then, arguing as above we get

∫

R4

〈

(x− y),∇ f
〉

e4Uδ,y w = 0.

Hence doing integration by parts we obtain that

−4δ

∫

R4

f (x)e4Uδ,y
∂Uδ,y

∂δ
w +

∫

R4

f (x)e4Uδ,y
〈

(x − y),∇w
〉

= 0. (6.11)

Using the relations

〈

(x− y),∇w
〉

= −

(

δ
∂w

∂δ
+ w

)

,

and

∫

R4

f (x)e4Uδ,y(x)w = 0
(

from (6.8)
)

,

we rewrite (6.11) as

−4δ

∫

R4

f (x)e4Uδ,y
∂Uδ,y

∂δ
w − δ

∫

R4

f (x)e4Uδ,y
∂w

∂δ
= 0.

That is,

∫

R4

f (x)
∂

∂δ

(

e4Uδ,y

{

c0
∂Uδ,y

∂δ
+

4
∑

i=1

ci
∂Uδ,y

∂xi

})

= 0. (6.12)

Thus, from (6.9) and (6.12), we deduce D2 J (δ, y)c = 0 where c is the column vector (c0, c1, c2,

c3, c4)
T . Since D2 J (δ, y) is an invertible matrix, we deduce c0 = c1 = c2 = c3 = c4 = 0. This implies

w ≡ 0 in R
4 . Therefore, wn → 0 in C4

loc
(R4) and hence we necessarily have |xn| → ∞. Let us use the

Kelvin transform to define
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ûi,n(x) = ui,n

(

x

|x|2

)

, ŵn(x) = wn

(

x

|x|2

)

, ĉn(x) = cn

(

x

|x|2

)

, x ∈R
4 \ {0}.

Clearly, we have |ŵn(
xn

|xn |2
)| � 1

2
for all large n. It can be shown that ŵn satisfies the following equa-

tion

�2 ŵn =
24

|x|8
ĉn

(

1+ εn f

(

x

|x|2

))

ŵn in R
4 \ {0}. (6.13)

In Case (i), using the growth estimate (2.1), we get that |ŵn(x)| � C(1 − log |x|) for all n and all

x ∈ B1(0). Since ŵn → 0 in C4
loc

(R4 \ {0}), by dominated convergence theorem we get that ŵn → 0

in Lp(B1(0)) for all p � 1. In Case (ii), we have again, |ŵn| � 1 and ŵn → 0 in C4
loc

(R4 \ {0}). Hence

ŵn → 0 in Lp(B1(0)) for any p � 1. Using the assumption f ∈ L∞(R4) and the estimate (6.2) we get

that

{

24

|x|8
ĉn

(

1+ εn f

(

x

|x|2

))}

is a bounded sequence in Lp(B1(0)) for any p > 1. Therefore the RHS in Eq. (6.13) converges to 0 in

Lp(B1(0)) as n → ∞ for any p > 1. We recall that ŵn → 0 in C4
loc

(R4 \ {0}). Using the standard Lp

regularity theory (see for example, Corollary 2.23 in [11]) and Sobolev embedding to Eq. (6.13) we

obtain

‖ŵn‖L∞(B1(0)) → 0.

This gives a contradiction easily in Case (i) and as well in Case (ii) since

‖ŵn‖L∞(B1(0)) �

∣

∣

∣

∣

ŵn

(

xn

|xn|2

)∣

∣

∣

∣

�
1

2

for all large n. This proves the theorem. ✷

7. Exact multiplicity result: Proof of Theorem 1.4

Proof of Theorem 1.4. Since the stable zeroes of V0 are isolated there exists an R > 0 such that zeroes

of V0 are contained in the interior of a closed ball K = BR(0) ⊂ R
+ × R

4 . Let m be the number of

zeroes of V0 . By Theorems 1.1, 1.2 and 1.3 we conclude that there exists ε1 = ε1(K ) > 0 such that

for any ε ∈ (0,ε1) the problem (1.6) has at least m solutions ui
ε and m points (δi, yi) ∈ K such that

ui
ε − Uδi ,yi → 0 in Hδi ,yi , i = 1, . . . ,m. Let

Sμ =
{

u solves (1.6) for ε ∈ (0,μ), u − U1,0 ∈ H1,0

}

\
{

ui
ε

}

0<ε<μ, 1�i�m
.

Define now the quantity

θμ = inf
u∈Sμ

dH1,0(u,MK ).

We now claim that

θ0 = lim inf
μ→0

θμ > 0.
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If possible let θ0 = 0. Then we find sequences {un} ⊂ Sμ and {(δn, yn)} ⊂ K such that ‖un −

Uδn,yn‖H1,0 → 0 as n → ∞. Let (δn, yn) → (δ, y) ∈ K . This means that {un} is a sequence of solu-

tions bifurcating from (δ, y). By Theorem 1.2, we have that V0(δ, y) = 0. But the uniqueness result in

Theorem 1.3 contradicts the fact that {un} ⊂ Sμ . This proves the claim.

Therefore, we can choose μ0 > 0 small such that θμ �
θ0
2

for all μ < μ0 . By Theorem 1.2, there

exists some C > 0 and ε2 > 0,

d
(

ui
ε,MK

)

� Cε, i = 1, . . . ,m, ε ∈ (0,ε2).

The conclusion of the theorem now follows by taking ρ0 = θ0
2

and ε0 = min{ θ0
2C

,μ0,ε2}. ✷

8. A concrete approach to finding stable zeroes of V0

Throughout this section we assume

(f1) f ∈ C1
(

R
4
)

∩ L∞
(

R
4
)

.

By a change of variable J can be written as

J (δ, ξ) = 16

∫

R4

f (δx+ ξ)

(1+ |x|2)4
dx. (8.1)

Let Crit( f ), Crit( J ) denote respectively the set of critical points of f and J . We have

J (0, ξ) = 16 f (ξ)

∫

R4

1

(1+ |x|2)4
dx. (8.2)

Since 〈∇ f (ξ), x〉 is an odd function,

Dδ J (0, ξ) = lim
δ→0

(Dδ J )(δ, ξ) = 16

∫

R4

〈∇ f (ξ), x〉

(1 + |x|2)4
dx = 0. (8.3)

Therefore we can extend J as an even function of δ to R×R
4 . Without loss of generality we denote

this function by J . Also

ξ ∈ Crit( f ) ⇔ (0, ξ) ∈ Crit( J ).

Lemma 8.1. Assume the following conditions on f :

(f2) there exists ρ > 0 such that 〈∇ f (x), x〉 < 0 for any |x| � ρ ,

(f3) 〈∇ f (x), x〉 ∈ L1(R4),
∫

R4 〈∇ f (x), x〉dx < 0.

Then, there exists R > 0 such that

〈

∇ J (δ, ξ), (δ, ξ)
〉

< 0 whenever
∣

∣(δ, ξ)
∣

∣� R. (8.4)

Proof. See Lemma 3.3 in [1]. ✷
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We make the following assumption about the “shape” of f near a critical point.

(f4) Given ξ ∈ Crit( f ), suppose that there exists βξ = β > 1 such that:

(i) If β � 4, there exist μ > 0 and a map Q ξ : R4 → R homogeneous of degree β , that is Q ξ (λy) =

λβ Q ξ (y) for all y ∈ R
4 , such that

f (y) = f (ξ) + Q ξ (y − ξ) + O
(

|y − ξ |β+μ
)

as y → ξ.

(ii) If β > 4, we assume that f (y) = f (ξ) + O (|y − ξ |β) as y → ξ .

Lemma 8.2. Let (f4) hold. Then, as δ → 0+ ,

J (δ, ξ) − J (0, ξ) = 16

⎧

⎪

⎨

⎪

⎩

δβ(Cβ,ξ + oδ(1)) if β < 4,

δ4 log 1
δ
(C4,ξ + oδ(1)) if β = 4,

δ4(Cβ,ξ + oδ(1)) if β > 4,

(8.5)

where

Cβ,ξ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫∞
0

rβ dr
(1+|x|2)4

∫

S3
Q ξ (σ )dσ if β < 4,

∫

S3
Q ξ (σ )dσ if β = 4,

∫

R4 |y|−8[ f (y + ξ) − f (ξ)]dy if β > 4.

(8.6)

Proof. Case 1 < β � 4: From (f4)(i) we can find a C > 0 and 0 < R < 1 such that

∣

∣

∣

∣

f (δx+ ξ) − f (ξ) − δβ |x|β Q ξ

(

x

|x|

)∣

∣

∣

∣

� C
(

δ|x|
)β+μ

, ∀|x| �
R

δ
. (8.7)

We remark that if β < 4 we can choose 0 < μ̃ < μ small so that β + μ̃ < 4. Since R < 1, we see that

(8.7) still holds with μ̃, which we continue to denote by μ. We now compute

J (δ, ξ) − J (0, ξ) = 16

∫

R4

f (δx+ ξ) − f (ξ)

(1 + |x|2)4
dx

= 16

∫

B R
δ

(0)

f (δx+ ξ) − f (ξ)

(1+ |x|2)4
dx

+ 16

∫

R4\B R
δ

(0)

f (δx+ ξ) − f (ξ)

(1+ |x|2)4
dx

= I(1)(δ) + I(2)(δ). (8.8)

We simply estimate

∣

∣I(2)(δ)
∣

∣� 16‖ f ‖∞

∫

R4\B R
δ

(0)

1

(1 + |x|2)4
dx = O

(

δ4
)

. (8.9)
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Using (8.7) in the first integral I(1)(δ) we get

∣

∣

∣

∣

I(1)(δ) − 16δβ

∫

B R
δ

(0)

|x|β Q ξ (
x
|x| )

(1+ |x|2)4
dx

∣

∣

∣

∣

� Cδβ+μ

∫

B R
δ

(0)

|x|β+μ

(1 + |x|2)4
dx. (8.10)

If β < 4 (hence β + μ < 4), the above inequality gives

I(1)(δ) = 16δβ

∞
∫

0

rβ dr

(1+ |x|2)4

∫

S3

Q ξ (σ )dσ
[

1+ O
(

δμ
)]

. (8.11)

If β = 4, again from (8.10) we get

I(1)(δ) = 16δ4 log

(

1

δ

)∫

S3

Q ξ (σ )dσ
[

1+ oδ(1)
]

. (8.12)

Putting together (8.9), (8.11) and (8.12) we complete the case β � 4.

Case β > 4: Using (f4) and dominated convergence theorem,

J (δ, ξ) − J (0, ξ) = 16δ4
∫

R4

|y|−8
(

f (y + ξ) − f (ξ)
)

dy + oδ(1).

This shows (8.5)–(8.6) for β > 1. ✷

The proof of the following two results is a slight modification of Lemmas 3.6 and Lemma 3.8

respectively in [1].

Corollary 8.1. Let ξ ∈ Crit( f ) be isolated and assume that f satisfies (f1)–(f4). Suppose that Cβ,ξ �= 0. Then

q = (0, ξ) is an isolated critical point of J and

Cβ,ξ > 0 ⇒ degloc(∇ J ,q) = degloc(∇ f , ξ),

Cβ,ξ < 0 ⇒ degloc(∇ J ,q) = −degloc(∇ f , ξ).

Proposition 8.1. If f has finitely many critical points and satisfies

(i) assumptions (f1)–(f4) and at any ξ ∈ Crit( f ),

(ii) Cβ,ξ �= 0 (see (8.6)), and

(iii)
∑

Cβ,ξ <0 degloc(∇ f , ξ) �= 1,

then the vector field ∇ J has a stable zero.

Remark 8.1. We remark that the expression for Cβ,ξ when β > 4 depends on global behavior of f , in

contrast to the expressions for Cβ,ξ when β � 4 which depend of “shape” of f near ξ . It is easy to see

that if ξ is a point of global maximum (minimum) for f , β = βξ > 4, then Cβ,ξ < 0 (respectively > 0).

Remark 8.2. In fact, if Crit( f ) ⊂ BR(0) for some R > 0 and for some ε suitably small we have

maxx1,x2∈BR (0) | f (x1) − f (x2)| < ε and minξ∈Crit( f ) | f (ξ)| > 1
ε , then we can ensure that (ii) holds for

all ξ ∈ Crit( f ) with β = βξ > 4 by letting f decay suitably outside the ball BR(0).
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Remark 8.3. In the particular case, when β = 2, we obtain results similar to Wei and Xu [19,20].

Corollary 8.2. Let us suppose that f is a C
2,μ
loc

(R4) function satisfying:

(i) assumptions (f1)–(f4) at any ξ ∈ Crit( f ),

(ii) for any ξ ∈ Crit( f ), � f (ξ) �= 0, and

(iii)
∑

� f (ξ)<0 degloc(∇ f , ξ) �= 1.

Then the vector field ∇ J has a stable zero.

Now we state the existence result for the problem (1.6) in more concrete terms.

Theorem 8.1. Let f satisfy the assumptions (i)–(iii) in Proposition 8.1. Fix a compact set K ⊂ R
+ × R

4 with

a nonempty interior. Then there exists ε0 = ε0(K ) > 0 such that (1.6) admits a solution uε for all ε ∈ (0,ε0).
Moreover, uε = Uδε ,yε +φε with φε → 0 in Hδ,y and (δε, yε) → (δ, y) as ε → 0. Furthermore, local unique-

ness and exact multiplicity results as in Theorems 1.3, 1.4 hold if (δ, y) is a stable zero of J such that the Hessian

D2 J (δ, y) is invertible and ∇ f ∈ L∞(RN ).
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